##############################################################################
# Copyright (c) 2018 Mirantis Inc., Enea AB and others.
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the Apache License, Version 2.0
# which accompanies this distribution, and is available at
# http://www.apache.org/licenses/LICENSE-2.0
##############################################################################
{#- NOTE: br-{mgmt,ctl} are cross-referenced, careful when changing names #}
{%- import 'net_map.j2' as nm with context %}
{%- import 'net_macros.j2' as ma with context %}
{#- Filter-out NIC duplicates by constructing a dict (used NICs only) #}
{%- set nics = { nm.cmp001.nic_mgmt: True, nm.cmp001.nic_private: True } %}
{%- set vlans = { nm.vlan_mgmt: nm.cmp001.nic_mgmt } %}
{%- if '-ovs-' not in conf.MCP_DEPLOY_SCENARIO and '-fdio-' not in conf.MCP_DEPLOY_SCENARIO %}
{%- set vlan_private_start = (nm.vlan_private | string).rsplit('-')[0] %}
{%- do vlans.update({ vlan_private_start: nm.cmp001.nic_private }) %}
{%- endif %}
---
parameters:
_param:
# Should later be determined via PDF/IDF, AArch64 has ESP on /dev/sda1
{%- if conf.nodes[nm.cmp001.idx].node.type == 'virtual' %}
~cinder_lvm_devices: ['/dev/vdb']
{%- elif conf.nodes[nm.cmp001.idx].node.arch == 'aarch64' or
conf.nodes[nm.cmp001.idx].disks.0.disk_capacity | storage_size_num | float > 2000000000000 %}
~cinder_lvm_devices: ['/dev/sda2']
{%- else %}
~cinder_lvm_devices: ['/dev/sda1']
{%- endif %}
linux:
network:
{%- if '-fdio-' not in conf.MCP_DEPLOY_SCENARIO %}
ovs_nowait: true
bridge: openvswitch
{%- else %}
dpdk:
enabled: true
driver: "${_param:compute_dpdk_driver}"
vpp:
enabled: true
# Reuse ovs-dpdk socket mem configuration from IDF
dpdk_socket_mem: ${_param:compute_ovs_dpdk_socket_mem}
main_core: ${linux:system:kernel:isolcpu}
gid: 'neutron'
{%- en/*
// Copyright (c) 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <getopt.h>
#include <errno.h>
#include <stdarg.h>
#include <string.h>
#include <libgen.h>
#include <unistd.h>
#include <rte_errno.h>
#include <rte_cfgfile.h>
#include <rte_string_fns.h>
#include "app.h"
static int
tm_cfgfile_load_sched_port(
struct rte_cfgfile *file,
struct rte_sched_port_params *port_params)
{
const char *entry;
int j;
entry = rte_cfgfile_get_entry(file, "port", "frame overhead");
if (entry)
port_params->frame_overhead = (uint32_t)atoi(entry);
entry = rte_cfgfile_get_entry(file, "port", "mtu");
if (entry)
port_params->mtu = (uint32_t)atoi(entry);
entry = rte_cfgfile_get_entry(file,
"port",
"number of subports per port");
if (entry)
port_params->n_subports_per_port = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file,
"port",
"number of pipes per subport");
if (entry)
port_params->n_pipes_per_subport = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file, "port", "queue sizes");
if (entry) {
char *next;
for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
port_params->qsize[j] = (uint16_t)
strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
}
#ifdef RTE_SCHED_RED
for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
char str[32];
/* Parse WRED min thresholds */
snprintf(str, sizeof(str), "tc %" PRId32 " wred min", j);
entry = rte_cfgfile_get_entry(file, "red", str);
if (entry) {
char *next;
int k;
/* for each packet colour (green, yellow, red) */
for (k = 0; k < e_RTE_METER_COLORS; k++) {
port_params->red_params[j][k].min_th
= (uint16_t)strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
}
/* Parse WRED max thresholds */
snprintf(str, sizeof(str), "tc %" PRId32 " wred max", j);
entry = rte_cfgfile_get_entry(file, "red", str);
if (entry) {
char *next;
int k;
/* for each packet colour (green, yellow, red) */
for (k = 0; k < e_RTE_METER_COLORS; k++) {
port_params->red_params[j][k].max_th
= (uint16_t)strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
}
/* Parse WRED inverse mark probabilities */
snprintf(str, sizeof(str), "tc %" PRId32 " wred inv prob", j);
entry = rte_cfgfile_get_entry(file, "red", str);
if (entry) {
char *next;
int k;
/* for each packet colour (green, yellow, red) */
for (k = 0; k < e_RTE_METER_COLORS; k++) {
port_params->red_params[j][k].maxp_inv
= (uint8_t)strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
}
/* Parse WRED EWMA filter weights */
snprintf(str, sizeof(str), "tc %" PRId32 " wred weight", j);
entry = rte_cfgfile_get_entry(file, "red", str);
if (entry) {
char *next;
int k;
/* for each packet colour (green, yellow, red) */
for (k = 0; k < e_RTE_METER_COLORS; k++) {
port_params->red_params[j][k].wq_log2
= (uint8_t)strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
}
}
#endif /* RTE_SCHED_RED */
return 0;
}
static int
tm_cfgfile_load_sched_pipe(
struct rte_cfgfile *file,
struct rte_sched_port_params *port_params,
struct rte_sched_pipe_params *pipe_params)
{
int i, j;
char *next;
const char *entry;
int profiles;
profiles = rte_cfgfile_num_sections(file,
"pipe profile", sizeof("pipe profile") - 1);
port_params->n_pipe_profiles = profiles;
for (j = 0; j < profiles; j++) {
char pipe_name[32];
snprintf(pipe_name, sizeof(pipe_name),
"pipe profile %" PRId32, j);
entry = rte_cfgfile_get_entry(file, pipe_name, "tb rate");
if (entry)
pipe_params[j].tb_rate = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file, pipe_name, "tb size");
if (entry)
pipe_params[j].tb_size = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file, pipe_name, "tc period");
if (entry)
pipe_params[j].tc_period = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file, pipe_name, "tc 0 rate");
if (entry)
pipe_params[j].tc_rate[0] = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file, pipe_name, "tc 1 rate");
if (entry)
pipe_params[j].tc_rate[1] = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file, pipe_name, "tc 2 rate");
if (entry)
pipe_params[j].tc_rate[2] = (uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file, pipe_name, "tc 3 rate");
if (entry)
pipe_params[j].tc_rate[3] = (uint32_t) atoi(entry);
#ifdef RTE_SCHED_SUBPORT_TC_OV
entry = rte_cfgfile_get_entry(file, pipe_name,
"tc 3 oversubscription weight");
if (entry)
pipe_params[j].tc_ov_weight = (uint8_t)atoi(entry);
#endif
entry = rte_cfgfile_get_entry(file,
pipe_name,
"tc 0 wrr weights");
if (entry)
for (i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) {
pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*0 + i] =
(uint8_t) strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
entry = rte_cfgfile_get_entry(file, pipe_name, "tc 1 wrr weights");
if (entry)
for (i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) {
pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*1 + i] =
(uint8_t) strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
entry = rte_cfgfile_get_entry(file, pipe_name, "tc 2 wrr weights");
if (entry)
for (i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) {
pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*2 + i] =
(uint8_t) strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
entry = rte_cfgfile_get_entry(file, pipe_name, "tc 3 wrr weights");
if (entry)
for (i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) {
pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*3 + i] =
(uint8_t) strtol(entry, &next, 10);
if (next == NULL)
break;
entry = next;
}
}
return 0;
}
static int
tm_cfgfile_load_sched_subport(
struct rte_cfgfile *file,
struct rte_sched_subport_params *subport_params,
int *pipe_to_profile)
{
const char *entry;
int i, j, k;
for (i = 0; i < APP_MAX_SCHED_SUBPORTS; i++) {
char sec_name[CFG_NAME_LEN];
snprintf(sec_name, sizeof(sec_name),
"subport %" PRId32, i);
if (rte_cfgfile_has_section(file, sec_name)) {
entry = rte_cfgfile_get_entry(file,
sec_name,
"tb rate");
if (entry)
subport_params[i].tb_rate =
(uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file,
sec_name,
"tb size");
if (entry)
subport_params[i].tb_size =
(uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file,
sec_name,
"tc period");
if (entry)
subport_params[i].tc_period =
(uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file,
sec_name,
"tc 0 rate");
if (entry)
subport_params[i].tc_rate[0] =
(uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file,
sec_name,
"tc 1 rate");
if (entry)
subport_params[i].tc_rate[1] =
(uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file,
sec_name,
"tc 2 rate");
if (entry)
subport_params[i].tc_rate[2] =
(uint32_t) atoi(entry);
entry = rte_cfgfile_get_entry(file,
sec_name,
"tc 3 rate");
if (entry)
subport_params[i].tc_rate[3] =
(uint32_t) atoi(entry);
int n_entries = rte_cfgfile_section_num_entries(file,
sec_name);
struct rte_cfgfile_entry entries[n_entries];
rte_cfgfile_section_entries(file,
sec_name,
entries,
n_entries);
for (j = 0; j < n_entries; j++)
if (strncmp("pipe",
entries[j].name,
sizeof("pipe") - 1) == 0) {
int profile;
char *tokens[2] = {NULL, NULL};
int n_tokens;
int begin, end;
char name[CFG_NAME_LEN + 1];
profile = atoi(entries[j].value);
strncpy(name,
entries[j].name,
sizeof(name));
n_tokens = rte_strsplit(
&name[sizeof("pipe")],
strnlen(name, CFG_NAME_LEN),
tokens, 2, '-');
begin = atoi(tokens[0]);
if (n_tokens == 2)
end = atoi(tokens[1]);
else
end = begin;
if ((end >= APP_MAX_SCHED_PIPES) ||
(begin > end))
return -1;
for (k = begin; k <= end; k++) {
char profile_name[CFG_NAME_LEN];
snprintf(profile_name,
sizeof(profile_name),
"pipe profile %" PRId32,
profile);
if (rte_cfgfile_has_section(file, profile_name))
pipe_to_profile[i * APP_MAX_SCHED_PIPES + k] = profile;
else
rte_exit(EXIT_FAILURE,
"Wrong pipe profile %s\n",
entries[j].value);
}
}
}
}
return 0;
}
static int
tm_cfgfile_load(struct app_pktq_tm_params *tm)
{
struct rte_cfgfile *file;
uint32_t i;
memset(tm->sched_subport_params, 0, sizeof(tm->sched_subport_params));
memset(tm->sched_pipe_profiles, 0, sizeof(tm->sched_pipe_profiles));
memset(&tm->sched_port_params, 0, sizeof(tm->sched_port_params));
for (i = 0; i < APP_MAX_SCHED_SUBPORTS * APP_MAX_SCHED_PIPES; i++)
tm->sched_pipe_to_profile[i] = -1;
tm->sched_port_params.pipe_profiles = &tm->sched_pipe_profiles[0];
if (tm->file_name[0] == '\0')
return -1;
file = rte_cfgfile_load(tm->file_name, 0);
if (file == NULL)
return -1;
tm_cfgfile_load_sched_port(file,
&tm->sched_port_params);
tm_cfgfile_load_sched_subport(file,
tm->sched_subport_params,
tm->sched_pipe_to_profile);
tm_cfgfile_load_sched_pipe(file,
&tm->sched_port_params,
tm->sched_pipe_profiles);
rte_cfgfile_close(file);
return 0;
}
int
app_config_parse_tm(struct app_params *app)
{
uint32_t i;
for (i = 0; i < RTE_DIM(app->tm_params); i++) {
struct app_pktq_tm_params *p = &app->tm_params[i];
int status;
if (!APP_PARAM_VALID(p))
break;
status = tm_cfgfile_load(p);
APP_CHECK(status == 0,
"Parse error for %s configuration file \"%s\"\n",
p->name,
p->file_name);
}
return 0;
}