summaryrefslogtreecommitdiffstats
path: root/VNFs/DPPD-PROX/handle_impair.c
blob: 78c9e4009ffeecc66947cb069f97923f59e63552 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <string.h>
#include <stdio.h>
#include <rte_cycles.h>
#include <rte_version.h>

#include "prox_malloc.h"
#include "lconf.h"
#include "log.h"
#include "random.h"
#include "handle_impair.h"
#include "prefetch.h"
#include "prox_port_cfg.h"

#if RTE_VERSION < RTE_VERSION_NUM(1,8,0,0)
#define RTE_CACHE_LINE_SIZE CACHE_LINE_SIZE
#endif

#define DELAY_ACCURACY	11		// accuracy of 2048 cycles ~= 1 micro-second
#define DELAY_MAX_MASK	0x1FFFFF	// Maximum 2M * 2K cycles ~1 second

struct queue_elem {
	struct rte_mbuf *mbuf;
	uint64_t        tsc;
};

struct queue {
	struct queue_elem *queue_elem;
	unsigned queue_head;
	unsigned queue_tail;
};

struct task_impair {
	struct task_base base;
	struct queue_elem *queue;
	uint32_t random_delay_us;
	uint32_t delay_us;
	uint64_t delay_time;
	uint64_t delay_time_mask;
	unsigned queue_head;
	unsigned queue_tail;
	unsigned queue_mask;
	int tresh;
	unsigned int seed;
	struct random state;
	uint64_t last_idx;
	struct queue *buffer;
	uint32_t socket_id;
	uint32_t flags;
	uint8_t src_mac[6];
};

#define IMPAIR_NEED_UPDATE     1
#define IMPAIR_SET_MAC         2

static int handle_bulk_impair(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static int handle_bulk_impair_random(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static int handle_bulk_random_drop(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);

void task_impair_set_proba(struct task_base *tbase, float proba)
{
	struct task_impair *task = (struct task_impair *)tbase;
	task->tresh = ((uint64_t) RAND_MAX) * (uint32_t)(proba * 10000) / 1000000;
}

void task_impair_set_delay_us(struct task_base *tbase, uint32_t delay_us, uint32_t random_delay_us)
{
	struct task_impair *task = (struct task_impair *)tbase;
	task->flags |= IMPAIR_NEED_UPDATE;
	task->random_delay_us = random_delay_us;
	task->delay_us = delay_us;
}

static void task_impair_update(struct task_base *tbase)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint32_t queue_len = 0;
	size_t mem_size;
	if ((task->flags & IMPAIR_NEED_UPDATE) == 0)
		return;
	task->flags &= ~IMPAIR_NEED_UPDATE;
	uint64_t now = rte_rdtsc();
	uint8_t out[MAX_PKT_BURST] = {0};
	uint64_t now_idx = (now >> DELAY_ACCURACY) & DELAY_MAX_MASK;

	if (task->random_delay_us) {
		tbase->handle_bulk = handle_bulk_impair_random;
		task->delay_time = usec_to_tsc(task->random_delay_us);
		task->delay_time_mask = rte_align32pow2(task->delay_time) - 1;
		queue_len = rte_align32pow2((1250L * task->random_delay_us) / 84 / (DELAY_MAX_MASK + 1));
	} else if (task->delay_us == 0) {
		tbase->handle_bulk = handle_bulk_random_drop;
		task->delay_time = 0;
	} else {
		tbase->handle_bulk = handle_bulk_impair;
		task->delay_time = usec_to_tsc(task->delay_us);
		queue_len = rte_align32pow2(1250 * task->delay_us / 84);
	}
	if (task->queue) {
		struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
		while (task->queue_tail != task->queue_head) {
			now = rte_rdtsc();
			uint16_t idx = 0;
			while (idx < MAX_PKT_BURST && task->queue_tail != task->queue_head) {
				if (task->queue[task->queue_tail].tsc <= now) {
					out[idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
					new_mbufs[idx++] = task->queue[task->queue_tail].mbuf;
					task->queue_tail = (task->queue_tail + 1) & task->queue_mask;
				}
				else {
					break;
				}
			}
			if (idx)
				task->base.tx_pkt(&task->base, new_mbufs, idx, out);
		}
		prox_free(task->queue);
		task->queue = NULL;
	}
	if (task->buffer) {
		struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
		while (task->last_idx != ((now_idx - 1) & DELAY_MAX_MASK)) {
			now = rte_rdtsc();
			uint16_t pkt_idx = 0;
			while ((pkt_idx < MAX_PKT_BURST) && (task->last_idx != ((now_idx - 1) & DELAY_MAX_MASK))) {
				struct queue *queue = &task->buffer[task->last_idx];
				while ((pkt_idx < MAX_PKT_BURST) && (queue->queue_tail != queue->queue_head)) {
					out[pkt_idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
					new_mbufs[pkt_idx++] = queue->queue_elem[queue->queue_tail].mbuf;
					queue->queue_tail = (queue->queue_tail + 1) & task->queue_mask;
				}
				task->last_idx = (task->last_idx + 1) & DELAY_MAX_MASK;
			}

			if (pkt_idx)
				task->base.tx_pkt(&task->base, new_mbufs, pkt_idx, out);
		}
		for (int i = 0; i < DELAY_MAX_MASK + 1; i++) {
			if (task->buffer[i].queue_elem)
				prox_free(task->buffer[i].queue_elem);
		}
		prox_free(task->buffer);
		task->buffer = NULL;
	}

	if (queue_len < MAX_PKT_BURST)
		queue_len= MAX_PKT_BURST;
	task->queue_mask = queue_len - 1;
	if (task->queue_mask < MAX_PKT_BURST - 1)
		task->queue_mask = MAX_PKT_BURST - 1;
	mem_size = (task->queue_mask + 1) * sizeof(task->queue[0]);

	if (task->delay_us) {
		task->queue_head = 0;
		task->queue_tail = 0;
		task->queue = prox_zmalloc(mem_size, task->socket_id);
		if (task->queue == NULL) {
			plog_err("Not enough memory to allocate queue\n");
			task->queue_mask = 0;
		}
	} else if (task->random_delay_us) {
		size_t size = (DELAY_MAX_MASK + 1) * sizeof(struct queue);
		plog_info("Allocating %zd bytes\n", size);
		task->buffer = prox_zmalloc(size, task->socket_id);
		PROX_PANIC(task->buffer == NULL, "Not enough memory to allocate buffer\n");
		plog_info("Allocating %d x %zd bytes\n", DELAY_MAX_MASK + 1, mem_size);

		for (int i = 0; i < DELAY_MAX_MASK + 1; i++) {
			task->buffer[i].queue_elem = prox_zmalloc(mem_size, task->socket_id);
			PROX_PANIC(task->buffer[i].queue_elem == NULL, "Not enough memory to allocate buffer elems\n");
		}
	}
	random_init_seed(&task->state);
}

static int handle_bulk_random_drop(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint8_t out[MAX_PKT_BURST];
	struct ether_hdr * hdr[MAX_PKT_BURST];
	for (uint16_t i = 0; i < n_pkts; ++i) {
		PREFETCH0(mbufs[i]);
	}
	for (uint16_t i = 0; i < n_pkts; ++i) {
		hdr[i] = rte_pktmbuf_mtod(mbufs[i], struct ether_hdr *);
		PREFETCH0(hdr[i]);
	}
	if (task->flags & IMPAIR_SET_MAC) {
		for (uint16_t i = 0; i < n_pkts; ++i) {
			ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
			out[i] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
		}
	} else {
		for (uint16_t i = 0; i < n_pkts; ++i) {
			out[i] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
		}
	}
	return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
	task_impair_update(tbase);
}

static int handle_bulk_impair(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint64_t now = rte_rdtsc();
	uint8_t out[MAX_PKT_BURST] = {0};
	uint16_t enqueue_failed;
	uint16_t i;
	int ret = 0;
	struct ether_hdr * hdr[MAX_PKT_BURST];
	for (uint16_t i = 0; i < n_pkts; ++i) {
		PREFETCH0(mbufs[i]);
	}
	for (uint16_t i = 0; i < n_pkts; ++i) {
		hdr[i] = rte_pktmbuf_mtod(mbufs[i], struct ether_hdr *);
		PREFETCH0(hdr[i]);
	}

	int nb_empty_slots = (task->queue_tail - task->queue_head + task->queue_mask) & task->queue_mask;
	if (likely(nb_empty_slots >= n_pkts)) {
		/* We know n_pkts fits, no need to check for every packet */
		for (i = 0; i < n_pkts; ++i) {
			if (task->flags & IMPAIR_SET_MAC)
				ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
			task->queue[task->queue_head].tsc = now + task->delay_time;
			task->queue[task->queue_head].mbuf = mbufs[i];
			task->queue_head = (task->queue_head + 1) & task->queue_mask;
		}
	} else {
		for (i = 0; i < n_pkts; ++i) {
			if (((task->queue_head + 1) & task->queue_mask) != task->queue_tail) {
				if (task->flags & IMPAIR_SET_MAC)
					ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
				task->queue[task->queue_head].tsc = now + task->delay_time;
				task->queue[task->queue_head].mbuf = mbufs[i];
				task->queue_head = (task->queue_head + 1) & task->queue_mask;
			}
			else {
				/* Rest does not fit, need to drop those packets. */
				enqueue_failed = i;
				for (;i < n_pkts; ++i) {
					out[i] = OUT_DISCARD;
				}
				ret+= task->base.tx_pkt(&task->base, mbufs + enqueue_failed,
					  	n_pkts - enqueue_failed, out + enqueue_failed);
				break;
			}
		}
	}

	struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
	uint16_t idx = 0;

	if (task->tresh != RAND_MAX) {
		while (idx < MAX_PKT_BURST && task->queue_tail != task->queue_head) {
			if (task->queue[task->queue_tail].tsc <= now) {
				out[idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
				new_mbufs[idx] = task->queue[task->queue_tail].mbuf;
				PREFETCH0(new_mbufs[idx]);
				PREFETCH0(&new_mbufs[idx]->cacheline1);
				idx++;
				task->queue_tail = (task->queue_tail + 1) & task->queue_mask;
			}
			else {
				break;
			}
		}
	} else {
		while (idx < MAX_PKT_BURST && task->queue_tail != task->queue_head) {
			if (task->queue[task->queue_tail].tsc <= now) {
				out[idx] = 0;
				new_mbufs[idx] = task->queue[task->queue_tail].mbuf;
				PREFETCH0(new_mbufs[idx]);
				PREFETCH0(&new_mbufs[idx]->cacheline1);
				idx++;
				task->queue_tail = (task->queue_tail + 1) & task->queue_mask;
			}
			else {
				break;
			}
		}
	}

	if (idx)
		ret+= task->base.tx_pkt(&task->base, new_mbufs, idx, out);
	task_impair_update(tbase);
	return ret;
}

/*
 * We want to avoid using division and mod for performance reasons.
 * We also want to support up to one second delay, and express it in tsc
 * So the delay in tsc needs up to 32 bits (supposing procesor freq is less than 4GHz).
 * If the max_delay is smaller, we make sure we use less bits.
 * Note that we lose the MSB of the xorshift - 64 bits could hold
 * two or three delays in TSC - but would probably make implementation more complex
 * and not huge gain expected. Maybe room for optimization.
 * Using this implementation, we might have to run random more than once for a delay
 * but in average this should occur less than 50% of the time.
*/

static inline uint64_t random_delay(struct random *state, uint64_t max_delay, uint64_t max_delay_mask)
{
	uint64_t val;
	while(1) {
		val = random_next(state);
		if ((val & max_delay_mask) < max_delay)
			return (val & max_delay_mask);
	}
}

static int handle_bulk_impair_random(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint64_t now = rte_rdtsc();
	uint8_t out[MAX_PKT_BURST];
	uint16_t enqueue_failed;
	uint16_t i;
	int ret = 0;
	uint64_t packet_time, idx;
	uint64_t now_idx = (now >> DELAY_ACCURACY) & DELAY_MAX_MASK;
	struct ether_hdr * hdr[MAX_PKT_BURST];
	for (uint16_t i = 0; i < n_pkts; ++i) {
		PREFETCH0(mbufs[i]);
	}
	for (uint16_t i = 0; i < n_pkts; ++i) {
		hdr[i] = rte_pktmbuf_mtod(mbufs[i], struct ether_hdr *);
		PREFETCH0(hdr[i]);
	}

	for (i = 0; i < n_pkts; ++i) {
		packet_time = now + random_delay(&task->state, task->delay_time, task->delay_time_mask);
		idx = (packet_time >> DELAY_ACCURACY) & DELAY_MAX_MASK;
		while (idx != ((now_idx - 1) & DELAY_MAX_MASK)) {
			struct queue *queue = &task->buffer[idx];
			if (((queue->queue_head + 1) & task->queue_mask) != queue->queue_tail) {
				if (task->flags & IMPAIR_SET_MAC)
					ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
				queue->queue_elem[queue->queue_head].mbuf = mbufs[i];
				queue->queue_head = (queue->queue_head + 1) & task->queue_mask;
				break;
			} else {
				idx = (idx + 1) & DELAY_MAX_MASK;
			}
		}
		if (idx == ((now_idx - 1) & DELAY_MAX_MASK)) {
			/* Rest does not fit, need to drop packet. Note that further packets might fit as might want to be sent earlier */
			out[0] = OUT_DISCARD;
			ret+= task->base.tx_pkt(&task->base, mbufs + i, 1, out);
			plog_warn("Unexpectdly dropping packets\n");
		}
	}

	struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
	uint16_t pkt_idx = 0;

	while ((pkt_idx < MAX_PKT_BURST) && (task->last_idx != ((now_idx - 1) & DELAY_MAX_MASK))) {
		struct queue *queue = &task->buffer[task->last_idx];
		while ((pkt_idx < MAX_PKT_BURST) && (queue->queue_tail != queue->queue_head)) {
			out[pkt_idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
			new_mbufs[pkt_idx] = queue->queue_elem[queue->queue_tail].mbuf;
			PREFETCH0(new_mbufs[pkt_idx]);
			PREFETCH0(&new_mbufs[pkt_idx]->cacheline1);
			pkt_idx++;
			queue->queue_tail = (queue->queue_tail + 1) & task->queue_mask;
		}
		task->last_idx = (task->last_idx + 1) & DELAY_MAX_MASK;
	}

	if (pkt_idx)
		ret+= task->base.tx_pkt(&task->base, new_mbufs, pkt_idx, out);
	task_impair_update(tbase);
	return ret;
}

static void init_task(struct task_base *tbase, struct task_args *targ)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint32_t queue_len = 0;
	size_t mem_size;
	unsigned socket_id;
	uint64_t delay_us = 0;

	task->seed = rte_rdtsc();
	if (targ->probability == 0)
		targ->probability = 1000000;

	task->tresh = ((uint64_t) RAND_MAX) * targ->probability / 1000000;

	if ((targ->delay_us == 0) && (targ->random_delay_us == 0)) {
		tbase->handle_bulk = handle_bulk_random_drop;
		task->delay_time = 0;
	} else if (targ->random_delay_us) {
		tbase->handle_bulk = handle_bulk_impair_random;
		task->delay_time = usec_to_tsc(targ->random_delay_us);
		task->delay_time_mask = rte_align32pow2(task->delay_time) - 1;
		delay_us = targ->random_delay_us;
		queue_len = rte_align32pow2((1250L * delay_us) / 84 / (DELAY_MAX_MASK + 1));
	} else {
		task->delay_time = usec_to_tsc(targ->delay_us);
		delay_us = targ->delay_us;
		queue_len = rte_align32pow2(1250 * delay_us / 84);
	}
	/* Assume Line-rate is maximum transmit speed.
   	   TODO: take link speed if tx is port.
	*/
	if (queue_len < MAX_PKT_BURST)
		queue_len= MAX_PKT_BURST;
	task->queue_mask = queue_len - 1;
	if (task->queue_mask < MAX_PKT_BURST - 1)
		task->queue_mask = MAX_PKT_BURST - 1;

	mem_size = (task->queue_mask + 1) * sizeof(task->queue[0]);
	socket_id = rte_lcore_to_socket_id(targ->lconf->id);
	task->socket_id = rte_lcore_to_socket_id(targ->lconf->id);

	if (targ->delay_us) {
		task->queue = prox_zmalloc(mem_size, socket_id);
		PROX_PANIC(task->queue == NULL, "Not enough memory to allocate queue\n");
		task->queue_head = 0;
		task->queue_tail = 0;
	} else if (targ->random_delay_us) {
		size_t size = (DELAY_MAX_MASK + 1) * sizeof(struct queue);
		plog_info("Allocating %zd bytes\n", size);
		task->buffer = prox_zmalloc(size, socket_id);
		PROX_PANIC(task->buffer == NULL, "Not enough memory to allocate buffer\n");
		plog_info("Allocating %d x %zd bytes\n", DELAY_MAX_MASK + 1, mem_size);

		for (int i = 0; i < DELAY_MAX_MASK + 1; i++) {
			task->buffer[i].queue_elem = prox_zmalloc(mem_size, socket_id);
			PROX_PANIC(task->buffer[i].queue_elem == NULL, "Not enough memory to allocate buffer elems\n");
		}
	}
	random_init_seed(&task->state);
	if (targ->nb_txports) {
		memcpy(&task->src_mac[0], &prox_port_cfg[tbase->tx_params_hw.tx_port_queue[0].port].eth_addr, sizeof(struct ether_addr));
		task->flags = IMPAIR_SET_MAC;
	} else {
		task->flags = 0;
	}
}

static struct task_init tinit = {
	.mode_str = "impair",
	.init = init_task,
	.handle = handle_bulk_impair,
	.flag_features = TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS | TASK_FEATURE_ZERO_RX,
	.size = sizeof(struct task_impair)
};

__attribute__((constructor)) static void ctor(void)
{
	reg_task(&tinit);
}