summaryrefslogtreecommitdiffstats
path: root/models/failure_prediction/python/lstm.py
blob: 30845f1d8903d6f09ac9766854b53c3af53c9a0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#  pylint: disable=C0103, C0116, W0621, E0401, W0104, W0105, R0913, E1136, W0612, E0102, C0301, W0611, C0411, W0311, W0404, E0602, C0326, C0330, W0106, C0412
# -*- coding: utf-8 -*-
"""LSTM.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/15natzoGkWnOqxZyzavAaRqBFrPNxzd35

Contributors: Rohit Singh Rathaur, Girish L.

Copyright 2021 [Rohit Singh Rathaur, BIT Mesra and Girish L., CIT GUBBI, Karnataka]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

We mounted the drive to access the data from google drive
"""

from keras.utils.vis_utils import plot_model
from keras.layers import Activation, Dense, Dropout
import os
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import tensorflow as tf
from google.colab import drive
drive.mount('/content/drive')

"""We are importing the libraries:
- TensorFlow: to process and train the model
- Matplotlib: to plot the training anf loss curves
- Pandas: used for data analysis and it allows us to import data from various formats
- Numpy: For array computing
"""

# Importing libraries

"""We are reading the CSV file using `read_csv` function and storing it in a DataFrame named `df_Ellis`"""

df_Ellis = pd.read_csv(
    "/content/drive/MyDrive/Failure/lstm/Ellis_FinalTwoConditionwithOR.csv")
df_Ellis

"""`plot()` function is used to draw points"""

df_Ellis.plot()

"""Using multivariate features:
- Storing only the multivariate features in a dataframe named `features_3`
- Extracting the Timestamp column from `df_Ellis` dataframe
- and combining it with the dataframe `features`
"""

# using multivariate feature

features_3 = [
    'ellis-cpu.system_perc',
    'ellis-cpu.wait_perc',
    'ellis-load.avg_1_min',
    'ellis-mem.free_mb',
    'ellis-net.in_bytes_sec',
    'ellis-net.out_packets_sec',
    'Label']

features = df_Ellis[features_3]
features.index = df_Ellis['Timestamp']
features.head()

"""Plotted features"""

features.plot(subplots=True)

features = features.values

# standardize data
train_split = 141600
tf.random.set_seed(13)

# standardize data
features_mean = features[:train_split].mean()
features_std = features[:train_split].std()
features = (features - features_mean) / features_std

print(type(features))
print(features.shape)

# create mutlivariate data


def mutlivariate_data(
        features,
        target,
        start_idx,
        end_idx,
        history_size,
        target_size,
        step,
        single_step=False):
    data = []
    labels = []
    start_idx = start_idx + history_size
    if end_idx is None:
        end_idx = len(features) - target_size
    for i in range(start_idx, end_idx):
        idxs = range(i - history_size, i, step)  # using step
        data.append(features[idxs])
        if single_step:
            labels.append(target[i + target_size])
        else:
            labels.append(target[i:i + target_size])

    return np.array(data), np.array(labels)


"""We spliited the multivariate data in tarining and validation and printed the shape of that data."""

# generate multivariate data

history = 720
future_target = 72
STEP = 6

x_train_ss, y_train_ss = mutlivariate_data(
    features, features[:, 1], 0, train_split, history, future_target, STEP, single_step=True)

x_val_ss, y_val_ss = mutlivariate_data(features, features[:, 1], train_split, None, history,
                                       future_target, STEP, single_step=True)

print(x_train_ss.shape, y_train_ss.shape)
print(x_val_ss.shape, y_val_ss.shape)

"""The `tf.data.Dataset` API supports writing descriptive and efficient input pipelines. Dataset usage following a common pattern:
- Creating a source dataset from our input data.
- Applied dataset transformations to preprocess the data.
- Iterate over the dataset and process the elements.
Note: Iteration happens in a streaming fashion, so the full dataset does not need to fit into memory.
Once we have a dataset, we can apply transformations to prepare the data for our model:
"""

# tensorflow dataset
batch_size = 256
buffer_size = 10000

train_ss = tf.data.Dataset.from_tensor_slices((x_train_ss, y_train_ss))
train_ss = train_ss.cache().shuffle(buffer_size).batch(batch_size).repeat()

val_ss = tf.data.Dataset.from_tensor_slices((x_val_ss, y_val_ss))
val_ss = val_ss.cache().shuffle(buffer_size).batch(batch_size).repeat()

print(train_ss)
print(val_ss)

"""We used a custom loss function to evaluate the model:"""


def root_mean_squared_error(y_true, y_pred):
    return K.sqrt(K.mean(K.square(y_pred - y_true)))


"""We are building a single step LSTM model for training data with dropout 0.3 and we used ADAM optimizers."""

# Modelling using LSTM
steps = 50

EPOCHS = 20

single_step_model = tf.keras.models.Sequential()

single_step_model.add(tf.keras.layers.LSTM(
    32, return_sequences=False, input_shape=x_train_ss.shape[-2:]))
single_step_model.add(tf.keras.layers.Dropout(0.3))
single_step_model.add(tf.keras.layers.Dense(1))
single_step_model.compile(
    optimizer=tf.keras.optimizers.Adam(),
    loss='mae',
    metrics=[
        tf.keras.metrics.RootMeanSquaredError(
            name='rmse')])
#single_step_model.compile(loss='mse', optimizer='rmsprop')
single_step_model_history = single_step_model.fit(
    train_ss,
    epochs=EPOCHS,
    steps_per_epoch=steps,
    validation_data=val_ss,
    validation_steps=50)
single_step_model.summary()
plot_model(
    single_step_model,
    to_file='/content/drive/MyDrive/Failure/lstm/LSTM.png',
    show_shapes=True,
    show_layer_names=True)

"""We defined the `plot_loss` function to plot the train and test loss"""

# plot train test loss


def plot_loss(history, title):
    loss = history.history['loss']
    val_loss = history.history['val_loss']

    epochs = range(len(loss))
    plt.figure()
    plt.plot(epochs, loss, 'b', label='Train Loss')
    plt.plot(epochs, val_loss, 'r', label='Validation Loss')
    plt.title(title)
    plt.legend()
    plt.grid()
    plt.show()


plot_loss(single_step_model_history,
          'Single Step Training and validation loss')

# plot train test loss


def plot_loss(history, title):
    loss = history.history['rmse']
    val_loss = history.history['val_rmse']

    epochs = range(len(loss))
    plt.figure()
    plt.plot(epochs, loss, 'b', label='Train RMSE')
    plt.plot(epochs, val_loss, 'r', label='Validation RMSE')
    plt.title(title)
    plt.legend()
    plt.grid()
    plt.show()


plot_loss(single_step_model_history,
          'Single Step Training and validation loss')

"""We defined a function `create_time_steps` to create time steps and function `plot_time_series` to plot the time series data"""

# fucntion to create time steps


def create_time_steps(length):
    return list(range(-length, 0))

# function to plot time series data


def plot_time_series(plot_data, delta, title):
    labels = ["History", 'True Future', 'Model Predcited']
    marker = ['.-', 'rx', 'go']
    time_steps = create_time_steps(plot_data[0].shape[0])

    if delta:
        future = delta
    else:
        future = 0
    plt.title(title)
    for i, x in enumerate(plot_data):
        if i:
            plt.plot(
                future,
                plot_data[i],
                marker[i],
                markersize=10,
                label=labels[i])
        else:
            plt.plot(
                time_steps,
                plot_data[i].flatten(),
                marker[i],
                label=labels[i])
    plt.legend()
    plt.xlim([time_steps[0], (future + 5) * 2])

    plt.xlabel('Time_Step')
    return plt

# Moving window average


def MWA(history):
    return np.mean(history)


"""We plotted the time series and predicted values"""

# plot time series and predicted values

for x, y in val_ss.take(5):
    plot = plot_time_series([x[0][:, 1].numpy(), y[0].numpy(),
                             single_step_model.predict(x)[0]], 12,
                            'Single Step Prediction')
    plot.show()

"""# **MultiStep Forcasting**

We splitted the data in the form of training and validation for multistep forcasting:
"""

future_target = 72  # 72 future values
x_train_multi, y_train_multi = mutlivariate_data(features, features[:, 1], 0,
                                                 train_split, history,
                                                 future_target, STEP)
x_val_multi, y_val_multi = mutlivariate_data(features, features[:, 1],
                                             train_split, None, history,
                                             future_target, STEP)

print(x_train_multi.shape)
print(y_train_multi.shape)

"""The `tf.data.Dataset` API supports writing descriptive and efficient input pipelines. Dataset usage following a common pattern:
- Creating a source dataset from our input data.
- Applied dataset transformations to preprocess the data.
- Iterate over the dataset and process the elements.
Note: Iteration happens in a streaming fashion, so the full dataset does not need to fit into memory.
Once we have a dataset, we can apply transformations to prepare the data for our model:
"""

#  TF DATASET

train_data_multi = tf.data.Dataset.from_tensor_slices(
    (x_train_multi, y_train_multi))
train_data_multi = train_data_multi.cache().shuffle(
    buffer_size).batch(batch_size).repeat()

val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
val_data_multi = val_data_multi.batch(batch_size).repeat()

print(train_data_multi)
print(val_data_multi)

"""We created a `multi_step_plot` function to plot between `history` and `true_future` data"""

# plotting function


def multi_step_plot(history, true_future, prediction):
    plt.figure(figsize=(12, 6))
    num_in = create_time_steps(len(history))
    num_out = len(true_future)
    plt.grid()
    plt.plot(num_in, np.array(history[:, 1]), label='History')
    plt.plot(np.arange(num_out) / STEP, np.array(true_future), 'bo',
             label='True Future')
    if prediction.any():
        plt.plot(np.arange(num_out) / STEP, np.array(prediction), 'ro',
                 label='Predicted Future')
    plt.legend(loc='upper left')
    plt.show()


for x, y in train_data_multi.take(1):
    multi_step_plot(x[0], y[0], np.array([0]))

"""We are building a single step LSTM model for training data with dropout 0.3 and we used ADAM optimizers."""

multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(tf.keras.layers.LSTM(
    32, return_sequences=True, input_shape=x_train_multi.shape[-2:]))
multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
# aDD dropout layer (0.3)
multi_step_model.add(tf.keras.layers.Dense(72))  # for 72 outputs

multi_step_model.compile(
    optimizer=tf.keras.optimizers.RMSprop(
        clipvalue=1.0), loss='mae', metrics=[
            tf.keras.metrics.RootMeanSquaredError(
                name='rmse')])

multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                          steps_per_epoch=steps,
                                          validation_data=val_data_multi,
                                          validation_steps=50)

plot_loss(multi_step_history, 'Multi-Step Training and validation loss')

for x, y in val_data_multi.take(5):
    multi_step_plot(x[0], y[0], multi_step_model.predict(x)[0])

scores = multi_step_model.evaluate(
    x_train_multi,
    y_train_multi,
    verbose=1,
    batch_size=200)
print('MAE: {}'.format(scores[1]))

scores_test = multi_step_model.evaluate(
    x_val_multi, y_val_multi, verbose=1, batch_size=200)
print('MAE: {}'.format(scores[1]))