1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <string.h>
#include <stdio.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_version.h>
#include "prox_lua.h"
#include "prox_lua_types.h"
#include "prox_malloc.h"
#include "task_base.h"
#include "task_init.h"
#include "lconf.h"
#include "prefetch.h"
#include "quit.h"
#include "log.h"
#include "defines.h"
#include "qinq.h"
#include "prox_cfg.h"
#include "prox_shared.h"
#if RTE_VERSION < RTE_VERSION_NUM(1,8,0,0)
#define RTE_CACHE_LINE_SIZE CACHE_LINE_SIZE
#endif
struct task_police {
struct task_base base;
union {
struct rte_meter_srtcm *sr_flows;
struct rte_meter_trtcm *tr_flows;
};
uint16_t *user_table;
enum police_action police_act[3][3];
uint16_t overhead;
uint8_t runtime_flags;
};
typedef uint8_t (*hp) (struct task_police *task, struct rte_mbuf *mbuf, uint64_t tsc, uint32_t user);
static uint8_t handle_police(struct task_police *task, struct rte_mbuf *mbuf, uint64_t tsc, uint32_t user)
{
enum rte_meter_color in_color = e_RTE_METER_GREEN;
enum rte_meter_color out_color;
uint32_t pkt_len = rte_pktmbuf_pkt_len(mbuf) + task->overhead;
out_color = rte_meter_srtcm_color_aware_check(&task->sr_flows[user], tsc, pkt_len, in_color);
return task->police_act[in_color][out_color] == ACT_DROP? OUT_DISCARD : 0;
}
static uint8_t handle_police_tr(struct task_police *task, struct rte_mbuf *mbuf, uint64_t tsc, uint32_t user)
{
enum rte_meter_color in_color = e_RTE_METER_GREEN;
enum rte_meter_color out_color;
uint32_t pkt_len = rte_pktmbuf_pkt_len(mbuf) + task->overhead;
out_color = rte_meter_trtcm_color_aware_check(&task->tr_flows[user], tsc, pkt_len, in_color);
if (task->runtime_flags & TASK_MARK) {
#if RTE_VERSION >= RTE_VERSION_NUM(1,8,0,0)
uint32_t subport, pipe, traffic_class, queue;
enum rte_meter_color color;
rte_sched_port_pkt_read_tree_path(mbuf, &subport, &pipe, &traffic_class, &queue);
color = task->police_act[in_color][out_color];
rte_sched_port_pkt_write(mbuf, subport, pipe, traffic_class, queue, color);
#else
struct rte_sched_port_hierarchy *sched =
(struct rte_sched_port_hierarchy *) &mbuf->pkt.hash.sched;
sched->color = task->police_act[in_color][out_color];
#endif
}
return task->police_act[in_color][out_color] == ACT_DROP? OUT_DISCARD : 0;
}
static inline int get_user(struct task_police *task, struct rte_mbuf *mbuf)
{
if (task->runtime_flags & TASK_CLASSIFY) {
struct qinq_hdr *pqinq = rte_pktmbuf_mtod(mbuf, struct qinq_hdr *);
return PKT_TO_LUTQINQ(pqinq->svlan.vlan_tci, pqinq->cvlan.vlan_tci);
}
#if RTE_VERSION >= RTE_VERSION_NUM(1,8,0,0)
uint32_t dummy;
uint32_t pipe;
rte_sched_port_pkt_read_tree_path(mbuf, &dummy, &pipe, &dummy, &dummy);
return pipe;
#else
struct rte_sched_port_hierarchy *sched =
(struct rte_sched_port_hierarchy *) &mbuf->pkt.hash.sched;
return sched->pipe;
#endif
}
#define PHASE1_DELAY PREFETCH_OFFSET
#define PHASE2_DELAY PREFETCH_OFFSET
#define PHASE3_DELAY PREFETCH_OFFSET
#define PHASE4_DELAY PREFETCH_OFFSET
static inline int handle_pb(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, hp handle_police_func)
{
struct task_police *task = (struct task_police *)tbase;
uint16_t j;
uint64_t cur_tsc = rte_rdtsc();
uint32_t user[64];
uint8_t out[MAX_PKT_BURST];
uint32_t cur_user;
for (j = 0; j < PHASE1_DELAY && j < n_pkts; ++j) {
PREFETCH0(mbufs[j]);
}
for (j = 0; j < PHASE2_DELAY && j + PHASE1_DELAY < n_pkts; ++j) {
PREFETCH0(mbufs[j + PHASE1_DELAY]);
PREFETCH0(rte_pktmbuf_mtod(mbufs[j], void*));
}
for (j = 0; j < PHASE3_DELAY && j + PHASE2_DELAY + PHASE1_DELAY < n_pkts; ++j) {
PREFETCH0(mbufs[j + PHASE2_DELAY + PHASE1_DELAY]);
PREFETCH0(rte_pktmbuf_mtod(mbufs[j + PHASE2_DELAY], void*));
cur_user = get_user(task, mbufs[j]);
user[j] = cur_user;
PREFETCH0(&task->user_table[cur_user]);
}
/* At this point, the whole pipeline is running */
for (j = 0; j + PHASE3_DELAY + PHASE2_DELAY + PHASE1_DELAY < n_pkts; ++j) {
PREFETCH0(mbufs[j + PHASE3_DELAY + PHASE2_DELAY + PHASE1_DELAY]);
PREFETCH0(rte_pktmbuf_mtod(mbufs[j + PHASE3_DELAY + PHASE2_DELAY], void*));
cur_user = get_user(task, mbufs[j + PHASE3_DELAY]);
user[j + PHASE3_DELAY] = cur_user;
PREFETCH0(&task->user_table[cur_user]);
out[j] = handle_police_func(task, mbufs[j], cur_tsc, task->user_table[user[j]]);
}
/* Last part of pipeline */
for (; j + PHASE3_DELAY + PHASE2_DELAY < n_pkts; ++j) {
PREFETCH0(rte_pktmbuf_mtod(mbufs[j + PHASE3_DELAY + PHASE2_DELAY], void*));
PREFETCH0(&task->user_table[j + PHASE3_DELAY]);
cur_user = get_user(task, mbufs[j + PHASE3_DELAY]);
user[j + PHASE3_DELAY] = cur_user;
PREFETCH0(&task->user_table[cur_user]);
out[j] = handle_police_func(task, mbufs[j], cur_tsc, task->user_table[user[j]]);
}
for (; j + PHASE3_DELAY < n_pkts; ++j) {
cur_user = get_user(task, mbufs[j + PHASE3_DELAY]);
user[j + PHASE3_DELAY] = cur_user;
PREFETCH0(&task->user_table[cur_user]);
out[j] = handle_police_func(task, mbufs[j], cur_tsc, task->user_table[user[j]]);
}
for (; j < n_pkts; ++j) {
out[j] = handle_police_func(task, mbufs[j], cur_tsc, task->user_table[user[j]]);
}
return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}
static int handle_police_bulk(struct task_base *tbase, struct rte_mbuf **mbuf, uint16_t n_pkts)
{
return handle_pb(tbase, mbuf, n_pkts, handle_police);
}
static int handle_police_tr_bulk(struct task_base *tbase, struct rte_mbuf **mbuf, uint16_t n_pkts)
{
return handle_pb(tbase, mbuf, n_pkts, handle_police_tr);
}
static void init_task_police(struct task_base *tbase, struct task_args *targ)
{
struct task_police *task = (struct task_police *)tbase;
const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
task->overhead = targ->overhead;
task->runtime_flags = targ->runtime_flags;
task->user_table = prox_sh_find_socket(socket_id, "user_table");
if (!task->user_table) {
PROX_PANIC(!strcmp(targ->user_table, ""), "No user table defined\n");
int ret = lua_to_user_table(prox_lua(), GLOBAL, targ->user_table, socket_id, &task->user_table);
PROX_PANIC(ret, "Failed to create user table from config:\n%s\n", get_lua_to_errors());
prox_sh_add_socket(socket_id, "user_table", task->user_table);
}
if (strcmp(targ->task_init->sub_mode_str, "trtcm")) {
task->sr_flows = prox_zmalloc(targ->n_flows * sizeof(*task->sr_flows), socket_id);
PROX_PANIC(task->sr_flows == NULL, "Failed to allocate flow contexts\n");
PROX_PANIC(!targ->cir, "Commited information rate is set to 0\n");
PROX_PANIC(!targ->cbs, "Commited information bucket size is set to 0\n");
PROX_PANIC(!targ->ebs, "Execess information bucket size is set to 0\n");
struct rte_meter_srtcm_params params = {
.cir = targ->cir,
.cbs = targ->cbs,
.ebs = targ->ebs,
};
for (uint32_t i = 0; i < targ->n_flows; ++i) {
rte_meter_srtcm_config(&task->sr_flows[i], ¶ms);
}
}
else {
task->tr_flows = prox_zmalloc(targ->n_flows * sizeof(*task->tr_flows), socket_id);
PROX_PANIC(task->tr_flows == NULL, "Failed to allocate flow contexts\n");
PROX_PANIC(!targ->pir, "Peak information rate is set to 0\n");
PROX_PANIC(!targ->cir, "Commited information rate is set to 0\n");
PROX_PANIC(!targ->pbs, "Peak information bucket size is set to 0\n");
PROX_PANIC(!targ->cbs, "Commited information bucket size is set to 0\n");
struct rte_meter_trtcm_params params = {
.pir = targ->pir,
.pbs = targ->pbs,
.cir = targ->cir,
.cbs = targ->cbs,
};
for (uint32_t i = 0; i < targ->n_flows; ++i) {
rte_meter_trtcm_config(&task->tr_flows[i], ¶ms);
}
}
for (uint32_t i = 0; i < 3; ++i) {
for (uint32_t j = 0; j < 3; ++j) {
task->police_act[i][j] = targ->police_act[i][j];
}
}
}
static struct task_init task_init_police = {
.mode_str = "police",
.init = init_task_police,
.handle = handle_police_bulk,
.flag_features = TASK_FEATURE_CLASSIFY,
.size = sizeof(struct task_police)
};
static struct task_init task_init_police2 = {
.mode_str = "police",
.sub_mode_str = "trtcm",
.init = init_task_police,
.handle = handle_police_tr_bulk,
.flag_features = TASK_FEATURE_CLASSIFY,
.size = sizeof(struct task_police)
};
__attribute__((constructor)) static void reg_task_police(void)
{
reg_task(&task_init_police);
reg_task(&task_init_police2);
}
|