1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <rte_byteorder.h>
#include <rte_cycles.h>
#include <rte_hash.h>
#include <rte_ip.h>
#include "prox_malloc.h"
#include "task_init.h"
#include "lconf.h"
#include "defines.h"
#include "stats.h"
#include "tx_pkt.h"
#include "hash_entry_types.h"
#include "prefetch.h"
#include "prox_cksum.h"
#include "gre.h"
#include "etypes.h"
#include "log.h"
#include "quit.h"
#include "prox_assert.h"
#include "pkt_prototypes.h"
#include "quit.h"
struct cpe_gre_key {
prox_rte_ether_addr clt_mac;
uint16_t pad;
} __attribute__((__packed__));
struct cpe_gre_data {
uint32_t gre_id;
uint32_t cpe_ip;
uint64_t tsc;
#ifdef GRE_TP
uint64_t tp_tsc;
double tp_tbsize;
#endif
} __attribute__((__packed__));
struct task_gre_decap {
struct task_base base;
struct rte_hash *cpe_gre_hash;
struct cpe_gre_data *cpe_gre_data;
struct lcore_cfg *lconf;
uint8_t runtime_flags;
uint8_t mapping[PROX_MAX_PORTS];
uint32_t bucket_index;
int offload_crc;
const void* key_ptr[16];
struct cpe_gre_key key[16];
uint64_t cpe_timeout;
#ifdef GRE_TP
double cycles_per_byte;
uint32_t tb_size;
#endif
};
static void handle_gre_decap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static void handle_gre_encap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static inline uint8_t handle_gre_encap(struct task_gre_decap *task, struct rte_mbuf *mbuf, struct cpe_gre_data *table);
static inline void handle_gre_encap16(struct task_gre_decap *task, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out);
static inline uint8_t handle_gre_decap(struct task_gre_decap *tbase, struct rte_mbuf *mbuf);
void update_arp_entries_gre(void *data);
static void init_cpe_gre_hash(struct task_args *targ)
{
char name[64];
uint8_t socket_id;
uint8_t lcore_id;
uint8_t table_part;
/* Already set up by other task */
if (targ->cpe_gre_hash) {
return;
}
lcore_id = targ->lconf->id;
socket_id = rte_lcore_to_socket_id(lcore_id);
sprintf(name, "core_%u_CPE_GRE_Table", targ->lconf->id);
table_part = targ->nb_slave_threads;
if (table_part == 0)
table_part = 1;
if (!rte_is_power_of_2(table_part)) {
table_part = rte_align32pow2(table_part) >> 1;
}
struct rte_hash_parameters hash_params = {
.name = name,
.entries = MAX_GRE / table_part,
.bucket_entries = GRE_BUCKET_ENTRIES,
.key_len = sizeof(struct cpe_gre_key),
.hash_func_init_val = 0,
.socket_id = socket_id
};
struct rte_hash* phash = rte_hash_create(&hash_params);
struct cpe_gre_data *cpe_gre_data = prox_zmalloc(MAX_GRE / table_part, socket_id);
PROX_PANIC(phash == NULL, "Unable to allocate memory for IPv4 hash table on core %u\n", lcore_id);
for (uint8_t task_id = 0; task_id < targ->lconf->n_tasks_all; ++task_id) {
enum task_mode smode = targ->lconf->targs[task_id].mode;
if (smode == GRE_DECAP || smode == GRE_ENCAP) {
targ->lconf->targs[task_id].cpe_gre_hash = phash;
targ->lconf->targs[task_id].cpe_gre_data = cpe_gre_data;
}
}
}
static void init_task_gre_decap(struct task_base *tbase, struct task_args *targ)
{
struct task_gre_decap *task = (struct task_gre_decap *)tbase;
init_cpe_gre_hash(targ);
task->cpe_gre_hash = targ->cpe_gre_hash;
task->cpe_gre_data = targ->cpe_gre_data;
task->runtime_flags = targ->runtime_flags;
task->lconf = targ->lconf;
task->cpe_timeout = msec_to_tsc(targ->cpe_table_timeout_ms);
targ->lconf->period_func = update_arp_entries_gre;
targ->lconf->period_data = tbase;
targ->lconf->period_timeout = msec_to_tsc(500) / NUM_VCPES;
for (uint8_t i = 0; i < 16; ++i) {
task->key_ptr[i] = &task->key[i];
}
}
static void init_task_gre_encap(struct task_base *tbase, struct task_args *targ)
{
struct task_gre_decap *task = (struct task_gre_decap *)tbase;
init_cpe_gre_hash(targ);
task->cpe_gre_hash = targ->cpe_gre_hash;
task->cpe_gre_data = targ->cpe_gre_data;
task->runtime_flags = targ->runtime_flags;
task->lconf = targ->lconf;
struct port_cfg *port = find_reachable_task_sending_to_port(targ);
if (port) {
task->offload_crc = port->requested_tx_offload & TX_OFFLOAD_CKSUM;
}
#ifdef GRE_TP
if (targ->tb_rate) {
task->cycles_per_byte = ((double)rte_get_tsc_hz()) / ((double)targ->tb_rate);
task->tb_size = targ->tb_size != 0 ? targ->tb_size : 1520;
}
else {
/* traffic policing disabled */
task->cycles_per_byte = 0;
}
#endif
}
static struct task_init task_init_gre_decap = {
.mode = GRE_DECAP,
.mode_str = "gredecap",
.init = init_task_gre_decap,
.handle = handle_gre_decap_bulk,
.size = sizeof(struct task_gre_decap)
};
static struct task_init task_init_gre_encap = {
.mode = GRE_ENCAP,
.mode_str = "greencap",
.init = init_task_gre_encap,
.handle = handle_gre_encap_bulk,
.size = sizeof(struct task_gre_decap)
};
__attribute__((constructor)) static void reg_task_gre(void)
{
reg_task(&task_init_gre_decap);
reg_task(&task_init_gre_encap);
}
void handle_gre_decap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
struct task_gre_decap *task = (struct task_gre_decap *)tbase;
uint8_t out[MAX_PKT_BURST];
uint16_t j;
prefetch_first(mbufs, n_pkts);
for (j = 0; j + PREFETCH_OFFSET < n_pkts; ++j) {
#ifdef PROX_PREFETCH_OFFSET
PREFETCH0(mbufs[j + PREFETCH_OFFSET]);
PREFETCH0(rte_pktmbuf_mtod(mbufs[j + PREFETCH_OFFSET - 1], void *));
#endif
out[j] = handle_gre_decap(task, mbufs[j]);
}
#ifdef PROX_PREFETCH_OFFSET
PREFETCH0(rte_pktmbuf_mtod(mbufs[n_pkts - 1], void *));
for (; j < n_pkts; ++j) {
out[j] = handle_gre_decap(task, mbufs[j]);
}
#endif
task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}
struct gre_packet {
prox_rte_ether_hdr eth;
prox_rte_ipv4_hdr ip;
struct gre_hdr gre;
union {
prox_rte_ether_hdr eth2;
prox_rte_ipv4_hdr ip2;
};
} __attribute__((__packed__));
/* Handle ipv4 over GRE and Ethernet over GRE. In case of ipv4 over
GRE remove gre and ipv4 header and retain space for ethernet
header. In case of Eth over GRE remove external eth, gre and ipv4
headers and return pointer to payload */
static inline prox_rte_ether_hdr *gre_decap(struct gre_hdr *pgre, struct rte_mbuf *mbuf)
{
int16_t hsize = 0;
if (pgre->type == ETYPE_EoGRE) {
hsize = sizeof(prox_rte_ether_hdr) + sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr);
}
else if (pgre->type == ETYPE_IPv4) {
/* retain sizeof(prox_rte_ether_hdr) */
hsize = sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr);
}
else {
return NULL;
}
return (prox_rte_ether_hdr *)rte_pktmbuf_adj(mbuf, hsize);
}
static inline uint8_t handle_gre_decap(struct task_gre_decap *task, struct rte_mbuf *mbuf)
{
prox_rte_ipv4_hdr *pip = (prox_rte_ipv4_hdr *)(rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *) + 1);
if (pip->next_proto_id != IPPROTO_GRE) {
plog_warn("Invalid packet proto_id = 0x%x expect 0x%x\n",
pip->next_proto_id, IPPROTO_GRE);
return OUT_DISCARD;
}
struct cpe_gre_data data;
struct cpe_gre_key key;
struct gre_hdr *pgre = (struct gre_hdr *)(pip + 1);
data.gre_id = pgre->gre_id;
data.cpe_ip = pip->src_addr;
prox_rte_ether_hdr *peth = gre_decap(pgre, mbuf);
PROX_PANIC(peth != 0, "Failed to gre_decap");
pip = (prox_rte_ipv4_hdr *)(peth + 1);
/* emulate client MAC for test purposes */
#if 1
if (pgre->type == ETYPE_IPv4) {
prox_rte_ether_hdr eth = {
.d_addr = {.addr_bytes =
{0x0A, 0x02, 0x0A, 0x0A, 0x00, 0x01}},
.s_addr = {.addr_bytes =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
.ether_type = ETYPE_IPv4
};
uint32_t hip = rte_bswap32(pip->src_addr);
eth.s_addr.addr_bytes[2] = (hip >> 24) & 0xFF;
eth.s_addr.addr_bytes[3] = (hip >> 16) & 0xFF;
eth.s_addr.addr_bytes[4] = (hip >> 8) & 0xFF;
eth.s_addr.addr_bytes[5] = (hip) & 0xFF;
rte_memcpy(peth, ð, sizeof(prox_rte_ether_hdr));
}
prox_rte_ether_addr_copy(&peth->s_addr, &key.clt_mac);
#endif
data.tsc = rte_rdtsc() + task->cpe_timeout;
int32_t hash_index = rte_hash_add_key(task->cpe_gre_hash, &key);
if (unlikely(hash_index < 0)) {
plog_warn("Failed to add key, gre %x\n", data.gre_id);
}
else if (unlikely(hash_index >= MAX_GRE)) {
plog_warn("Failed to add: Invalid hash_index = 0x%x\n",
hash_index);
return OUT_DISCARD;
}
rte_memcpy(&task->cpe_gre_data[hash_index], &data, sizeof(data));
if (task->runtime_flags & TASK_TX_CRC) {
prox_ip_cksum(mbuf, pip, sizeof(prox_rte_ether_hdr), sizeof(prox_rte_ipv4_hdr), task->offload_crc);
}
return 0;
}
void handle_gre_encap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
struct task_gre_decap *task = (struct task_gre_decap *)tbase;
uint8_t out[MAX_PKT_BURST];
uint16_t done = 0;
while (n_pkts) {
uint16_t chopped = RTE_MIN(n_pkts, 16);
prefetch_pkts(mbufs, chopped);
handle_gre_encap16(task, mbufs, chopped, out + done);
mbufs += chopped;
n_pkts -= chopped;
done += chopped;
}
task->base.tx_pkt(&task->base, mbufs - done, done, out);
}
#define DO_ENC_ETH_OVER_GRE 1
#define DO_ENC_IP_OVER_GRE 0
static inline void handle_gre_encap16(struct task_gre_decap *task, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out)
{
for (uint8_t i = 0; i < n_pkts; ++i) {
prox_rte_ether_hdr *peth = rte_pktmbuf_mtod(mbufs[i], prox_rte_ether_hdr *);
prox_rte_ether_addr_copy(&peth->d_addr, &task->key[i].clt_mac);
}
int32_t hash_index[16];
rte_hash_lookup_bulk(task->cpe_gre_hash, task->key_ptr, n_pkts, hash_index);
for (uint8_t i = 0; i < n_pkts; ++i ) {
if (unlikely(hash_index[i] < 0)) {
plog_warn("Invalid hash_index (<0) = 0x%x\n", hash_index[i]);
out[i] = OUT_DISCARD;
}
else if (unlikely(hash_index[i] >= MAX_GRE)) {
plog_warn("Invalid hash_index = 0x%x\n", hash_index[i]);
out[i] = OUT_DISCARD;
}
rte_prefetch0(&task->cpe_gre_data[hash_index[i]]);
}
for (uint8_t i = 0; i < n_pkts; ++i ) {
if (likely(out[i] != OUT_DISCARD)) {
out[i] = handle_gre_encap(task, mbufs[i], &task->cpe_gre_data[hash_index[i]]);
}
}
}
#ifdef DO_ENC_ETH_OVER_GRE
#define PKT_PREPEND_LEN (sizeof(prox_rte_ether_hdr) + sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr))
#elif DO_ENC_IP_OVER_GRE
#define PKT_PREPEND_LEN (sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr))
#else
static inline uint8_t handle_gre_encap(struct task_gre_decap *task, struct rte_mbuf *mbuf, struct cpe_gre_data *table)
{
prox_rte_ether_hdr *peth = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
prox_rte_ipv4_hdr *pip = (prox_rte_ipv4_hdr *)(peth + 1);
uint16_t ip_len = rte_be_to_cpu_16(pip->total_length);
struct cpe_gre_key key;
prox_rte_ether_addr_copy(&peth->d_addr, &key.clt_mac);
#ifdef GRE_TP
/* policing enabled */
if (task->cycles_per_byte) {
const uint16_t pkt_size = rte_pktmbuf_pkt_len(mbuf) + PROX_RTE_ETHER_CRC_LEN;
uint64_t tsc_now = rte_rdtsc();
if (table->tp_tbsize < pkt_size) {
uint64_t cycles_diff = tsc_now - table->tp_tsc;
double dB = ((double)cycles_diff) / task->cycles_per_byte;
if (dB > (double)task->tb_size) {
dB = task->tb_size;
}
if ((table->tp_tbsize + dB) >= pkt_size) {
table->tp_tbsize += dB;
table->tp_tsc = tsc_now;
}
else {
TASK_STATS_ADD_DROP_DISCARD(&task->base.aux->stats, 1);
return OUT_DISCARD;
}
}
table->tp_tbsize -= pkt_size;
}
#endif /* GRE_TP */
/* reuse ethernet header from payload, retain payload (ip) in
case of DO_ENC_IP_OVER_GRE */
peth = (prox_rte_ether_hdr *)rte_pktmbuf_prepend(mbuf, PKT_PREPEND_LEN);
PREFETCH0(peth);
ip_len += PKT_PREPEND_LEN;
pip = (prox_rte_ipv4_hdr *)(peth + 1);
struct gre_hdr *pgre = (struct gre_hdr *)(pip + 1);
prox_rte_ether_hdr eth = {
.d_addr = {.addr_bytes = {0x0A, 0x0A, 0x0A, 0xC8, 0x00, 0x02}},
.s_addr = {.addr_bytes = {0x0A, 0x0A, 0x0A, 0xC8, 0x00, 0x01}},
.ether_type = ETYPE_IPv4
};
rte_memcpy(peth, ð, sizeof(prox_rte_ether_hdr));
rte_memcpy(pgre, &gre_hdr_proto, sizeof(struct gre_hdr));
#if DO_ENC_ETH_OVER_GRE
pgre->type = ETYPE_EoGRE;
#elif DO_ENC_IP_OVER_GRE
pgre->type = ETYPE_IPv4;
#endif
pgre->gre_id = table->gre_id;
rte_memcpy(pip, &tunnel_ip_proto, sizeof(prox_rte_ipv4_hdr));
pip->src_addr = 0x02010a0a; //emulate port ip
pip->dst_addr = table->cpe_ip;
pip->total_length = rte_cpu_to_be_16(ip_len);
if (task->runtime_flags & TASK_TX_CRC) {
prox_ip_cksum(mbuf, pip, sizeof(prox_rte_ether_hdr), sizeof(prox_rte_ipv4_hdr), task->offload_crc);
}
return 0;
}
void update_arp_entries_gre(void *data)
{
uint64_t cur_tsc = rte_rdtsc();
struct task_gre_decap *task = (struct task_gre_decap *)data;
#if RTE_VERSION >= RTE_VERSION_NUM(2,1,0,0)
// rte_hash_iterate might take a long time if no entries found => we should not use it here
// struct rte_hash is now internal.....
// => Not implemented
#else
uint32_t *sig_bucket = (hash_sig_t *)&(task->cpe_gre_hash->sig_tbl[task->bucket_index * task->cpe_gre_hash->sig_tbl_bucket_size]);
uint32_t table_index = task->bucket_index * task->cpe_gre_hash->bucket_entries;
uint8_t *entry_bucket =
(uint8_t *) & task->cpe_gre_hash->key_tbl[task->bucket_index * task->cpe_gre_hash->bucket_entries * task->cpe_gre_hash->key_tbl_key_size];
for (uint32_t pos = 0; pos < task->cpe_gre_hash->bucket_entries; ++pos, ++table_index) {
struct cpe_gre_entry *key = (struct cpe_gre_entry *)&entry_bucket[pos * task->cpe_gre_hash->key_tbl_key_size];
if (task->cpe_gre_data[table_index].tsc < cur_tsc) {
sig_bucket[pos] = 0;
task->cpe_gre_data[table_index].tsc = UINT64_MAX;
}
}
++task->bucket_index;
task->bucket_index &= task->cpe_gre_hash->bucket_bitmask;
#endif
}
|