summaryrefslogtreecommitdiffstats
path: root/VNFs/DPPD-PROX/handle_qinq_encap4.c
blob: 0b31660f4c49643fadd496a6e774922ea3b78111 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
13
heat_template_version: pike

description: >
  OpenStack containerized Mistral Engine service

parameters:
  DockerMistralEngineImage:
    description: image
    type: string
  DockerMistralConfigImage:
    description: The container image to use for the mistral config_volume
    type: string
  EndpointMap:
    default: {}
    description: Mapping of service endpoint -> protocol. Typically set
                 via parameter_defaults in the resource registry.
    type: json
  ServiceData:
    default: {}
    description: Dictionary packing service data
    type: json
  ServiceNetMap:
    default: {}
    description: Mapping of service_name -> network name. Typically set
                 via parameter_defaults in the resource registry.  This
                 mapping overrides those in ServiceNetMapDefaults.
    type: json
  DefaultPasswords:
    default: {}
    type: json
  RoleName:
    default: ''
    description: Role name on which the service is applied
    type: string
  RoleParameters:
    default: {}
    description: Parameters specific to the role
    type: json


resources:

  ContainersCommon:
    type: ./containers-common.yaml

  MistralBase:
    type: ../../puppet/services/mistral-engine.yaml
    properties:
      EndpointMap: {get_param: EndpointMap}
      ServiceData: {get_param: ServiceData}
      ServiceNetMap: {get_param: ServiceNetMap}
      DefaultPasswords: {get_param: DefaultPasswords}
      RoleName: {get_param: RoleName}
      RoleParameters: {get_param: RoleParameters}

outputs:
  role_data:
    description: Role data for the Mistral Engine role.
    value:
      service_name: {get_attr: [MistralBase, role_data, service_name]}
      config_settings:
        map_merge:
          - get_attr: [MistralBase, role_data, config_settings]
      step_config: &step_config
        get_attr: [MistralBase, role_data, step_config]
      service_config_settings: {get_attr: [MistralBase, role_data, service_config_settings]}
      # BEGIN DOCKER SETTINGS
      puppet_config:
        config_volume: mistral
        puppet_tags: mistral_config
        step_config: *step_config
        config_image: {get_param: DockerMistralConfigImage}
      kolla_config:
        /var/lib/kolla/config_files/mistral_engine.json:
          command: /usr/bin/mistral-server --config-file=/etc/mistral/mistral.conf --log-file=/var/log/mistral/engine.log --server=engine
          config_files:
            - source: "/var/lib/kolla/config_files/src/*"
              dest: "/"
              merge: true
              preserve_properties: true
          permissions:
        
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <rte_table_hash.h>
#include <rte_hash_crc.h>
#include <rte_cycles.h>

#include "mbuf_utils.h"
#include "prox_malloc.h"
#include "prox_lua.h"
#include "prox_lua_types.h"
#include "handle_qinq_encap4.h"
#include "handle_qinq_decap4.h"
#include "prox_args.h"
#include "defines.h"
#include "tx_pkt.h"
#include "prefetch.h"
#include "pkt_prototypes.h"
#include "hash_entry_types.h"
#include "task_init.h"
#include "bng_pkts.h"
#include "prox_cksum.h"
#include "hash_utils.h"
#include "quit.h"
#include "prox_port_cfg.h"
#include "handle_lb_net.h"
#include "prox_cfg.h"
#include "cfgfile.h"
#include "toeplitz.h"
#include "prox_shared.h"
#include "prox_compat.h"

static struct cpe_table_data *read_cpe_table_config(const char *name, uint8_t socket)
{
	struct lua_State *L = prox_lua();
	struct cpe_table_data *ret = NULL;

	lua_getglobal(L, name);
	PROX_PANIC(lua_isnil(L, -1), "Coudn't find cpe_table data\n");

	return ret;
}

struct qinq_gre_map *get_qinq_gre_map(struct task_args *targ)
{
	const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
	struct qinq_gre_map *ret = prox_sh_find_socket(socket_id, "qinq_gre_map");

	if (!ret) {
		PROX_PANIC(!strcmp(targ->user_table, ""), "No user table defined\n");
		int rv = lua_to_qinq_gre_map(prox_lua(), GLOBAL, targ->user_table, socket_id, &ret);
		PROX_PANIC(rv, "Error reading mapping between qinq and gre from qinq_gre_map: \n%s\n",
			   get_lua_to_errors());
		prox_sh_add_socket(socket_id, "qinq_gre_map", ret);
	}
	return ret;
}

/* Encapsulate IPv4 packets in QinQ. QinQ tags are derived from gre_id. */
int handle_qinq_encap4_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static void arp_msg(struct task_base *tbase, void **data, uint16_t n_msgs);

static void fill_table(struct task_args *targ, struct rte_table_hash *table)
{
	struct cpe_table_data *cpe_table_data;
	const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
	int ret = lua_to_cpe_table_data(prox_lua(), GLOBAL, targ->cpe_table_name, socket_id, &cpe_table_data);
	const uint8_t n_slaves = targ->nb_slave_threads;
	const uint8_t worker_id = targ->worker_thread_id;

	for (uint32_t i = 0; i < cpe_table_data->n_entries; ++i) {
		if (rte_bswap32(cpe_table_data->entries[i].ip) % n_slaves != worker_id) {
			continue;
		}
		struct cpe_table_entry *entry = &cpe_table_data->entries[i];

		uint32_t port_idx = prox_cfg.cpe_table_ports[entry->port_idx];
		PROX_PANIC(targ->mapping[port_idx] == 255, "Error reading cpe table: Mapping for port %d is missing", port_idx);

		struct cpe_key key = {
			.ip = entry->ip,
			.gre_id = entry->gre_id,
		};

		struct cpe_data data = {
			.qinq_svlan = entry->svlan,
			.qinq_cvlan = entry->cvlan,
			.user = entry->user,
			.mac_port = {
				.mac = entry->eth_addr,
				.out_idx = targ->mapping[port_idx],
			},
			.tsc = UINT64_MAX,
		};

		int key_found;
		void* entry_in_hash;
		prox_rte_table_key8_add(table, &key, &data, &key_found, &entry_in_hash);
	}
}

static void init_task_qinq_encap4(struct task_base *tbase, struct task_args *targ)
{
	struct task_qinq_encap4 *task = (struct task_qinq_encap4 *)(tbase);
	int socket_id = rte_lcore_to_socket_id(targ->lconf->id);

	task->qinq_tag = targ->qinq_tag;
	task->cpe_table = targ->cpe_table;
	task->cpe_timeout = msec_to_tsc(targ->cpe_table_timeout_ms);

	if (!strcmp(targ->task_init->sub_mode_str, "pe")) {
		PROX_PANIC(!strcmp(targ->cpe_table_name, ""), "CPE table not configured\n");
		fill_table(targ, task->cpe_table);
	}

#ifdef ENABLE_EXTRA_USER_STATISTICS
	task->n_users = targ->n_users;
	task->stats_per_user = prox_zmalloc(targ->n_users * sizeof(uint32_t), socket_id);
#endif
	if (targ->runtime_flags & TASK_CLASSIFY) {
		PROX_PANIC(!strcmp(targ->dscp, ""), "DSCP table not specified\n");
		task->dscp = prox_sh_find_socket(socket_id, targ->dscp);
		if (!task->dscp) {
			int ret = lua_to_dscp(prox_lua(), GLOBAL, targ->dscp, socket_id, &task->dscp);
			PROX_PANIC(ret, "Failed to create dscp table from config:\n%s\n",
				   get_lua_to_errors());
			prox_sh_add_socket(socket_id, targ->dscp, task->dscp);
		}
	}

	task->runtime_flags = targ->runtime_flags;

	for (uint32_t i = 0; i < 64; ++i) {
		task->fake_packets[i] = (struct rte_mbuf*)((uint8_t*)&task->keys[i] - sizeof (struct rte_mbuf));
	}

	targ->lconf->ctrl_timeout = freq_to_tsc(targ->ctrl_freq);
	targ->lconf->ctrl_func_m[targ->task] = arp_msg;

	struct prox_port_cfg *port = find_reachable_port(targ);
	if (port) {
		task->offload_crc = port->capabilities.tx_offload_cksum;
	}

	/* TODO: check if it is not necessary to limit reverse mapping
	   for the elements that have been changing in mapping? */

	for (uint32_t i =0 ; i < sizeof(targ->mapping)/sizeof(targ->mapping[0]); ++i) {
		task->src_mac[targ->mapping[i]] = *(uint64_t*)&prox_port_cfg[i].eth_addr;
	}

	/* task->src_mac[entry->port_idx] = *(uint64_t*)&prox_port_cfg[entry->port_idx].eth_addr; */
}

static void arp_msg(struct task_base *tbase, void **data, uint16_t n_msgs)
{
	struct task_qinq_encap4 *task = (struct task_qinq_encap4 *)tbase;
	struct arp_msg **msgs = (struct arp_msg **)data;

	arp_update_from_msg(task->cpe_table, msgs, n_msgs, task->cpe_timeout);
}

static inline void add_key(struct task_args *targ, struct qinq_gre_map *qinq_gre_map, struct rte_table_hash* qinq_gre_table, uint32_t i, uint32_t *count)
{
	struct qinq_gre_data entry = {
		.gre_id = qinq_gre_map->entries[i].gre_id,
		.user = qinq_gre_map->entries[i].user,
	};

#ifdef USE_QINQ
	struct vlans qinq2 = {
		.svlan = {.eth_proto = targ->qinq_tag, .vlan_tci = qinq_gre_map->entries[i].svlan},
		.cvlan = {.eth_proto = ETYPE_VLAN,     .vlan_tci = qinq_gre_map->entries[i].cvlan}
	};

	int key_found = 0;
	void* entry_in_hash = NULL;
	prox_rte_table_key8_add(qinq_gre_table, &qinq2, &entry, &key_found, &entry_in_hash);

	plog_dbg("Core %u adding user %u (tag %x svlan %x cvlan %x), rss=%x\n",
		 targ->lconf->id, qinq_gre_map->entries[i].user, qinq2.svlan.eth_proto,
		 rte_bswap16(qinq_gre_map->entries[i].svlan),
		 rte_bswap16(qinq_gre_map->entries[i].cvlan),
		 qinq_gre_map->entries[i].rss);
#else
	/* lower 3 bytes of IPv4 address contain svlan/cvlan. */
	uint64_t ip = ((uint32_t)rte_bswap16(qinq_gre_map->entries[i].svlan) << 12) |
		rte_bswap16(qinq_gre_map->entries[i].cvlan);
	int key_found = 0;
	void* entry_in_hash = NULL;
	prox_rte_table_key8_add(qinq_gre_table, &ip, &entry, &key_found, &entry_in_hash);

	plog_dbg("Core %u hash table add: key = %016"PRIx64"\n",
		 targ->lconf->id, ip);
#endif
	(*count)++;
}

void init_qinq_gre_table(struct task_args *targ, struct qinq_gre_map *qinq_gre_map)
{
	struct rte_table_hash* qinq_gre_table;
	uint8_t table_part = targ->nb_slave_threads;
	if (!rte_is_power_of_2(table_part)) {
		table_part = rte_align32pow2(table_part) >> 1;
	}

	if (table_part == 0)
		table_part = 1;

	uint32_t n_entries = MAX_GRE / table_part;
	static char hash_name[30];
	sprintf(hash_name, "qinq_gre_hash_table_%03d", targ->lconf->id);

	struct prox_rte_table_params table_hash_params = {
		.name = hash_name,
		.key_size = 8,
		.n_keys = n_entries,
		.n_buckets = n_entries,
		.f_hash = (rte_table_hash_op_hash)hash_crc32,
		.seed = 0,
		.key_offset = HASH_METADATA_OFFSET(0),
		.key_mask = NULL
	};

	qinq_gre_table = prox_rte_table_create(&table_hash_params, rte_lcore_to_socket_id(targ->lconf->id), sizeof(struct qinq_gre_data));

	// LB configuration known from Network Load Balancer
	// Find LB network Load balancer, i.e. ENCAP friend.
	for (uint8_t task_id = 0; task_id < targ->lconf->n_tasks_all; ++task_id) {
		enum task_mode smode = targ->lconf->targs[task_id].mode;
		if (QINQ_ENCAP4 == smode) {
			targ->lb_friend_core =  targ->lconf->targs[task_id].lb_friend_core;
			targ->lb_friend_task =  targ->lconf->targs[task_id].lb_friend_task;
		}
	}
	// Packet coming from Load balancer. LB could balance on gre_id LSB, qinq hash or qinq RSS
	uint32_t flag_features = 0;
	if (targ->lb_friend_core != 0xFF) {
		struct task_args *lb_targ = &lcore_cfg[targ->lb_friend_core].targs[targ->lb_friend_task];
		flag_features = lb_targ->task_init->flag_features;
		plog_info("\t\tWT %d Updated features to %x from friend %d\n", targ->lconf->id, flag_features, targ->lb_friend_core);
	} else {
		plog_info("\t\tWT %d has no friend\n", targ->lconf->id);
	}
	if (targ->nb_slave_threads == 0)  {
		// No slave threads, i.e. using RSS
		plog_info("feature was %x is now %x\n", flag_features, TASK_FEATURE_LUT_QINQ_RSS);
		flag_features = TASK_FEATURE_LUT_QINQ_RSS;
	}
	if ((flag_features & (TASK_FEATURE_GRE_ID|TASK_FEATURE_LUT_QINQ_RSS|TASK_FEATURE_LUT_QINQ_HASH)) == 0) {
		plog_info("\t\tCould not find flag feature from Load balancer => supposing TASK_FEATURE_GRE_ID\n");
		flag_features = TASK_FEATURE_GRE_ID;
	}

	/* Only store QinQ <-> GRE mapping for packets that are handled by this worker thread */
	uint32_t count = 0;
	if (flag_features & TASK_FEATURE_LUT_QINQ_RSS) {
		// If there is a load balancer, number of worker thread is indicated by targ->nb_slave_threads and n_rxq = 0
		// If there is no load balancers, number of worker thread is indicated by n_rxq and nb_slave_threads = 0
		uint8_t nb_worker_threads, worker_thread_id;
		if (targ->nb_slave_threads) {
			nb_worker_threads = targ->nb_slave_threads;
			worker_thread_id = targ->worker_thread_id;
		} else if (prox_port_cfg[targ->rx_port_queue[0].port].n_rxq) {
			nb_worker_threads = prox_port_cfg[targ->rx_port_queue[0].port].n_rxq;
			worker_thread_id = targ->rx_port_queue[0].queue;
		} else {
			PROX_PANIC(1, "Unexpected: unknown number of worker thread\n");
		}
		plog_info("\t\tUsing %d worker_threads id %d\n", nb_worker_threads, worker_thread_id);
		for (uint32_t i = 0; i < qinq_gre_map->count; ++i) {
			if (targ->nb_slave_threads == 0 || rss_to_queue(qinq_gre_map->entries[i].rss, nb_worker_threads) == worker_thread_id) {
				add_key(targ, qinq_gre_map, qinq_gre_table, i, &count);
				//plog_info("Queue %d adding key %16lx, svlan %x cvlan %x, rss=%x\n", targ->rx_queue, *(uint64_t *)q, qinq_to_gre_lookup[i].svlan,  qinq_to_gre_lookup[i].cvlan, qinq_to_gre_lookup[i].rss);
			}
		}
		plog_info("\t\tAdded %d entries to worker thread %d\n", count,  worker_thread_id);
	} else if (flag_features & TASK_FEATURE_LUT_QINQ_HASH) {
		for (uint32_t i = 0; i < qinq_gre_map->count; ++i) {
			uint64_t cvlan = rte_bswap16(qinq_gre_map->entries[i].cvlan & 0xFF0F);
			uint64_t svlan = rte_bswap16((qinq_gre_map->entries[i].svlan & 0xFF0F));
			uint64_t qinq = rte_bswap64((svlan << 32) | cvlan);
			uint8_t queue = rte_hash_crc(&qinq, 8, 0) % targ->nb_slave_threads;
			if (queue == targ->worker_thread_id) {
				add_key(targ, qinq_gre_map, qinq_gre_table, i, &count);
			}
		}
		plog_info("\t\tAdded %d entries to WT %d\n", count,  targ->worker_thread_id);
	} else if (flag_features & TASK_FEATURE_GRE_ID) {
		for (uint32_t i = 0; i < qinq_gre_map->count; ++i) {
			if (qinq_gre_map->entries[i].gre_id % targ->nb_slave_threads == targ->worker_thread_id) {
				add_key(targ, qinq_gre_map, qinq_gre_table, i, &count);
			}
		}
	}

	for (uint8_t task_id = 0; task_id < targ->lconf->n_tasks_all; ++task_id) {
		enum task_mode smode = targ->lconf->targs[task_id].mode;
		if (QINQ_DECAP4 == smode) {
			targ->lconf->targs[task_id].qinq_gre_table = qinq_gre_table;
		}

	}
}

void init_cpe4_table(struct task_args *targ)
{
	char name[64];
	sprintf(name, "core_%u_CPEv4Table", targ->lconf->id);

	uint8_t table_part = targ->nb_slave_threads;
	if (!rte_is_power_of_2(table_part)) {
		table_part = rte_align32pow2(table_part) >> 1;
	}

	if (table_part == 0)
		table_part = 1;

	uint32_t n_entries = MAX_GRE / table_part;

	static char hash_name[30];
	sprintf(hash_name, "cpe4_table_%03d", targ->lconf->id);

	struct prox_rte_table_params table_hash_params = {
		.name = hash_name,
		.key_size = 8,
		.n_keys = n_entries,
		.n_buckets = n_entries >> 1,
		.f_hash = (rte_table_hash_op_hash)hash_crc32,
		.seed = 0,
		.key_offset = HASH_METADATA_OFFSET(0),
		.key_mask = NULL
	};
	size_t entry_size = sizeof(struct cpe_data);
	if (!rte_is_power_of_2(entry_size)) {
		entry_size = rte_align32pow2(entry_size);
	}

	struct rte_table_hash* phash = prox_rte_table_create(&table_hash_params, rte_lcore_to_socket_id(targ->lconf->id), entry_size);
	PROX_PANIC(NULL == phash, "Unable to allocate memory for IPv4 hash table on core %u\n", targ->lconf->id);

	/* for locality, copy the pointer to the port structure where it is needed at packet handling time */
	for (uint8_t task_id = 0; task_id < targ->lconf->n_tasks_all; ++task_id) {
		enum task_mode smode = targ->lconf->targs[task_id].mode;
		if (QINQ_ENCAP4 == smode || QINQ_DECAP4 == smode) {
			targ->lconf->targs[task_id].cpe_table = phash;
		}
	}
}

static void early_init_table(struct task_args* targ)
{
	if (!targ->cpe_table) {
		init_cpe4_table(targ);
	}
}

static inline void restore_cpe(struct cpe_pkt *packet, struct cpe_data *table, __attribute__((unused)) uint16_t qinq_tag, uint64_t *src_mac)
{
#ifdef USE_QINQ
        struct qinq_hdr *pqinq = &packet->qinq_hdr;
	rte_memcpy(pqinq, &qinq_proto, sizeof(struct qinq_hdr));
	(*(uint64_t *)(&pqinq->d_addr)) = table->mac_port_8bytes;
	/* set source as well now */
	*((uint64_t *)(&pqinq->s_addr)) = *((uint64_t *)&src_mac[table->mac_port.out_idx]);
	pqinq->svlan.vlan_tci = table->qinq_svlan;
	pqinq->cvlan.vlan_tci = table->qinq_cvlan;
	pqinq->svlan.eth_proto = qinq_tag;
	pqinq->cvlan.eth_proto = ETYPE_VLAN;
	pqinq->ether_type = ETYPE_IPv4;
#else
	(*(uint64_t *)(&packet->ether_hdr.d_addr)) = table->mac_port_8bytes;
	/* set source as well now */
	*((uint64_t *)(&packet->ether_hdr.s_addr)) = *((uint64_t *)&src_mac[table->mac_port.out_idx]);
	packet->ether_hdr.ether_type = ETYPE_IPv4;

	packet->ipv4_hdr.dst_addr = rte_bswap32(10 << 24 | rte_bswap16(table->qinq_svlan) << 12 | rte_bswap16(table->qinq_cvlan));
#endif
}

static inline uint8_t handle_qinq_encap4(struct task_qinq_encap4 *task, struct cpe_pkt *cpe_pkt, struct rte_mbuf *mbuf, struct cpe_data *entry);

/* Same functionality as handle_qinq_encap_v4_bulk but untag MPLS as well. */
static int handle_qinq_encap4_untag_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_qinq_encap4 *task = (struct task_qinq_encap4 *)tbase;
	uint8_t out[MAX_PKT_BURST];
	prefetch_pkts(mbufs, n_pkts);

	for (uint16_t j = 0; j < n_pkts; ++j) {
		if (likely(mpls_untag(mbufs[j]))) {
			struct cpe_pkt* cpe_pkt = (struct cpe_pkt*) rte_pktmbuf_adj(mbufs[j], UPSTREAM_DELTA);
			out[j] = handle_qinq_encap4(task, cpe_pkt, mbufs[j], NULL);
		}
		else {
			out[j] = OUT_DISCARD;
		}
	}

	return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}

static inline void extract_key_bulk(struct task_qinq_encap4 *task, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	for (uint16_t j = 0; j < n_pkts; ++j) {
		extract_key_core(mbufs[j], &task->keys[j]);
	}
}

__attribute__((cold)) static void handle_error(struct rte_mbuf *mbuf)
{
	struct core_net_pkt* core_pkt = rte_pktmbuf_mtod(mbuf, struct core_net_pkt *);
	uint32_t dst_ip = core_pkt->ip_hdr.dst_addr;
	uint32_t le_gre_id = rte_be_to_cpu_32(core_pkt->gre_hdr.gre_id);

	plogx_dbg("Unknown IP %x/gre_id %x\n", dst_ip, le_gre_id);
}

static int handle_qinq_encap4_bulk_pe(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_qinq_encap4 *task = (struct task_qinq_encap4 *)tbase;
	uint64_t pkts_mask = RTE_LEN2MASK(n_pkts, uint64_t);
	struct cpe_data* entries[64];
	uint8_t out[MAX_PKT_BURST];
	uint64_t lookup_hit_mask;

	prefetch_pkts(mbufs, n_pkts);

	for (uint16_t j = 0; j < n_pkts; ++j) {
		struct ipv4_hdr* ip = (struct ipv4_hdr *)(rte_pktmbuf_mtod(mbufs[j], struct ether_hdr *) + 1);
		task->keys[j] = (uint64_t)ip->dst_addr;
	}
	prox_rte_table_key8_lookup(task->cpe_table, task->fake_packets, pkts_mask, &lookup_hit_mask, (void**)entries);

	if (likely(lookup_hit_mask == pkts_mask)) {
		for (uint16_t j = 0; j < n_pkts; ++j) {
			struct cpe_pkt* cpe_pkt = (struct cpe_pkt*) rte_pktmbuf_prepend(mbufs[j], sizeof(struct qinq_hdr) - sizeof(struct ether_hdr));
			uint16_t padlen = mbuf_calc_padlen(mbufs[j], cpe_pkt, &cpe_pkt->ipv4_hdr);

			if (padlen) {
				rte_pktmbuf_trim(mbufs[j], padlen);
			}
			out[j] = handle_qinq_encap4(task, cpe_pkt, mbufs[j], entries[j]);
		}
	}
	else {
		for (uint16_t j = 0; j < n_pkts; ++j) {
			if (unlikely(!((lookup_hit_mask >> j) & 0x1))) {
				handle_error(mbufs[j]);
				out[j] = OUT_DISCARD;
				continue;
			}
			struct cpe_pkt* cpe_pkt = (struct cpe_pkt*) rte_pktmbuf_prepend(mbufs[j], sizeof(struct qinq_hdr) - sizeof(struct ether_hdr));
			uint16_t padlen = mbuf_calc_padlen(mbufs[j], cpe_pkt, &cpe_pkt->ipv4_hdr);

			if (padlen) {
				rte_pktmbuf_trim(mbufs[j], padlen);
			}
			out[j] = handle_qinq_encap4(task, cpe_pkt, mbufs[j], entries[j]);
		}
	}

	return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}
int handle_qinq_encap4_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_qinq_encap4 *task = (struct task_qinq_encap4 *)tbase;
	uint64_t pkts_mask = RTE_LEN2MASK(n_pkts, uint64_t);
	struct cpe_data* entries[64];
	uint8_t out[MAX_PKT_BURST];
	uint64_t lookup_hit_mask;

	prefetch_pkts(mbufs, n_pkts);

	// From GRE ID and IP address, retrieve QinQ and MAC addresses
	extract_key_bulk(task, mbufs, n_pkts);
	prox_rte_table_key8_lookup(task->cpe_table, task->fake_packets, pkts_mask, &lookup_hit_mask, (void**)entries);

	if (likely(lookup_hit_mask == pkts_mask)) {
		for (uint16_t j = 0; j < n_pkts; ++j) {
			struct cpe_pkt* cpe_pkt = (struct cpe_pkt*) rte_pktmbuf_adj(mbufs[j], UPSTREAM_DELTA);
			// We are receiving GRE tunnelled packets (and removing UPSTRAM_DELTA bytes), whose length is > 64 bytes
			// So there should be no padding, but in case the is one, remove it
			uint16_t padlen = mbuf_calc_padlen(mbufs[j], cpe_pkt, &cpe_pkt->ipv4_hdr);

			if (padlen) {
				rte_pktmbuf_trim(mbufs[j], padlen);
			}
			out[j] = handle_qinq_encap4(task, cpe_pkt, mbufs[j], entries[j]);
		}
	}
	else {
		for (uint16_t j = 0; j < n_pkts; ++j) {
			if (unlikely(!((lookup_hit_mask >> j) & 0x1))) {
				handle_error(mbufs[j]);
				out[j] = OUT_DISCARD;
				continue;
			}
			struct cpe_pkt* cpe_pkt = (struct cpe_pkt*) rte_pktmbuf_adj(mbufs[j], UPSTREAM_DELTA);
			uint16_t padlen = mbuf_calc_padlen(mbufs[j], cpe_pkt, &cpe_pkt->ipv4_hdr);

			if (padlen) {
				rte_pktmbuf_trim(mbufs[j], padlen);
			}
			out[j] = handle_qinq_encap4(task, cpe_pkt, mbufs[j], entries[j]);
		}
	}

	return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}

static inline uint8_t handle_qinq_encap4(struct task_qinq_encap4 *task, struct cpe_pkt *cpe_pkt, struct rte_mbuf *mbuf, struct cpe_data *entry)
{
	PROX_ASSERT(cpe_pkt);

	if (cpe_pkt->ipv4_hdr.time_to_live) {
		cpe_pkt->ipv4_hdr.time_to_live--;
	}
	else {
		plog_info("TTL = 0 => Dropping\n");
		return OUT_DISCARD;
	}
	cpe_pkt->ipv4_hdr.hdr_checksum = 0;

	restore_cpe(cpe_pkt, entry, task->qinq_tag, task->src_mac);

	if (task->runtime_flags & TASK_CLASSIFY) {
		uint8_t queue = task->dscp[cpe_pkt->ipv4_hdr.type_of_service >> 2] & 0x3;
		uint8_t tc = task->dscp[cpe_pkt->ipv4_hdr.type_of_service >> 2] >> 2;

		rte_sched_port_pkt_write(mbuf, 0, entry->user, tc, queue, 0);
	}
#ifdef ENABLE_EXTRA_USER_STATISTICS
	task->stats_per_user[entry->user]++;
#endif
	if (task->runtime_flags & TASK_TX_CRC) {
		prox_ip_cksum(mbuf, &cpe_pkt->ipv4_hdr, sizeof(struct qinq_hdr), sizeof(struct ipv4_hdr), task->offload_crc);
	}
	return entry->mac_port.out_idx;
}

static void flow_iter_next(struct flow_iter *iter, struct task_args *targ)
{
	do {
		iter->idx++;
		uint8_t flag_features = iter->data;

		if (flag_features & TASK_FEATURE_LUT_QINQ_RSS) {
			// If there is a load balancer, number of worker thread is indicated by targ->nb_slave_threads and n_rxq = 0
			// If there is no load balancers, number of worker thread is indicated by n_rxq and nb_slave_threads = 0
			uint8_t nb_worker_threads, worker_thread_id;
			nb_worker_threads = 1;
			worker_thread_id = 1;
			if (targ->nb_slave_threads) {
				nb_worker_threads = targ->nb_slave_threads;
				worker_thread_id = targ->worker_thread_id;
			} else if (prox_port_cfg[targ->rx_port_queue[0].port].n_rxq) {
				nb_worker_threads = prox_port_cfg[targ->rx_port_queue[0].port].n_rxq;
				worker_thread_id = targ->rx_port_queue[0].queue;
			} else {
				plog_err("Unexpected: unknown number of worker thread\n");
			}

			if (targ->nb_slave_threads == 0 || rss_to_queue(get_qinq_gre_map(targ)->entries[iter->idx].rss, nb_worker_threads) == worker_thread_id)
				break;
		} else if (flag_features & TASK_FEATURE_LUT_QINQ_HASH) {
			uint64_t cvlan = rte_bswap16(get_qinq_gre_map(targ)->entries[iter->idx].cvlan & 0xFF0F);
			uint64_t svlan = rte_bswap16(get_qinq_gre_map(targ)->entries[iter->idx].svlan & 0xFF0F);
			uint64_t qinq = rte_bswap64((svlan << 32) | cvlan);
			uint8_t queue = rte_hash_crc(&qinq, 8, 0) % targ->nb_slave_threads;
			if (queue == targ->worker_thread_id)
				break;
		} else if (flag_features & TASK_FEATURE_GRE_ID) {
			if (get_qinq_gre_map(targ)->entries[iter->idx].gre_id % targ->nb_slave_threads == targ->worker_thread_id)
				break;
		}
	} while (iter->idx != (int)get_qinq_gre_map(targ)->count);
}

static void flow_iter_beg(struct flow_iter *iter, struct task_args *targ)
{
	uint32_t flag_features = 0;
	if (targ->lb_friend_core != 0xFF) {
		struct task_args *lb_targ = &lcore_cfg[targ->lb_friend_core].targs[targ->lb_friend_task];
		flag_features = lb_targ->task_init->flag_features;
		plog_info("\t\tWT %d Updated features to %x from friend %d\n", targ->lconf->id, flag_features, targ->lb_friend_core);
	} else {
		plog_info("\t\tWT %d has no friend\n", targ->lconf->id);
	}
	if (targ->nb_slave_threads == 0)  {
		// No slave threads, i.e. using RSS
		plog_info("feature was %x is now %x\n", flag_features, TASK_FEATURE_LUT_QINQ_RSS);
		flag_features = TASK_FEATURE_LUT_QINQ_RSS;
	}
	if ((flag_features & (TASK_FEATURE_GRE_ID|TASK_FEATURE_LUT_QINQ_RSS|TASK_FEATURE_LUT_QINQ_HASH)) == 0) {
		plog_info("\t\tCould not find flag feature from Load balancer => supposing TASK_FEATURE_GRE_ID\n");
		flag_features = TASK_FEATURE_GRE_ID;
	}

	iter->idx = -1;
	flow_iter_next(iter, targ);
}

static int flow_iter_is_end(struct flow_iter *iter, struct task_args *targ)
{
	return iter->idx == (int)get_qinq_gre_map(targ)->count;
}

static uint32_t flow_iter_get_gre_id(struct flow_iter *iter, struct task_args *targ)
{
	return get_qinq_gre_map(targ)->entries[iter->idx].gre_id;
}

static struct task_init task_init_qinq_encap4_table = {
	.mode = QINQ_ENCAP4,
	.mode_str = "qinqencapv4",
	.early_init = early_init_table,
	.init = init_task_qinq_encap4,
	.handle = handle_qinq_encap4_bulk,
	/* In this case user in qinq_lookup table is the QoS user
	   (from user_table), i.e. usually from 0 to 32K Otherwise it
	   would have been a user from (0 to n_interface x 32K) */
	.flow_iter = {
		.beg        = flow_iter_beg,
		.is_end     = flow_iter_is_end,
		.next       = flow_iter_next,
		.get_gre_id = flow_iter_get_gre_id,
	},
	.flag_features = TASK_FEATURE_CLASSIFY,
	.size = sizeof(struct task_qinq_encap4)
};

static struct task_init task_init_qinq_encap4_table_pe = {
	.mode = QINQ_ENCAP4,
	.mode_str = "qinqencapv4",
	.sub_mode_str = "pe",
	.early_init = early_init_table,
	.init = init_task_qinq_encap4,
	.handle = handle_qinq_encap4_bulk_pe,
	.flag_features = TASK_FEATURE_CLASSIFY,
	.size = sizeof(struct task_qinq_encap4)
};

static struct task_init task_init_qinq_encap4_untag = {
	.mode = QINQ_ENCAP4,
	.sub_mode_str = "unmpls",
	.mode_str = "qinqencapv4",
	.init = init_task_qinq_encap4,
	.handle = handle_qinq_encap4_untag_bulk,
	.flag_features = TASK_FEATURE_CLASSIFY,
	.size = sizeof(struct task_qinq_encap4)
};

__attribute__((constructor)) static void reg_task_qinq_encap4(void)
{
	reg_task(&task_init_qinq_encap4_table);
	reg_task(&task_init_qinq_encap4_table_pe);
	reg_task(&task_init_qinq_encap4_untag);
}