aboutsummaryrefslogtreecommitdiffstats
path: root/tools/collectors/collectd/collectd.py
blob: 700aef47d32509a1e7a747e7755f0a6b2938b286 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2017-2018 Spirent Communications.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Collects samples from collectd through collectd_bucky.
Depending on the policy - decides to keep the sample or discard.
Plot the values of the stored samples once the test is completed
"""

import copy
import csv
import logging
import multiprocessing
import os
from collections import OrderedDict
import queue

import matplotlib.pyplot as plt
import numpy as np
import tools.collectors.collectd.collectd_bucky as cb
from tools.collectors.collector import collector
from conf import settings

# The y-lables. Keys in this dictionary are used as y-labels.
YLABELS = {'No/Of Packets': ['dropped', 'packets', 'if_octets', 'errors',
                             'if_rx_octets', 'if_tx_octets'],
           'Jiffies': ['cputime'],
           'Bandwidth b/s': ['memory_bandwidth'],
           'Bytes': ['bytes.llc']}


def get_label(sample):
    """
    Returns the y-label for the plot.
    """
    for label in YLABELS:
        if any(r in sample for r in YLABELS[label]):
            return label
    return None

def plot_graphs(dict_of_arrays):
    """
    Plot the values
    Store the data used for plotting.
    """
    i = 1
    results_dir = settings.getValue('RESULTS_PATH')
    for key in dict_of_arrays:
        tup_list = dict_of_arrays[key]
        two_lists = list(map(list, zip(*tup_list)))
        y_axis_list = two_lists[0]
        x_axis_list = two_lists[1]
        if np.count_nonzero(y_axis_list) > 0:
            with open(os.path.join(results_dir,
                                   str(key) + '.data'), "w") as pfile:
                writer = csv.writer(pfile, delimiter='\t')
                writer.writerows(zip(x_axis_list, y_axis_list))
            plt.figure(i)
            plt.plot(x_axis_list, y_axis_list)
            plt.xlabel("Time (Ticks)")
            plt.ylabel(get_label(key))
            plt.savefig(os.path.join(results_dir, str(key) + '.png'))
            plt.cla()
            plt.clf()
            plt.close()
            i = i + 1


def get_results_to_print(dict_of_arrays):
    """
    Return a results dictionary for report tool to
    print the process-statistics.
    """
    presults = OrderedDict()
    results = OrderedDict()
    for key in dict_of_arrays:
        if ('processes' in key and
                any(proc in key for proc in ['ovs', 'vpp', 'qemu'])):
            reskey = '.'.join(key.split('.')[2:])
            preskey = key.split('.')[1] + '_collectd'
            tup_list = dict_of_arrays[key]
            two_lists = list(map(list, zip(*tup_list)))
            y_axis_list = two_lists[0]
            mean = 0.0
            if np.count_nonzero(y_axis_list) > 0:
                mean = np.mean(y_axis_list)
            results[reskey] = mean
            presults[preskey] = results
    return presults


class Receiver(multiprocessing.Process):
    """
    Wrapper Receiver (of samples) class
    """
    def __init__(self, pd_dict, control):
        """
        Initialize.
        A queue will be shared with collectd_bucky
        """
        super(Receiver, self).__init__()
        self.daemon = False
        self.q_of_samples = multiprocessing.Queue()
        self.server = cb.get_collectd_server(self.q_of_samples)
        self.control = control
        self.pd_dict = pd_dict
        self.collectd_cpu_keys = settings.getValue('COLLECTD_CPU_KEYS')
        self.collectd_processes_keys = settings.getValue(
            'COLLECTD_PROCESSES_KEYS')
        self.collectd_iface_keys = settings.getValue(
            'COLLECTD_INTERFACE_KEYS')
        self.collectd_iface_xkeys = settings.getValue(
            'COLLECTD_INTERFACE_XKEYS')
        self.collectd_intelrdt_keys = settings.getValue(
            'COLLECTD_INTELRDT_KEYS')
        self.collectd_ovsstats_keys = settings.getValue(
            'COLLECTD_OVSSTAT_KEYS')
        self.collectd_dpdkstats_keys = settings.getValue(
            'COLLECTD_DPDKSTAT_KEYS')
        self.collectd_intelrdt_xkeys = settings.getValue(
            'COLLECTD_INTELRDT_XKEYS')
        self.exclude_coreids = []
        # Expand the ranges in the intelrdt-xkeys
        for xkey in self.collectd_intelrdt_xkeys:
            if '-' not in xkey:
                self.exclude_coreids.append(int(xkey))
            else:
                left, right = map(int, xkey.split('-'))
                self.exclude_coreids += range(left, right + 1)

    def run(self):
        """
        Start receiving the samples.
        """
        while not self.control.value:
            try:
                sample = self.q_of_samples.get(True, 1)
                if not sample:
                    break
                self.handle(sample)
            except queue.Empty:
                pass
            except IOError:
                continue
            except (ValueError, IndexError, KeyError, MemoryError):
                self.stop()
                break

    # pylint: disable=too-many-boolean-expressions
    def handle(self, sample):
        ''' Store values and names if names matches following:
            1. cpu + keys
            2. processes + keys
            3. interface + keys +  !xkeys
            4. ovs_stats + keys
            5. dpdkstat + keys
            6. intel_rdt + keys + !xkeys
            sample[1] is the name of the sample, which is . separated strings.
            The first field in sample[1] is the type - cpu, proceesses, etc.
            For intel_rdt, the second field contains the core-id, which is
            used to make the decision on 'exclusions'
            sample[0]: Contains the host information - which is not considered.
            sample[2]: Contains the Value.
            sample[3]: Contains the Time (in ticks)
            '''
        if (('cpu' in sample[1] and
             any(c in sample[1] for c in self.collectd_cpu_keys)) or
                ('processes' in sample[1] and
                 any(p in sample[1] for p in self.collectd_processes_keys)) or
                ('interface' in sample[1] and
                 (any(i in sample[1] for i in self.collectd_iface_keys) and
                  any(x not in sample[1]
                      for x in self.collectd_iface_xkeys))) or
                ('ovs_stats' in sample[1] and
                 any(o in sample[1] for o in self.collectd_ovsstats_keys)) or
                ('dpdkstat' in sample[1] and
                 any(d in sample[1] for d in self.collectd_dpdkstats_keys)) or
                ('intel_rdt' in sample[1] and
                 any(r in sample[1] for r in self.collectd_intelrdt_keys) and
                 (int(sample[1].split('.')[1]) not in self.exclude_coreids))):
            if sample[1] not in self.pd_dict:
                self.pd_dict[sample[1]] = list()
            val = self.pd_dict[sample[1]]
            val.append((sample[2], sample[3]))
            self.pd_dict[sample[1]] = val

    def stop(self):
        """
        Stop receiving the samples.
        """
        self.server.close()
        self.q_of_samples.put(None)
        self.control.value = True


# inherit from collector.Icollector.
class Collectd(collector.ICollector):
    """A collector of system statistics based on collectd

    It starts a UDP server, receives metrics from collectd
    and plot the results.
    """

    def __init__(self, results_dir, test_name):
        """
        Initialize collection of statistics
        """
        self._log = os.path.join(results_dir,
                                 settings.getValue('LOG_FILE_COLLECTD') +
                                 '_' + test_name + '.log')
        self.results = {}
        self.sample_dict = multiprocessing.Manager().dict()
        self.control = multiprocessing.Value('b', False)
        self.receiver = Receiver(self.sample_dict, self.control)

    def start(self):
        """
        Start receiving samples
        """
        self.receiver.server.start()
        self.receiver.start()

    def stop(self):
        """
        Stop receiving samples
        """
        self.control.value = True
        self.receiver.stop()
        self.receiver.server.join(5)
        self.receiver.join(5)
        if self.receiver.server.is_alive():
            self.receiver.server.terminate()
        if self.receiver.is_alive():
            self.receiver.terminate()
        self.results = copy.deepcopy(self.sample_dict)

    def get_results(self):
        """
        Return the results.
        """
        return get_results_to_print(self.results)

    def print_results(self):
        """
        Print - Plot and save raw-data.
        log the collected statistics
        """
        plot_graphs(self.results)
        proc_stats = get_results_to_print(self.results)
        for process in proc_stats:
            logging.info("Process: %s", '_'.join(process.split('_')[:-1]))
            for(key, value) in proc_stats[process].items():
                logging.info("         Statistic: " + str(key) +
                             ", Value: " + str(value))