1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
|
/*
// Copyright (c) 2010-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <net/if.h>
#include <rte_hash.h>
#include <rte_hash_crc.h>
#include <rte_ether.h>
#include <rte_icmp.h>
#include "prox_cfg.h"
#include "prox_globals.h"
#include "rx_pkt.h"
#include "arp.h"
#include "handle_master.h"
#include "log.h"
#include "mbuf_utils.h"
#include "etypes.h"
#include "defaults.h"
#include "prox_malloc.h"
#include "quit.h"
#include "task_init.h"
#include "prox_port_cfg.h"
#include "main.h"
#include "lconf.h"
#include "input.h"
#include "tx_pkt.h"
#include "defines.h"
#include "prox_ipv6.h"
#include "packet_utils.h"
#define PROX_MAX_ARP_REQUESTS 32 // Maximum number of tasks requesting the same MAC address
#define NETLINK_BUF_SIZE 16384
static char netlink_buf[NETLINK_BUF_SIZE];
const char *actions_string[] = {
"MAC_INFO_FROM_MASTER", // Controlplane sending a MAC update to dataplane
"MAC_INFO_FROM_MASTER_FOR_IPV6",// Controlplane sending a MAC update to dataplane
"IPV6_INFO_FROM_MASTER", // Controlplane IPv6 Global IP info to dataplane
"ROUTE_ADD_FROM_MASTER", // Controlplane sending a new route to dataplane
"ROUTE_DEL_FROM_MASTER", // Controlplane deleting a new route from dataplane
"SEND_ARP_REQUEST_FROM_MASTER", // Controlplane requesting dataplane to send ARP request
"SEND_ARP_REPLY_FROM_MASTER", // Controlplane requesting dataplane to send ARP reply
"SEND_NDP_FROM_MASTER", // Controlplane requesting dataplane to send NDP
"SEND_ICMP_FROM_MASTER", // Controlplane requesting dataplane to send ICMP message
"SEND_BGP_FROM_MASTER", // Controlplane requesting dataplane to send BGP message
"ARP_PKT_FROM_NET_TO_MASTER", // ARP sent by datplane to Controlpane for handling
"NDP_PKT_FROM_NET_TO_MASTER," // NDP sent by datplane to Controlpane for handling
"ICMP_TO_MASTER", // ICMP sent by datplane to Controlpane for handling
"BGP_TO_MASTER" // BGP sent by datplane to Controlpane for handling
"IP4_REQ_MAC_TO_MASTER", // Dataplane requesting MAC resolution to Controlplane
"IP6_REQ_MAC_TO_MASTER", // Dataplane requesting MAC resolution to Controlplane
"PKT_FROM_TAP" // Packet received by Controlplane from kernel and forwarded to dataplane for sending
};
static struct my_arp_t arp_reply = {
.htype = 0x100,
.ptype = 8,
.hlen = 6,
.plen = 4,
.oper = 0x200
};
static struct my_arp_t arp_request = {
.htype = 0x100,
.ptype = 8,
.hlen = 6,
.plen = 4,
.oper = 0x100
};
struct ip_port {
uint32_t ip;
uint8_t port;
} __attribute__((packed));
struct ip6_port {
struct ipv6_addr ip6;
uint8_t port;
} __attribute__((packed));
void register_router_to_ctrl_plane(struct task_base *tbase, uint8_t port_id, uint8_t core_id, uint8_t task_id, struct ipv6_addr *local_ipv6_addr, struct ipv6_addr *global_ipv6_addr, struct ipv6_addr *router_prefix)
{
struct task_master *task = (struct task_master *)tbase;
task->internal_port_table[port_id].flags |= IPV6_ROUTER;
memcpy(&task->internal_port_table[port_id].router_prefix, router_prefix, sizeof(struct ipv6_addr));
register_node_to_ctrl_plane(tbase, local_ipv6_addr, global_ipv6_addr, port_id, core_id, task_id);
}
void register_node_to_ctrl_plane(struct task_base *tbase, struct ipv6_addr *local_ipv6_addr, struct ipv6_addr *global_ipv6_addr, uint8_t port_id, uint8_t core_id, uint8_t task_id)
{
struct task_master *task = (struct task_master *)tbase;
if (task->internal_port_table[port_id].flags & IPV6_ROUTER)
plogx_dbg("\tregistering router with port %d core %d and task %d\n", port_id, core_id, task_id);
else
plogx_dbg("\tregistering node with port %d core %d and task %d\n", port_id, core_id, task_id);
if (port_id >= PROX_MAX_PORTS) {
plog_err("Unable to register router, port %d\n", port_id);
return;
}
task->internal_port_table[port_id].ring = task->ctrl_tx_rings[core_id * MAX_TASKS_PER_CORE + task_id];
memcpy(&task->internal_port_table[port_id].mac, &prox_port_cfg[port_id].eth_addr, sizeof(prox_rte_ether_addr));
memcpy(&task->internal_port_table[port_id].local_ipv6_addr, local_ipv6_addr, sizeof(struct ipv6_addr));
if (memcmp(local_ipv6_addr, &prox_cfg.random_ip, sizeof(struct ipv6_addr)) == 0) {
task->internal_port_table[port_id].flags |= HANDLE_RANDOM_LOCAL_IP_FLAG;
return;
}
memcpy(&task->internal_port_table[port_id].global_ipv6_addr, global_ipv6_addr, sizeof(struct ipv6_addr));
if (memcmp(global_ipv6_addr, &prox_cfg.random_ip, sizeof(struct ipv6_addr)) == 0) {
task->internal_port_table[port_id].flags |= HANDLE_RANDOM_GLOBAL_IP_FLAG;
return;
}
struct ip6_port key;
memcpy(&key.ip6, local_ipv6_addr, sizeof(struct ipv6_addr));
key.port = port_id;
int ret = rte_hash_add_key(task->internal_ip6_hash, (const void *)&key);
if (unlikely(ret < 0)) {
plog_err("Unable to register ip "IPv6_BYTES_FMT"\n", IPv6_BYTES(local_ipv6_addr->bytes));
return;
}
memcpy(&key.ip6, global_ipv6_addr, sizeof(struct ipv6_addr));
ret = rte_hash_add_key(task->internal_ip6_hash, (const void *)&key);
if (unlikely(ret < 0)) {
plog_err("Unable to register ip "IPv6_BYTES_FMT"\n", IPv6_BYTES(global_ipv6_addr->bytes));
return;
}
memcpy(&task->internal_ip6_table[ret].mac, &prox_port_cfg[port_id].eth_addr, sizeof(prox_rte_ether_addr));
task->internal_ip6_table[ret].ring = task->ctrl_tx_rings[core_id * MAX_TASKS_PER_CORE + task_id];
}
void master_init_vdev(struct task_base *tbase, uint8_t port_id, uint8_t core_id, uint8_t task_id)
{
struct task_master *task = (struct task_master *)tbase;
uint8_t vdev_port = prox_port_cfg[port_id].dpdk_mapping;
int rc, i;
if (vdev_port != NO_VDEV_PORT) {
for (i = 0; i < task->max_vdev_id; i++) {
if (task->all_vdev[i].port_id == vdev_port)
break;
}
if (i < task->max_vdev_id) {
// Already initialized (e.g. by another core handling the same port).
return;
}
task->all_vdev[task->max_vdev_id].port_id = vdev_port;
task->all_vdev[task->max_vdev_id].ring = task->ctrl_tx_rings[core_id * MAX_TASKS_PER_CORE + task_id];
struct sockaddr_in dst, src;
src.sin_family = AF_INET;
src.sin_port = rte_cpu_to_be_16(PROX_PSEUDO_PKT_PORT);
for (int vlan_id = 0; vlan_id < prox_port_cfg[vdev_port].n_vlans; vlan_id++) {
src.sin_addr.s_addr = prox_port_cfg[vdev_port].ip_addr[vlan_id].ip;
int fd = socket(AF_INET, SOCK_DGRAM, 0);
PROX_PANIC(fd < 0, "Failed to open socket(AF_INET, SOCK_DGRAM, 0)\n");
prox_port_cfg[vdev_port].fds[vlan_id] = fd;
rc = bind(fd,(struct sockaddr *)&src, sizeof(struct sockaddr_in));
PROX_PANIC(rc, "Failed to bind("IPv4_BYTES_FMT":%d): errno = %d (%s)\n", IPv4_BYTES(((uint8_t*)&src.sin_addr.s_addr)), src.sin_port, errno, strerror(errno));
plog_info("DPDK port %d bound("IPv4_BYTES_FMT":%d) to fd %d\n", port_id, IPv4_BYTES(((uint8_t*)&src.sin_addr.s_addr)), src.sin_port, fd);
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);
}
task->max_vdev_id++;
}
}
void register_ip_to_ctrl_plane(struct task_base *tbase, uint32_t ip, uint8_t port_id, uint8_t core_id, uint8_t task_id)
{
struct task_master *task = (struct task_master *)tbase;
struct ip_port key;
plogx_info("\tregistering IP "IPv4_BYTES_FMT" with port %d core %d and task %d\n", IP4(ip), port_id, core_id, task_id);
if (port_id >= PROX_MAX_PORTS) {
plog_err("Unable to register ip "IPv4_BYTES_FMT", port %d\n", IP4(ip), port_id);
return;
}
/* TODO - store multiple rings if multiple cores able to handle IP
Remove them when such cores are stopped and de-register IP
*/
task->internal_port_table[port_id].ring = task->ctrl_tx_rings[core_id * MAX_TASKS_PER_CORE + task_id];
memcpy(&task->internal_port_table[port_id].mac, &prox_port_cfg[port_id].eth_addr, sizeof(prox_rte_ether_addr));
task->internal_port_table[port_id].ip = ip;
if (ip == RANDOM_IP) {
task->internal_port_table[port_id].flags |= HANDLE_RANDOM_IP_FLAG;
return;
}
key.ip = ip;
key.port = port_id;
int ret = rte_hash_add_key(task->internal_ip_hash, (const void *)&key);
if (unlikely(ret < 0)) {
plog_err("Unable to register ip "IPv4_BYTES_FMT"\n", IP4(ip));
return;
}
memcpy(&task->internal_ip_table[ret].mac, &prox_port_cfg[port_id].eth_addr, sizeof(prox_rte_ether_addr));
task->internal_ip_table[ret].ring = task->ctrl_tx_rings[core_id * MAX_TASKS_PER_CORE + task_id];
}
static inline void handle_arp_reply(struct task_base *tbase, struct rte_mbuf *mbuf, struct my_arp_t *arp)
{
struct task_master *task = (struct task_master *)tbase;
int i, ret;
uint32_t key = arp->data.spa;
plogx_dbg("\tMaster handling ARP reply for ip "IPv4_BYTES_FMT"\n", IP4(key));
ret = rte_hash_lookup(task->external_ip_hash, (const void *)&key);
if (unlikely(ret < 0)) {
// entry not found for this IP: we did not ask a request, delete the reply
tx_drop(mbuf);
} else {
// entry found for this IP
uint16_t nb_requests = task->external_ip_table[ret].nb_requests;
// If we receive a request from multiple task for the same IP, then we update all tasks
if (task->external_ip_table[ret].nb_requests) {
rte_mbuf_refcnt_set(mbuf, nb_requests);
for (int i = 0; i < nb_requests; i++) {
struct rte_ring *ring = task->external_ip_table[ret].rings[i];
tx_ring_ip(tbase, ring, MAC_INFO_FROM_MASTER, mbuf, key);
}
task->external_ip_table[ret].nb_requests = 0;
} else {
tx_drop(mbuf);
}
}
}
static inline void handle_arp_request(struct task_base *tbase, struct rte_mbuf *mbuf, struct my_arp_t *arp)
{
struct task_master *task = (struct task_master *)tbase;
prox_rte_ether_hdr *ether_hdr = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
int i, ret;
uint8_t port = get_port(mbuf);
struct ip_port key;
key.ip = arp->data.tpa;
key.port = port;
if (task->internal_port_table[port].flags & HANDLE_RANDOM_IP_FLAG) {
prox_rte_ether_addr mac;
plogx_dbg("\tMaster handling ARP request for ip "IPv4_BYTES_FMT" on port %d which supports random ip\n", IP4(key.ip), key.port);
struct rte_ring *ring = task->internal_port_table[port].ring;
create_mac(arp, &mac);
mbuf->ol_flags &= ~(PKT_TX_IP_CKSUM|PKT_TX_UDP_CKSUM);
build_arp_reply(ether_hdr, &mac, arp);
tx_ring(tbase, ring, SEND_ARP_REPLY_FROM_MASTER, mbuf);
return;
}
plogx_dbg("\tMaster handling ARP request for ip "IPv4_BYTES_FMT"\n", IP4(key.ip));
ret = rte_hash_lookup(task->internal_ip_hash, (const void *)&key);
if (unlikely(ret < 0)) {
// entry not found for this IP.
plogx_dbg("Master ignoring ARP REQUEST received on un-registered IP "IPv4_BYTES_FMT" on port %d\n", IP4(arp->data.tpa), port);
tx_drop(mbuf);
} else {
struct rte_ring *ring = task->internal_ip_table[ret].ring;
mbuf->ol_flags &= ~(PKT_TX_IP_CKSUM|PKT_TX_UDP_CKSUM);
build_arp_reply(ether_hdr, &task->internal_ip_table[ret].mac, arp);
tx_ring(tbase, ring, SEND_ARP_REPLY_FROM_MASTER, mbuf);
}
}
static inline int record_request(struct task_base *tbase, uint32_t ip_dst, uint8_t port, struct rte_ring *ring)
{
struct task_master *task = (struct task_master *)tbase;
int ret = rte_hash_add_key(task->external_ip_hash, (const void *)&ip_dst);
int i;
if (unlikely(ret < 0)) {
plogx_dbg("Unable to add IP "IPv4_BYTES_FMT" in external_ip_hash\n", IP4(ip_dst));
return -1;
}
// If multiple tasks requesting the same info, we will need to send a reply to all of them
// However if one task sends multiple requests to the same IP (e.g. because it is not answering)
// then we should not send multiple replies to the same task
if (task->external_ip_table[ret].nb_requests >= PROX_MAX_ARP_REQUESTS) {
// This can only happen if really many tasks requests the same IP
plogx_dbg("Unable to add request for IP "IPv4_BYTES_FMT" in external_ip_table\n", IP4(ip_dst));
return -1;
}
for (i = 0; i < task->external_ip_table[ret].nb_requests; i++) {
if (task->external_ip_table[ret].rings[i] == ring)
break;
}
if (i >= task->external_ip_table[ret].nb_requests) {
// If this is a new request i.e. a new task requesting a new IP
task->external_ip_table[ret].rings[task->external_ip_table[ret].nb_requests] = ring;
task->external_ip_table[ret].nb_requests++;
}
return 0;
}
static inline void handle_unknown_ip(struct task_base *tbase, struct rte_mbuf *mbuf)
{
struct task_master *task = (struct task_master *)tbase;
struct ether_hdr_arp *hdr_arp = rte_pktmbuf_mtod(mbuf, struct ether_hdr_arp *);
uint8_t port = get_port(mbuf);
uint32_t ip_dst = get_ip(mbuf);
uint16_t vlan = ctrl_ring_get_vlan(mbuf);
plogx_dbg("\tMaster handling unknown ip "IPv4_BYTES_FMT" for port %d\n", IP4(ip_dst), port);
if (unlikely(port >= PROX_MAX_PORTS)) {
plogx_dbg("Port %d not found", port);
tx_drop(mbuf);
return;
}
uint32_t ip_src = task->internal_port_table[port].ip;
struct rte_ring *ring = task->ctrl_tx_rings[get_core(mbuf) * MAX_TASKS_PER_CORE + get_task(mbuf)];
if (ring == NULL) {
plogx_dbg("Port %d not registered", port);
tx_drop(mbuf);
return;
}
if (record_request(tbase, ip_dst, port, ring) < 0) {
tx_drop(mbuf);
return;
}
// We send an ARP request even if one was just sent (and not yet answered) by another task
mbuf->ol_flags &= ~(PKT_TX_IP_CKSUM|PKT_TX_UDP_CKSUM);
build_arp_request(mbuf, &task->internal_port_table[port].mac, ip_dst, ip_src, vlan);
tx_ring(tbase, ring, SEND_ARP_REQUEST_FROM_MASTER, mbuf);
}
static inline void build_icmp_reply_message(struct task_base *tbase, struct rte_mbuf *mbuf)
{
struct task_master *task = (struct task_master *)tbase;
struct ip_port key;
key.port = mbuf->port;
prox_rte_ether_hdr *hdr = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
prox_rte_ether_addr dst_mac;
prox_rte_ether_addr_copy(&hdr->s_addr, &dst_mac);
prox_rte_ether_addr_copy(&hdr->d_addr, &hdr->s_addr);
prox_rte_ether_addr_copy(&dst_mac, &hdr->d_addr);
prox_rte_ipv4_hdr *ip_hdr = (prox_rte_ipv4_hdr *)(hdr + 1);
key.ip = ip_hdr->dst_addr;
ip_hdr->dst_addr = ip_hdr->src_addr;
ip_hdr->src_addr = key.ip;
prox_rte_icmp_hdr *picmp = (prox_rte_icmp_hdr *)(ip_hdr + 1);
picmp->icmp_type = PROX_RTE_IP_ICMP_ECHO_REPLY;
int ret = rte_hash_lookup(task->internal_ip_hash, (const void *)&key);
if (unlikely(ret < 0)) {
// entry not found for this IP.
plogx_dbg("Master ignoring ICMP received on un-registered IP "IPv4_BYTES_FMT" on port %d\n", IP4(key.ip), mbuf->port);
tx_drop(mbuf);
} else {
struct rte_ring *ring = task->internal_ip_table[ret].ring;
mbuf->ol_flags &= ~(PKT_TX_IP_CKSUM|PKT_TX_UDP_CKSUM);
tx_ring(tbase, ring, SEND_ICMP_FROM_MASTER, mbuf);
}
}
static inline void handle_icmp(struct task_base *tbase, struct rte_mbuf *mbuf)
{
struct task_master *task = (struct task_master *)tbase;
uint8_t port_id = mbuf->port;
struct port_table *port = &task->internal_port_table[port_id];
prox_rte_ether_hdr *hdr = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
if (hdr->ether_type != ETYPE_IPv4) {
tx_drop(mbuf);
return;
}
prox_rte_ipv4_hdr *ip_hdr = (prox_rte_ipv4_hdr *)(hdr + 1);
if (ip_hdr->next_proto_id != IPPROTO_ICMP) {
tx_drop(mbuf);
return;
}
if (ip_hdr->dst_addr != port->ip) {
tx_drop(mbuf);
return;
}
prox_rte_icmp_hdr *picmp = (prox_rte_icmp_hdr *)(ip_hdr + 1);
uint8_t type = picmp->icmp_type;
if (type == PROX_RTE_IP_ICMP_ECHO_REQUEST) {
port->n_echo_req++;
if (rte_rdtsc() - port->last_echo_req_rcvd_tsc > rte_get_tsc_hz()) {
plog_dbg("Received %u Echo Request on IP "IPv4_BYTES_FMT" (last received from IP "IPv4_BYTES_FMT")\n", port->n_echo_req, IPv4_BYTES(((uint8_t*)&ip_hdr->dst_addr)), IPv4_BYTES(((uint8_t*)&ip_hdr->src_addr)));
port->n_echo_req = 0;
port->last_echo_req_rcvd_tsc = rte_rdtsc();
}
build_icmp_reply_message(tbase, mbuf);
} else if (type == PROX_RTE_IP_ICMP_ECHO_REPLY) {
port->n_echo_rep++;
if (rte_rdtsc() - port->last_echo_rep_rcvd_tsc > rte_get_tsc_hz()) {
plog_info("Received %u Echo Reply on IP "IPv4_BYTES_FMT" (last received from IP "IPv4_BYTES_FMT")\n", port->n_echo_rep, IPv4_BYTES(((uint8_t*)&ip_hdr->dst_addr)), IPv4_BYTES(((uint8_t*)&ip_hdr->src_addr)));
port->n_echo_rep = 0;
port->last_echo_rep_rcvd_tsc = rte_rdtsc();
}
}
tx_drop(mbuf);
return;
}
static inline void handle_unknown_ip6(struct task_base *tbase, struct rte_mbuf *mbuf)
{
struct task_master *task = (struct task_master *)tbase;
struct ether_hdr_arp *hdr_arp = rte_pktmbuf_mtod(mbuf, struct ether_hdr_arp *);
uint8_t port = get_port(mbuf);
struct ipv6_addr *ip_dst = ctrl_ring_get_ipv6_addr(mbuf);
uint16_t vlan = ctrl_ring_get_vlan(mbuf);
int ret1, ret2, i;
plogx_dbg("\tMaster trying to find MAC of external IP "IPv6_BYTES_FMT" for port %d\n", IPv6_BYTES(ip_dst->bytes), port);
if (unlikely(port >= PROX_MAX_PORTS)) {
plogx_dbg("Port %d not found", port);
tx_drop(mbuf);
return;
}
struct ipv6_addr *local_ip_src = &task->internal_port_table[port].local_ipv6_addr;
struct ipv6_addr *global_ip_src = &task->internal_port_table[port].global_ipv6_addr;
struct ipv6_addr *ip_src;
if (memcmp(local_ip_src, ip_dst, 8) == 0)
ip_src = local_ip_src;
else if (memcmp(global_ip_src, &null_addr, 16))
ip_src = global_ip_src;
else {
plogx_dbg("Unable to find a src ip for dst ip "IPv6_BYTES_FMT"\n", IPv6_BYTES(ip_dst->bytes));
tx_drop(mbuf);
return;
}
struct rte_ring *ring = task->ctrl_tx_rings[get_core(mbuf) * MAX_TASKS_PER_CORE + get_task(mbuf)];
if (ring == NULL) {
plogx_dbg("Port %d not registered", port);
tx_drop(mbuf);
return;
}
ret2 = rte_hash_add_key(task->external_ip6_hash, (const void *)ip_dst);
if (unlikely(ret2 < 0)) {
plogx_dbg("Unable to add IP "IPv6_BYTES_FMT" in external_ip6_hash\n", IPv6_BYTES(ip_dst->bytes));
tx_drop(mbuf);
return;
}
// If multiple tasks requesting the same info, we will need to send a reply to all of them
// However if one task sends multiple requests to the same IP (e.g. because it is not answering)
// then we should not send multiple replies to the same task
if (task->external_ip6_table[ret2].nb_requests >= PROX_MAX_ARP_REQUESTS) {
// This can only happen if really many tasks requests the same IP
plogx_dbg("Unable to add request for IP "IPv6_BYTES_FMT" in external_ip6_table\n", IPv6_BYTES(ip_dst->bytes));
tx_drop(mbuf);
return;
}
for (i = 0; i < task->external_ip6_table[ret2].nb_requests; i++) {
if (task->external_ip6_table[ret2].rings[i] == ring)
break;
}
if (i >= task->external_ip6_table[ret2].nb_requests) {
// If this is a new request i.e. a new task requesting a new IP
task->external_ip6_table[ret2].rings[task->external_ip6_table[ret2].nb_requests] = ring;
task->external_ip6_table[ret2].nb_requests++;
// Only needed for first request - but avoid test and copy the same 6 bytes
// In most cases we will only have one request per IP.
//memcpy(&task->external_ip6_table[ret2].mac, &task->internal_port_table[port].mac, sizeof(prox_rte_ether_addr));
}
// As timers are not handled by master, we might send an NS request even if one was just sent
// (and not yet answered) by another task
build_neighbour_sollicitation(mbuf, &task->internal_port_table[port].mac, ip_dst, ip_src, vlan);
tx_ring(tbase, ring, SEND_NDP_FROM_MASTER, mbuf);
}
static inline void handle_rs(struct task_base *tbase, struct rte_mbuf *mbuf, prox_rte_ipv6_hdr *ipv6_hdr, uint16_t vlan)
{
struct task_master *task = (struct task_master *)tbase;
int i, ret;
uint8_t port = get_port(mbuf);
if (task->internal_port_table[port].flags & IPV6_ROUTER) {
plogx_dbg("\tMaster handling Router Solicitation from ip "IPv6_BYTES_FMT" on port %d\n", IPv6_BYTES(ipv6_hdr->src_addr), port);
struct rte_ring *ring = task->internal_port_table[port].ring;
build_router_advertisement(mbuf, &prox_port_cfg[port].eth_addr, &task->internal_port_table[port].local_ipv6_addr, &task->internal_port_table[port].router_prefix, vlan);
tx_ring(tbase, ring, SEND_NDP_FROM_MASTER, mbuf);
return;
}
}
static inline void handle_ra(struct task_base *tbase, struct rte_mbuf *mbuf, prox_rte_ipv6_hdr *ipv6_hdr, uint16_t vlan)
{
struct task_master *task = (struct task_master *)tbase;
int i, ret, send = 0;
uint8_t port = get_port(mbuf);
struct rte_ring *ring = task->internal_port_table[port].ring;
plog_dbg("Master handling Router Advertisement from ip "IPv6_BYTES_FMT" on port %d - len = %d; payload_len = %d\n", IPv6_BYTES(ipv6_hdr->src_addr), port, rte_pktmbuf_pkt_len(mbuf), rte_be_to_cpu_16(ipv6_hdr->payload_len));
if (rte_be_to_cpu_16(ipv6_hdr->payload_len) + sizeof(prox_rte_ipv6_hdr) + sizeof(prox_rte_ether_hdr) > rte_pktmbuf_pkt_len(mbuf)) {
plog_err("Unexpected length received: pkt_len = %d, ipv6 hdr length = %ld, ipv6 payload len = %d\n", rte_pktmbuf_pkt_len(mbuf), sizeof(prox_rte_ipv6_hdr), rte_be_to_cpu_16(ipv6_hdr->payload_len));
tx_drop(mbuf);
return;
}
if (ring == NULL) {
plog_info("TX side not initialized yet => dropping\n");
tx_drop(mbuf);
return;
}
int16_t option_len = rte_be_to_cpu_16(ipv6_hdr->payload_len) - sizeof(struct icmpv6_RA) + sizeof(struct icmpv6_option);
struct icmpv6_RA *router_advertisement = (struct icmpv6_RA *)(ipv6_hdr + 1);
struct icmpv6_option *option = (struct icmpv6_option *)&router_advertisement->options;
struct icmpv6_prefix_option *prefix_option;
while(option_len > 0) {
uint8_t type = option->type;
switch(type) {
case ICMPv6_source_link_layer_address:
plog_dbg("\tOption %d = Source Link Layer Address\n", type);
break;
case ICMPv6_prefix_information:
prefix_option = (struct icmpv6_prefix_option *)option;
plog_dbg("\tOption %d = Prefix Information = %s\n", type, IP6_Canonical(&prefix_option->prefix));
send = 1;
break;
case ICMPv6_mtu:
plog_dbg("\tOption %d = MTU\n", type);
break;
default:
plog_dbg("\tOption %d = Unknown Option\n", type);
break;
}
if ((option->length == 0) || (option->length *8 > option_len)) {
plog_err("Unexpected option length (%d) received in option %d: %d\n", option->length, option->type, option->length);
send = 0;
break;
}
option_len -=option->length * 8;
option = (struct icmpv6_option *)(((uint8_t *)option) + option->length * 8);
}
if (send) {
struct ipv6_addr global_ipv6;
memcpy(&global_ipv6, &prefix_option->prefix, sizeof(struct ipv6_addr));
set_EUI(&global_ipv6, &task->internal_port_table[port].mac);
tx_ring_ip6(tbase, ring, IPV6_INFO_FROM_MASTER, mbuf, &global_ipv6);
} else
tx_drop(mbuf);
}
static inline void handle_ns(struct task_base *tbase, struct rte_mbuf *mbuf, prox_rte_ipv6_hdr *ipv6_hdr, uint16_t vlan)
{
struct task_master *task = (struct task_master *)tbase;
struct icmpv6_NS *neighbour_sollicitation = (struct icmpv6_NS *)(ipv6_hdr + 1);
int i, ret;
uint8_t port = get_port(mbuf);
struct rte_ring *ring = task->internal_port_table[port].ring;
plog_dbg("Master handling Neighbour Sollicitation for ip "IPv6_BYTES_FMT" on port %d - len = %d; payload_len = %d\n", IPv6_BYTES(neighbour_sollicitation->target_address.bytes), port, rte_pktmbuf_pkt_len(mbuf), rte_be_to_cpu_16(ipv6_hdr->payload_len));
if (rte_be_to_cpu_16(ipv6_hdr->payload_len) + sizeof(prox_rte_ipv6_hdr) + sizeof(prox_rte_ether_hdr) > rte_pktmbuf_pkt_len(mbuf)) {
plog_err("Unexpected length received: pkt_len = %d, ipv6 hdr length = %ld, ipv6 payload len = %d\n", rte_pktmbuf_pkt_len(mbuf), sizeof(prox_rte_ipv6_hdr), rte_be_to_cpu_16(ipv6_hdr->payload_len));
tx_drop(mbuf);
return;
}
int16_t option_len = rte_be_to_cpu_16(ipv6_hdr->payload_len) - sizeof(struct icmpv6_NS) + sizeof(struct icmpv6_option);
struct icmpv6_option *option = (struct icmpv6_option *)&neighbour_sollicitation->options;
while(option_len > 0) {
uint8_t type = option->type;
switch(type) {
case ICMPv6_source_link_layer_address:
plog_dbg("Option %d = Source Link Layer Address\n", type);
break;
default:
plog_dbg("Option %d = Unknown Option\n", type);
break;
}
if ((option->length == 0) || (option->length *8 > option_len)) {
plog_err("Unexpected option length (%d) received in option %d: %d\n", option->length, option->type, option->length);
tx_drop(mbuf);
return;
}
option_len -=option->length * 8;
option = (struct icmpv6_option *)(((uint8_t *)option) + option->length * 8);
}
struct ip6_port key;
memcpy(&key.ip6, &neighbour_sollicitation->target_address, sizeof(struct ipv6_addr));
key.port = port;
if (memcmp(&neighbour_sollicitation->target_address, &task->internal_port_table[port].local_ipv6_addr, 8) == 0) {
// Local IP
if (task->internal_port_table[port].flags & HANDLE_RANDOM_LOCAL_IP_FLAG) {
prox_rte_ether_addr mac;
plogx_dbg("\tMaster handling NS request for ip "IPv6_BYTES_FMT" on port %d which supports random ip\n", IPv6_BYTES(key.ip6.bytes), key.port);
struct rte_ring *ring = task->internal_port_table[port].ring;
create_mac_from_EUI(&key.ip6, &mac);
build_neighbour_advertisement(tbase, mbuf, &mac, &task->internal_port_table[port].local_ipv6_addr, PROX_SOLLICITED, vlan);
tx_ring(tbase, ring, SEND_NDP_FROM_MASTER, mbuf);
return;
}
} else {
if (task->internal_port_table[port].flags & HANDLE_RANDOM_GLOBAL_IP_FLAG) {
prox_rte_ether_addr mac;
plogx_dbg("\tMaster handling NS request for ip "IPv6_BYTES_FMT" on port %d which supports random ip\n", IPv6_BYTES(key.ip6.bytes), key.port);
struct rte_ring *ring = task->internal_port_table[port].ring;
create_mac_from_EUI(&key.ip6, &mac);
build_neighbour_advertisement(tbase, mbuf, &mac, &task->internal_port_table[port].global_ipv6_addr, PROX_SOLLICITED, vlan);
tx_ring(tbase, ring, SEND_NDP_FROM_MASTER, mbuf);
return;
}
}
ret = rte_hash_lookup(task->internal_ip6_hash, (const void *)&key);
if (unlikely(ret < 0)) {
// entry not found for this IP.
plogx_dbg("Master ignoring Neighbour Sollicitation received on un-registered IP "IPv6_BYTES_FMT" on port %d\n", IPv6_BYTES(key.ip6.bytes), port);
tx_drop(mbuf);
} else {
struct rte_ring *ring = task->internal_ip6_table[ret].ring;
build_neighbour_advertisement(tbase, mbuf, &task->internal_ip6_table[ret].mac, &key.ip6, PROX_SOLLICITED, vlan);
tx_ring(tbase, ring, SEND_NDP_FROM_MASTER, mbuf);
}
}
static inline void handle_na(struct task_base *tbase, struct rte_mbuf *mbuf, prox_rte_ipv6_hdr *ipv6_hdr, uint16_t vlan)
{
struct task_master *task = (struct task_master *)tbase;
struct icmpv6_NA *neighbour_advertisement = (struct icmpv6_NA *)(ipv6_hdr + 1);
int i, ret;
uint8_t port = get_port(mbuf);
struct rte_ring *ring = task->internal_port_table[port].ring;
plog_dbg("Master handling Neighbour Advertisement for ip "IPv6_BYTES_FMT" on port %d - len = %d; payload_len = %d\n", IPv6_BYTES(neighbour_advertisement->destination_address.bytes), port, rte_pktmbuf_pkt_len(mbuf), rte_be_to_cpu_16(ipv6_hdr->payload_len));
if (rte_be_to_cpu_16(ipv6_hdr->payload_len) + sizeof(prox_rte_ipv6_hdr) + sizeof(prox_rte_ether_hdr) > rte_pktmbuf_pkt_len(mbuf)) {
plog_err("Unexpected length received: pkt_len = %d, ipv6 hdr length = %ld, ipv6 payload len = %d\n", rte_pktmbuf_pkt_len(mbuf), sizeof(prox_rte_ipv6_hdr), rte_be_to_cpu_16(ipv6_hdr->payload_len));
tx_drop(mbuf);
return;
}
int16_t option_len = rte_be_to_cpu_16(ipv6_hdr->payload_len) - sizeof(struct icmpv6_NA) + sizeof(struct icmpv6_option);
struct icmpv6_option *option = (struct icmpv6_option *)&neighbour_advertisement->options;
uint8_t *target_address = NULL;
while(option_len > 0) {
uint8_t type = option->type;
switch(type) {
case ICMPv6_source_link_layer_address:
plog_dbg("Option %d = Source Link Layer Address\n", type);
break;
case ICMPv6_target_link_layer_address:
if (option->length != 1) {
plog_err("Unexpected option length = %u for Target Link Layer Address\n", option->length);
break;
}
target_address = option->data;
plog_dbg("Option %d = Target Link Layer Address = "MAC_BYTES_FMT"\n", type, MAC_BYTES(target_address));
break;
default:
plog_dbg("Option %d = Unknown Option\n", type);
break;
}
if ((option->length == 0) || (option->length *8 > option_len)) {
plog_err("Unexpected option length (%d) received in option %d: %d\n", option->length, option->type, option->length);
tx_drop(mbuf);
return;
}
option_len -=option->length * 8;
option = (struct icmpv6_option *)(((uint8_t *)option) + option->length * 8);
}
if (target_address == NULL) {
tx_drop(mbuf);
}
struct ether_hdr_arp *hdr_arp = rte_pktmbuf_mtod(mbuf, struct ether_hdr_arp *);
struct ipv6_addr *key = &neighbour_advertisement->destination_address;
ret = rte_hash_lookup(task->external_ip6_hash, (const void *)key);
if (unlikely(ret < 0)) {
// entry not found for this IP: we did not ask a request, delete the reply
tx_drop(mbuf);
} else {
// entry found for this IP
uint16_t nb_requests = task->external_ip6_table[ret].nb_requests;
//memcpy(&hdr->d_addr.addr_bytes, &task->external_ip6_table[ret].mac, sizeof(prox_rte_ether_addr));
// If we receive a request from multiple task for the same IP, then we update all tasks
if (task->external_ip6_table[ret].nb_requests) {
rte_mbuf_refcnt_set(mbuf, nb_requests);
for (int i = 0; i < nb_requests; i++) {
struct rte_ring *ring = task->external_ip6_table[ret].rings[i];
tx_ring_ip6_data(tbase, ring, MAC_INFO_FROM_MASTER_FOR_IPV6, mbuf, &neighbour_advertisement->destination_address, *(uint64_t *)target_address);
}
task->external_ip6_table[ret].nb_requests = 0;
} else {
tx_drop(mbuf);
}
}
}
static inline void handle_message(struct task_base *tbase, struct rte_mbuf *mbuf, int ring_id)
{
struct task_master *task = (struct task_master *)tbase;
prox_rte_ether_hdr *ether_hdr;
struct icmpv6 *icmpv6;
int command = get_command(mbuf);
uint8_t port = get_port(mbuf);
uint32_t ip;
uint16_t vlan = 0, ether_type;
uint8_t vdev_port = prox_port_cfg[port].dpdk_mapping;
plogx_dbg("\tMaster received %s (%x) from mbuf %p\n", actions_string[command], command, mbuf);
struct my_arp_t *arp;
switch(command) {
case BGP_TO_MASTER:
if (vdev_port != NO_VDEV_PORT) {
// If a virtual (net_tap) device is attached, send the (BGP) packet to this device
// The kernel will receive and handle it.
plogx_dbg("\tMaster forwarding BGP packet to TAP\n");
int n = rte_eth_tx_burst(prox_port_cfg[port].dpdk_mapping, 0, &mbuf, 1);
return;
}
tx_drop(mbuf);
break;
case ICMP_TO_MASTER:
if (vdev_port != NO_VDEV_PORT) {
// If a virtual (net_tap) device is attached, send the (PING) packet to this device
// The kernel will receive and handle it.
plogx_dbg("\tMaster forwarding packet to TAP\n");
int n = rte_eth_tx_burst(prox_port_cfg[port].dpdk_mapping, 0, &mbuf, 1);
return;
}
handle_icmp(tbase, mbuf);
break;
case ARP_PKT_FROM_NET_TO_MASTER:
if (vdev_port != NO_VDEV_PORT) {
// If a virtual (net_tap) device is attached, send the (ARP) packet to this device
// The kernel will receive and handle it.
plogx_dbg("\tMaster forwarding packet to TAP\n");
int n = rte_eth_tx_burst(prox_port_cfg[port].dpdk_mapping, 0, &mbuf, 1);
return;
}
ether_hdr = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
ether_type = ether_hdr->ether_type;
if (ether_type == ETYPE_VLAN) {
prox_rte_vlan_hdr *vlan_hdr = (prox_rte_vlan_hdr *)(ether_hdr + 1);
arp = (struct my_arp_t *)(vlan_hdr + 1);
ether_type = vlan_hdr->eth_proto;
} else {
arp = (struct my_arp_t *)(ether_hdr + 1);
}
if (ether_type != ETYPE_ARP) {
plog_err("\tUnexpected message received: ARP_PKT_FROM_NET_TO_MASTER with ether_type %x\n", ether_type);
tx_drop(mbuf);
return;
}
if (arp_is_gratuitous(arp)) {
plog_info("\tReceived gratuitous packet \n");
tx_drop(mbuf);
return;
} else if (memcmp(arp, &arp_reply, 8) == 0) {
// uint32_t ip = arp->data.spa;
handle_arp_reply(tbase, mbuf, arp);
} else if (memcmp(arp, &arp_request, 8) == 0) {
handle_arp_request(tbase, mbuf, arp);
} else {
plog_info("\tReceived unexpected ARP operation %d\n", arp->oper);
tx_drop(mbuf);
return;
}
break;
case IP4_REQ_MAC_TO_MASTER:
if (vdev_port != NO_VDEV_PORT) {
// We send a packet to the kernel with the proper destnation IP address and our src IP address
// This means that if a generator sends packets from many sources all ARP will still
// be sent from the same IP src. This might be a limitation.
// This prevent to have to open as many sockets as there are sources MAC addresses
// We also always use the same UDP ports - as the packet will finally not leave the system anyhow
struct ether_hdr_arp *hdr_arp = rte_pktmbuf_mtod(mbuf, struct ether_hdr_arp *);
uint32_t ip = get_ip(mbuf);
vlan = ctrl_ring_get_vlan(mbuf);
struct rte_ring *ring = task->ctrl_tx_rings[get_core(mbuf) * MAX_TASKS_PER_CORE + get_task(mbuf)];
// First check whether MAC address is not already in kernel MAC table.
// If present in our hash with a non-null MAC, then present in kernel. A null MAC
// might just mean that we sent a request.
// If MAC present in kernel, do not send a packet towards the kernel to try to generate
// an ARP request, as the kernel would not generate it.
int ret = rte_hash_lookup(task->external_ip_hash, (const void *)&ip);
if ((ret >= 0) && (!prox_rte_is_zero_ether_addr(&task->external_ip_table[ret].mac))) {
memcpy(&hdr_arp->arp.data.sha, &task->external_ip_table[ret].mac, sizeof(prox_rte_ether_addr));
plogx_dbg("\tMaster ready to send MAC_INFO_FROM_MASTER ip "IPv4_BYTES_FMT" with mac "MAC_BYTES_FMT"\n",
IP4(ip), MAC_BYTES(hdr_arp->arp.data.sha.addr_bytes));
tx_ring_ip(tbase, ring, MAC_INFO_FROM_MASTER, mbuf, ip);
return;
}
struct sockaddr_in dst;
dst.sin_family = AF_INET;
dst.sin_addr.s_addr = ip;
dst.sin_port = rte_cpu_to_be_16(PROX_PSEUDO_PKT_PORT);
int vlan_id;
for (vlan_id = 0; vlan_id < prox_port_cfg[vdev_port].n_vlans; vlan_id++) {
if (prox_port_cfg[vdev_port].vlan_tags[vlan_id] == vlan)
break;
}
if (vlan_id >= prox_port_cfg[vdev_port].n_vlans) {
// Tag not found
plogx_info("\tDid not send to TAP IP "IPv4_BYTES_FMT" as wrong VLAN %d\n", IPv4_BYTES(((uint8_t*)&ip)), vlan);
tx_drop(mbuf);
break;
}
int n = sendto(prox_port_cfg[vdev_port].fds[vlan_id], (char*)(&ip), 0, MSG_DONTROUTE, (struct sockaddr *)&dst, sizeof(struct sockaddr_in));
if (n < 0) {
plogx_info("\tFailed to send to TAP IP "IPv4_BYTES_FMT" using fd %d, error = %d (%s)\n", IPv4_BYTES(((uint8_t*)&ip)), prox_port_cfg[vdev_port].fds[vlan_id], errno, strerror(errno));
} else
plogx_dbg("\tSent %d bytes to TAP IP "IPv4_BYTES_FMT" using fd %d\n", n, IPv4_BYTES(((uint8_t*)&ip)), prox_port_cfg[vdev_port].fds[vlan_id]);
record_request(tbase, ip, port, ring);
tx_drop(mbuf);
break;
}
handle_unknown_ip(tbase, mbuf);
break;
case IP6_REQ_MAC_TO_MASTER:
handle_unknown_ip6(tbase, mbuf);
break;
case NDP_PKT_FROM_NET_TO_MASTER:
ether_hdr = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
prox_rte_ipv6_hdr *ipv6_hdr = prox_get_ipv6_hdr(ether_hdr, rte_pktmbuf_pkt_len(mbuf), &vlan);
if (unlikely((!ipv6_hdr) || (ipv6_hdr->proto != ICMPv6))) {
// Should not happen
if (!ipv6_hdr)
plog_err("\tUnexpected message received: NDP_PKT_FROM_NET_TO_MASTER with ether_type %x\n", ether_hdr->ether_type);
else
plog_err("\tUnexpected message received: NDP_PKT_FROM_NET_TO_MASTER with ether_type %x and proto %x\n", ether_hdr->ether_type, ipv6_hdr->proto);
tx_drop(mbuf);
return;
}
icmpv6 = (struct icmpv6 *)(ipv6_hdr + 1);
switch (icmpv6->type) {
case ICMPv6_DU:
plog_err("IPV6 ICMPV6 Destination Unreachable\n");
tx_drop(mbuf);
break;
case ICMPv6_PTB:
plog_err("IPV6 ICMPV6 packet too big\n");
tx_drop(mbuf);
break;
case ICMPv6_TE:
plog_err("IPV6 ICMPV6 Time Exceeded\n");
tx_drop(mbuf);
break;
case ICMPv6_PaPr:
plog_err("IPV6 ICMPV6 Parameter Problem\n");
tx_drop(mbuf);
break;
case ICMPv6_RS:
handle_rs(tbase, mbuf, ipv6_hdr, vlan);
break;
case ICMPv6_RA:
handle_ra(tbase, mbuf, ipv6_hdr, vlan);
break;
case ICMPv6_NS:
handle_ns(tbase, mbuf, ipv6_hdr, vlan);
break;
case ICMPv6_NA:
handle_na(tbase, mbuf, ipv6_hdr, vlan);
break;
case ICMPv6_RE:
plog_err("IPV6 ICMPV6 Redirect not handled\n");
tx_drop(mbuf);
break;
default:
plog_err("Unexpected type %d in IPV6 ICMPV6\n", icmpv6->type);
tx_drop(mbuf);
break;
}
break;
default:
plogx_dbg("\tMaster received unexpected message\n");
tx_drop(mbuf);
break;
}
}
void init_ctrl_plane(struct task_base *tbase)
{
struct task_master *task = (struct task_master *)tbase;
int socket_id = rte_lcore_to_socket_id(prox_cfg.master);
uint32_t n_entries = MAX_ARP_ENTRIES * 4;
static char hash_name[30];
sprintf(hash_name, "A%03d_hash_arp_table", prox_cfg.master);
struct rte_hash_parameters hash_params = {
.name = hash_name,
.entries = n_entries,
.hash_func = rte_hash_crc,
.hash_func_init_val = 0,
};
if (prox_cfg.flags & DSF_L3_ENABLED) {
hash_params.key_len = sizeof(uint32_t);
task->external_ip_hash = rte_hash_create(&hash_params);
PROX_PANIC(task->external_ip_hash == NULL, "Failed to set up external ip hash\n");
plog_info("\texternal ip hash table allocated, with %d entries of size %d\n", hash_params.entries, hash_params.key_len);
hash_name[0]++;
task->external_ip_table = (struct external_ip_table *)prox_zmalloc(n_entries * sizeof(struct external_ip_table), socket_id);
PROX_PANIC(task->external_ip_table == NULL, "Failed to allocate memory for %u entries in external ip table\n", n_entries);
plog_info("\texternal ip table, with %d entries of size %ld\n", n_entries, sizeof(struct external_ip_table));
hash_params.key_len = sizeof(struct ip_port);
task->internal_ip_hash = rte_hash_create(&hash_params);
PROX_PANIC(task->internal_ip_hash == NULL, "Failed to set up internal ip hash\n");
plog_info("\tinternal ip hash table allocated, with %d entries of size %d\n", hash_params.entries, hash_params.key_len);
hash_name[0]++;
task->internal_ip_table = (struct ip_table *)prox_zmalloc(n_entries * sizeof(struct ip_table), socket_id);
PROX_PANIC(task->internal_ip_table == NULL, "Failed to allocate memory for %u entries in internal ip table\n", n_entries);
plog_info("\tinternal ip table, with %d entries of size %ld\n", n_entries, sizeof(struct ip_table));
}
if (prox_cfg.flags & DSF_NDP_ENABLED) {
hash_params.key_len = sizeof(struct ipv6_addr);
task->external_ip6_hash = rte_hash_create(&hash_params);
PROX_PANIC(task->external_ip6_hash == NULL, "Failed to set up external ip6 hash\n");
plog_info("\texternal ip6 hash table allocated, with %d entries of size %d\n", hash_params.entries, hash_params.key_len);
hash_name[0]++;
task->external_ip6_table = (struct external_ip_table *)prox_zmalloc(n_entries * sizeof(struct external_ip_table), socket_id);
PROX_PANIC(task->external_ip6_table == NULL, "Failed to allocate memory for %u entries in external ip6 table\n", n_entries);
plog_info("\texternal ip6_table, with %d entries of size %ld\n", n_entries, sizeof(struct external_ip_table));
hash_params.key_len = sizeof(struct ip6_port);
task->internal_ip6_hash = rte_hash_create(&hash_params);
PROX_PANIC(task->internal_ip6_hash == NULL, "Failed to set up internal ip6 hash\n");
plog_info("\tinternal ip6 hash table allocated, with %d entries of size %d\n", hash_params.entries, hash_params.key_len);
hash_name[0]++;
task->internal_ip6_table = (struct ip_table *)prox_zmalloc(n_entries * sizeof(struct ip_table), socket_id);
PROX_PANIC(task->internal_ip6_table == NULL, "Failed to allocate memory for %u entries in internal ip6 table\n", n_entries);
plog_info("\tinternal ip6 table, with %d entries of size %ld\n", n_entries, sizeof(struct ip_table));
}
int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
PROX_PANIC(fd < 0, "Failed to open netlink socket: %d\n", errno);
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);
struct sockaddr_nl sockaddr;
memset(&sockaddr, 0, sizeof(struct sockaddr_nl));
sockaddr.nl_family = AF_NETLINK;
sockaddr.nl_groups = RTMGRP_NEIGH | RTMGRP_NOTIFY;
int rc = bind(fd, (struct sockaddr *)&sockaddr, sizeof(struct sockaddr_nl));
PROX_PANIC(rc < 0, "Failed to bind to RTMGRP_NEIGH netlink group\n");
task->arp_fds.fd = fd;
task->arp_fds.events = POLL_IN;
plog_info("\tRTMGRP_NEIGH netlink group bound; fd = %d\n", fd);
fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
PROX_PANIC(fd < 0, "Failed to open netlink socket: %d\n", errno);
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);
struct sockaddr_nl sockaddr2;
memset(&sockaddr2, 0, sizeof(struct sockaddr_nl));
sockaddr2.nl_family = AF_NETLINK;
sockaddr2.nl_groups = RTMGRP_IPV6_ROUTE | RTMGRP_IPV4_ROUTE | RTMGRP_NOTIFY;
rc = bind(fd, (struct sockaddr *)&sockaddr2, sizeof(struct sockaddr_nl));
PROX_PANIC(rc < 0, "Failed to bind to RTMGRP_NEIGH netlink group\n");
task->route_fds.fd = fd;
task->route_fds.events = POLL_IN;
plog_info("\tRTMGRP_IPV4_ROUTE netlink group bound; fd = %d\n", fd);
static char name[] = "master_arp_nd_pool";
const int NB_ARP_MBUF = 1024;
const int ARP_MBUF_SIZE = 2048;
const int NB_CACHE_ARP_MBUF = 256;
struct rte_mempool *ret = rte_mempool_create(name, NB_ARP_MBUF, ARP_MBUF_SIZE, NB_CACHE_ARP_MBUF,
sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, 0,
rte_socket_id(), 0);
PROX_PANIC(ret == NULL, "Failed to allocate ARP memory pool on socket %u with %u elements\n",
rte_socket_id(), NB_ARP_MBUF);
plog_info("\tMempool %p (%s) size = %u * %u cache %u, socket %d\n", ret, name, NB_ARP_MBUF,
ARP_MBUF_SIZE, NB_CACHE_ARP_MBUF, rte_socket_id());
tbase->l3.arp_nd_pool = ret;
}
static void handle_route_event(struct task_base *tbase)
{
struct task_master *task = (struct task_master *)tbase;
struct rte_mbuf *mbufs[MAX_RING_BURST];
int fd = task->route_fds.fd, interface_index, mask = -1;
char interface_name[IF_NAMESIZE] = {0};
int len = recv(fd, netlink_buf, sizeof(netlink_buf), 0);
uint32_t ip = 0, gw_ip = 0;
if (len < 0) {
plog_err("Failed to recv from netlink: %d\n", errno);
return;
}
struct nlmsghdr * nl_hdr = (struct nlmsghdr *)netlink_buf;
if (nl_hdr->nlmsg_flags & NLM_F_MULTI) {
plog_err("Unexpected multipart netlink message\n");
return;
}
if ((nl_hdr->nlmsg_type != RTM_NEWROUTE) && (nl_hdr->nlmsg_type != RTM_DELROUTE))
return;
struct rtmsg *rtmsg = (struct rtmsg *)NLMSG_DATA(nl_hdr);
int rtm_family = rtmsg->rtm_family;
if ((rtm_family == AF_INET) && (rtmsg->rtm_table != RT_TABLE_MAIN) &&(rtmsg->rtm_table != RT_TABLE_LOCAL))
return;
int dst_len = rtmsg->rtm_dst_len;
struct rtattr *rta = (struct rtattr *)RTM_RTA(rtmsg);
int rtl = RTM_PAYLOAD(nl_hdr);
for (; RTA_OK(rta, rtl); rta = RTA_NEXT(rta, rtl)) {
switch (rta->rta_type) {
case RTA_DST:
ip = *((uint32_t *)RTA_DATA(rta));
break;
case RTA_OIF:
interface_index = *((int *)RTA_DATA(rta));
if (if_indextoname(interface_index, interface_name) == NULL) {
plog_info("Unknown Interface Index %d\n", interface_index);
}
break;
case RTA_METRICS:
mask = *((int *)RTA_DATA(rta));
break;
case RTA_GATEWAY:
gw_ip = *((uint32_t *)RTA_DATA(rta));
break;
default:
break;
}
}
int dpdk_vdev_port = -1;
for (int i = 0; i< prox_rte_eth_dev_count_avail(); i++) {
for (int vlan_id = 0; vlan_id < prox_port_cfg[i].n_vlans; vlan_id++) {
if (strcmp(prox_port_cfg[i].names[vlan_id], interface_name) == 0) {
dpdk_vdev_port = i;
break;
}
}
if (dpdk_vdev_port != -1)
break;
}
if (dpdk_vdev_port != -1) {
plogx_info("Received netlink message on tap interface %s for IP "IPv4_BYTES_FMT"/%d, Gateway "IPv4_BYTES_FMT"\n", interface_name, IP4(ip), dst_len, IP4(gw_ip));
int ret1 = rte_mempool_get(tbase->l3.arp_nd_pool, (void **)mbufs);
if (unlikely(ret1 != 0)) {
plog_err("Unable to allocate a mbuf for master to core communication\n");
return;
}
int dpdk_port = prox_port_cfg[dpdk_vdev_port].dpdk_mapping;
tx_ring_route(tbase, task->internal_port_table[dpdk_port].ring, (nl_hdr->nlmsg_type == RTM_NEWROUTE), mbufs[0], ip, gw_ip, dst_len);
} else
plog_info("Received netlink message on unknown interface %s for IP "IPv4_BYTES_FMT"/%d, Gateway "IPv4_BYTES_FMT"\n", interface_name[0] ? interface_name:"", IP4(ip), dst_len, IP4(gw_ip));
return;
}
static void handle_arp_event(struct task_base *tbase)
{
struct task_master *task = (struct task_master *)tbase;
struct rte_mbuf *mbufs[MAX_RING_BURST];
struct nlmsghdr * nl_hdr;
int fd = task->arp_fds.fd;
int len, ret;
uint32_t ip = 0;
prox_rte_ether_addr mac;
memset(&mac, 0, sizeof(mac));
len = recv(fd, netlink_buf, sizeof(netlink_buf), 0);
if (len < 0) {
plog_err("Failed to recv from netlink: %d\n", errno);
return;
}
nl_hdr = (struct nlmsghdr *)netlink_buf;
if (nl_hdr->nlmsg_flags & NLM_F_MULTI) {
plog_err("Unexpected multipart netlink message\n");
return;
}
if ((nl_hdr->nlmsg_type != RTM_NEWNEIGH) && (nl_hdr->nlmsg_type != RTM_DELNEIGH))
return;
struct ndmsg *ndmsg = (struct ndmsg *)NLMSG_DATA(nl_hdr);
int ndm_family = ndmsg->ndm_family;
struct rtattr *rta = (struct rtattr *)RTM_RTA(ndmsg);
int rtl = RTM_PAYLOAD(nl_hdr);
for (; RTA_OK(rta, rtl); rta = RTA_NEXT(rta, rtl)) {
switch (rta->rta_type) {
case NDA_DST:
ip = *((uint32_t *)RTA_DATA(rta));
break;
case NDA_LLADDR:
mac = *((prox_rte_ether_addr *)(uint64_t *)RTA_DATA(rta));
break;
default:
break;
}
}
plogx_info("Received netlink ip "IPv4_BYTES_FMT" with mac "MAC_BYTES_FMT"\n", IP4(ip), MAC_BYTES(mac.addr_bytes));
ret = rte_hash_lookup(task->external_ip_hash, (const void *)&ip);
if (unlikely(ret < 0)) {
// entry not found for this IP: we did not ask a request.
// This can happen if the kernel updated the ARP table when receiving an ARP_REQUEST
// We must record this, as the ARP entry is now in the kernel table
if (prox_rte_is_zero_ether_addr(&mac)) {
// Timeout or MAC deleted from kernel MAC table
int ret = rte_hash_del_key(task->external_ip_hash, (const void *)&ip);
plogx_dbg("ip "IPv4_BYTES_FMT" removed from external_ip_hash\n", IP4(ip));
return;
}
int ret = rte_hash_add_key(task->external_ip_hash, (const void *)&ip);
if (unlikely(ret < 0)) {
plogx_dbg("IP "IPv4_BYTES_FMT" not found in external_ip_hash and unable to add it\n", IP4(ip));
return;
}
memcpy(&task->external_ip_table[ret].mac, &mac, sizeof(prox_rte_ether_addr));
plogx_dbg("ip "IPv4_BYTES_FMT" added in external_ip_hash with mac "MAC_BYTES_FMT"\n", IP4(ip), MAC_BYTES(mac.addr_bytes));
return;
}
// entry found for this IP
uint16_t nb_requests = task->external_ip_table[ret].nb_requests;
if (nb_requests == 0) {
return;
}
memcpy(&task->external_ip_table[ret].mac, &mac, sizeof(prox_rte_ether_addr));
// If we receive a request from multiple task for the same IP, then we update all tasks
int ret1 = rte_mempool_get(tbase->l3.arp_nd_pool, (void **)mbufs);
if (unlikely(ret1 != 0)) {
plog_err("Unable to allocate a mbuf for master to core communication\n");
return;
}
rte_mbuf_refcnt_set(mbufs[0], nb_requests);
for (int i = 0; i < nb_requests; i++) {
struct rte_ring *ring = task->external_ip_table[ret].rings[i];
struct ether_hdr_arp *hdr = rte_pktmbuf_mtod(mbufs[0], struct ether_hdr_arp *);
memcpy(&hdr->arp.data.sha, &mac, sizeof(prox_rte_ether_addr));
tx_ring_ip(tbase, ring, MAC_INFO_FROM_MASTER, mbufs[0], ip);
plog_dbg("MAC_INFO_FROM_MASTER ip "IPv4_BYTES_FMT" with mac "MAC_BYTES_FMT"\n", IP4(ip), MAC_BYTES(mac.addr_bytes));
}
task->external_ip_table[ret].nb_requests = 0;
return;
}
static int handle_ctrl_plane_f(struct task_base *tbase, __attribute__((unused)) struct rte_mbuf **mbuf, uint16_t n_pkts)
{
int ring_id = 0, j, ret = 0, n = 0;
struct rte_mbuf *mbufs[MAX_RING_BURST];
struct task_master *task = (struct task_master *)tbase;
/* Handle_master works differently than other handle functions
It is not handled by a DPDK dataplane core
It is no thread_generic based, hence do not receive packets the same way
*/
ret = ring_deq(task->ctrl_rx_ring, mbufs);
for (j = 0; j < ret; j++) {
handle_message(tbase, mbufs[j], ring_id);
}
for (int vdev_id = 0; vdev_id < task->max_vdev_id; vdev_id++) {
struct vdev *vdev = &task->all_vdev[vdev_id];
n = rte_eth_rx_burst(vdev->port_id, 0, mbufs, MAX_PKT_BURST);
for (j = 0; j < n; j++) {
tx_ring(tbase, vdev->ring, PKT_FROM_TAP, mbufs[j]);
}
ret +=n;
}
if ((task->max_vdev_id) && (poll(&task->arp_fds, 1, prox_cfg.poll_timeout) == POLL_IN)) {
handle_arp_event(tbase);
}
if (poll(&task->route_fds, 1, prox_cfg.poll_timeout) == POLL_IN) {
handle_route_event(tbase);
}
return ret;
}
static void init_task_master(struct task_base *tbase, struct task_args *targs)
{
if (prox_cfg.flags & DSF_CTRL_PLANE_ENABLED) {
struct task_master *task = (struct task_master *)tbase;
task->ctrl_rx_ring = targs->lconf->ctrl_rings_p[0];
task->ctrl_tx_rings = ctrl_rings;
init_ctrl_plane(tbase);
handle_ctrl_plane = handle_ctrl_plane_f;
}
}
static struct task_init task_init_master = {
.mode_str = "master",
.init = init_task_master,
.handle = NULL,
.flag_features = TASK_FEATURE_NEVER_DISCARDS,
.size = sizeof(struct task_master)
};
__attribute__((constructor)) static void reg_task_gen(void)
{
reg_task(&task_init_master);
}
|