1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
|
/*
// Copyright (c) 2010-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <rte_mbuf.h>
#include <pcap.h>
#include <string.h>
#include <stdlib.h>
#include <rte_cycles.h>
#include <rte_version.h>
#include <rte_byteorder.h>
#include <rte_ether.h>
#include <rte_hash_crc.h>
#include <rte_malloc.h>
#include "prox_shared.h"
#include "random.h"
#include "prox_malloc.h"
#include "handle_gen.h"
#include "handle_lat.h"
#include "task_init.h"
#include "task_base.h"
#include "prox_port_cfg.h"
#include "lconf.h"
#include "log.h"
#include "quit.h"
#include "prox_cfg.h"
#include "mbuf_utils.h"
#include "qinq.h"
#include "prox_cksum.h"
#include "etypes.h"
#include "prox_assert.h"
#include "prefetch.h"
#include "token_time.h"
#include "local_mbuf.h"
#include "arp.h"
#include "tx_pkt.h"
#include "handle_master.h"
#include "defines.h"
#include "prox_ipv6.h"
struct pkt_template {
uint16_t len;
uint16_t l2_len;
uint16_t l3_len;
uint8_t *buf;
};
#define IP4(x) x & 0xff, (x >> 8) & 0xff, (x >> 16) & 0xff, x >> 24
#define DO_PANIC 1
#define DO_NOT_PANIC 0
#define FROM_PCAP 1
#define NOT_FROM_PCAP 0
#define TASK_OVERWRITE_SRC_MAC_WITH_PORT_MAC 1
static void pkt_template_init_mbuf(struct pkt_template *pkt_template, struct rte_mbuf *mbuf, uint8_t *pkt)
{
const uint32_t pkt_size = pkt_template->len;
rte_pktmbuf_pkt_len(mbuf) = pkt_size;
rte_pktmbuf_data_len(mbuf) = pkt_size;
init_mbuf_seg(mbuf);
rte_memcpy(pkt, pkt_template->buf, pkt_template->len);
}
struct task_gen_pcap {
struct task_base base;
uint64_t hz;
struct local_mbuf local_mbuf;
uint32_t pkt_idx;
struct pkt_template *proto;
uint32_t loop;
uint32_t n_pkts;
uint64_t last_tsc;
uint64_t *proto_tsc;
uint32_t socket_id;
};
struct task_gen {
struct task_base base;
uint64_t hz;
struct token_time token_time;
struct local_mbuf local_mbuf;
struct pkt_template *pkt_template; /* packet templates used at runtime */
uint64_t write_duration_estimate; /* how long it took previously to write the time stamps in the packets */
uint64_t earliest_tsc_next_pkt;
uint64_t new_rate_bps;
uint64_t pkt_queue_index;
uint32_t n_pkts; /* number of packets in pcap */
uint32_t orig_n_pkts; /* number of packets in pcap */
uint32_t pkt_idx; /* current packet from pcap */
uint32_t pkt_count; /* how many pakets to generate */
uint32_t max_frame_size;
uint32_t runtime_flags;
uint16_t lat_pos;
uint16_t packet_id_pos;
uint16_t accur_pos;
uint16_t sig_pos;
uint32_t sig;
uint32_t socket_id;
uint8_t generator_id;
uint8_t n_rands; /* number of randoms */
uint8_t min_bulk_size;
uint8_t max_bulk_size;
uint8_t lat_enabled;
uint8_t runtime_checksum_needed;
struct {
struct random state;
uint32_t rand_mask; /* since the random vals are uniform, masks don't introduce bias */
uint32_t fixed_bits; /* length of each random (max len = 4) */
uint16_t rand_offset; /* each random has an offset*/
uint8_t rand_len; /* # bytes to take from random (no bias introduced) */
} rand[64];
uint64_t accur[ACCURACY_WINDOW];
uint64_t pkt_tsc_offset[64];
struct pkt_template *pkt_template_orig; /* packet templates (from inline or from pcap) */
prox_rte_ether_addr src_mac;
uint8_t flags;
uint8_t cksum_offload;
struct prox_port_cfg *port;
uint64_t *bytes_to_tsc;
uint32_t imix_pkt_sizes[MAX_IMIX_PKTS];
uint32_t imix_nb_pkts;
uint32_t new_imix_nb_pkts;
} __rte_cache_aligned;
static inline uint8_t ipv4_get_hdr_len(prox_rte_ipv4_hdr *ip)
{
/* Optimize for common case of IPv4 header without options. */
if (ip->version_ihl == 0x45)
return sizeof(prox_rte_ipv4_hdr);
if (unlikely(ip->version_ihl >> 4 != 4)) {
plog_warn("IPv4 ether_type but IP version = %d != 4", ip->version_ihl >> 4);
return 0;
}
return (ip->version_ihl & 0xF) * 4;
}
static void parse_l2_l3_len(uint8_t *pkt, uint16_t *l2_len, uint16_t *l3_len, uint16_t len)
{
*l2_len = sizeof(prox_rte_ether_hdr);
*l3_len = 0;
prox_rte_vlan_hdr *vlan_hdr;
prox_rte_ether_hdr *eth_hdr = (prox_rte_ether_hdr*)pkt;
prox_rte_ipv4_hdr *ip;
uint16_t ether_type = eth_hdr->ether_type;
// Unstack VLAN tags
while (((ether_type == ETYPE_8021ad) || (ether_type == ETYPE_VLAN)) && (*l2_len + sizeof(prox_rte_vlan_hdr) < len)) {
vlan_hdr = (prox_rte_vlan_hdr *)(pkt + *l2_len);
*l2_len +=4;
ether_type = vlan_hdr->eth_proto;
}
// No L3 cksum offload for IPv6, but TODO L4 offload
// ETYPE_EoGRE CRC not implemented yet
switch (ether_type) {
case ETYPE_MPLSU:
case ETYPE_MPLSM:
*l2_len +=4;
break;
case ETYPE_IPv6:
case ETYPE_IPv4:
break;
case ETYPE_EoGRE:
case ETYPE_ARP:
*l2_len = 0;
break;
default:
*l2_len = 0;
plog_warn("Unsupported packet type %x - CRC might be wrong\n", ether_type);
break;
}
if (*l2_len) {
prox_rte_ipv4_hdr *ip = (prox_rte_ipv4_hdr *)(pkt + *l2_len);
if (ip->version_ihl >> 4 == 4)
*l3_len = ipv4_get_hdr_len(ip);
}
}
static void checksum_packet(uint8_t *hdr, struct rte_mbuf *mbuf, struct pkt_template *pkt_template, int cksum_offload)
{
uint16_t l2_len = pkt_template->l2_len;
uint16_t l3_len = pkt_template->l3_len;
prox_rte_ipv4_hdr *ip = (prox_rte_ipv4_hdr*)(hdr + l2_len);
if (l3_len) {
prox_ip_udp_cksum(mbuf, ip, l2_len, l3_len, cksum_offload);
} else if (ip->version_ihl >> 4 == 6) {
prox_rte_ipv6_hdr *ip6 = (prox_rte_ipv6_hdr *)(hdr + l2_len);
if (ip6->proto == IPPROTO_UDP) {
prox_rte_udp_hdr *udp = (prox_rte_udp_hdr *)(ip6 + 1);
udp->dgram_cksum = 0;
udp->dgram_cksum = rte_ipv6_udptcp_cksum(ip6, udp);
} else if (ip6->proto == IPPROTO_TCP) {
prox_rte_tcp_hdr *tcp = (prox_rte_tcp_hdr *)(ip6 + 1);
tcp->cksum = 0;
tcp->cksum = rte_ipv6_udptcp_cksum(ip6, tcp);
}
}
}
static void task_gen_reset_token_time(struct task_gen *task)
{
token_time_set_bpp(&task->token_time, task->new_rate_bps);
token_time_reset(&task->token_time, rte_rdtsc(), 0);
}
static void task_gen_take_count(struct task_gen *task, uint32_t send_bulk)
{
if (task->pkt_count == (uint32_t)-1)
return ;
else {
if (task->pkt_count >= send_bulk)
task->pkt_count -= send_bulk;
else
task->pkt_count = 0;
}
}
static int handle_gen_pcap_bulk(struct task_base *tbase, struct rte_mbuf **mbuf, uint16_t n_pkts)
{
struct task_gen_pcap *task = (struct task_gen_pcap *)tbase;
uint64_t now = rte_rdtsc();
uint64_t send_bulk = 0;
uint32_t pkt_idx_tmp = task->pkt_idx;
if (pkt_idx_tmp == task->n_pkts) {
PROX_ASSERT(task->loop);
return 0;
}
for (uint16_t j = 0; j < 64; ++j) {
uint64_t tsc = task->proto_tsc[pkt_idx_tmp];
if (task->last_tsc + tsc <= now) {
task->last_tsc += tsc;
send_bulk++;
pkt_idx_tmp++;
if (pkt_idx_tmp == task->n_pkts) {
if (task->loop)
pkt_idx_tmp = 0;
else
break;
}
}
else
break;
}
struct rte_mbuf **new_pkts = local_mbuf_refill_and_take(&task->local_mbuf, send_bulk);
if (new_pkts == NULL)
return 0;
for (uint16_t j = 0; j < send_bulk; ++j) {
struct rte_mbuf *next_pkt = new_pkts[j];
struct pkt_template *pkt_template = &task->proto[task->pkt_idx];
uint8_t *hdr = rte_pktmbuf_mtod(next_pkt, uint8_t *);
pkt_template_init_mbuf(pkt_template, next_pkt, hdr);
task->pkt_idx++;
if (task->pkt_idx == task->n_pkts) {
if (task->loop)
task->pkt_idx = 0;
else
break;
}
}
return task->base.tx_pkt(&task->base, new_pkts, send_bulk, NULL);
}
static inline uint64_t bytes_to_tsc(struct task_gen *task, uint32_t bytes)
{
return task->bytes_to_tsc[bytes];
}
static uint32_t task_gen_next_pkt_idx(const struct task_gen *task, uint32_t pkt_idx)
{
return pkt_idx + 1 >= task->n_pkts? 0 : pkt_idx + 1;
}
static uint32_t task_gen_offset_pkt_idx(const struct task_gen *task, uint32_t offset)
{
return (task->pkt_idx + offset) % task->n_pkts;
}
static uint32_t task_gen_calc_send_bulk(const struct task_gen *task, uint32_t *total_bytes)
{
/* The biggest bulk we allow to send is task->max_bulk_size
packets. The max bulk size can also be limited by the
pkt_count field. At the same time, we are rate limiting
based on the specified speed (in bytes per second) so token
bucket based rate limiting must also be applied. The
minimum bulk size is also constrained. If the calculated
bulk size is less then the minimum, then don't send
anything. */
const uint32_t min_bulk = task->min_bulk_size;
uint32_t max_bulk = task->max_bulk_size;
if (task->pkt_count != (uint32_t)-1 && task->pkt_count < max_bulk) {
max_bulk = task->pkt_count;
}
uint32_t send_bulk = 0;
uint32_t pkt_idx_tmp = task->pkt_idx;
uint32_t would_send_bytes = 0;
uint32_t pkt_size;
/*
* TODO - this must be improved to take into account the fact that, after applying randoms
* The packet can be replaced by an ARP
*/
for (uint16_t j = 0; j < max_bulk; ++j) {
struct pkt_template *pktpl = &task->pkt_template[pkt_idx_tmp];
pkt_size = pktpl->len;
uint32_t pkt_len = pkt_len_to_wire_size(pkt_size);
if (pkt_len + would_send_bytes > task->token_time.bytes_now)
break;
pkt_idx_tmp = task_gen_next_pkt_idx(task, pkt_idx_tmp);
send_bulk++;
would_send_bytes += pkt_len;
}
if (send_bulk < min_bulk)
return 0;
*total_bytes = would_send_bytes;
return send_bulk;
}
static void task_gen_apply_random_fields(struct task_gen *task, uint8_t *hdr)
{
uint32_t ret, ret_tmp;
for (uint16_t i = 0; i < task->n_rands; ++i) {
ret = random_next(&task->rand[i].state);
ret_tmp = (ret & task->rand[i].rand_mask) | task->rand[i].fixed_bits;
ret_tmp = rte_bswap32(ret_tmp);
/* At this point, the lower order bytes (BE) contain
the generated value. The address where the values
of interest starts is at ret_tmp + 4 - rand_len. */
uint8_t *pret_tmp = (uint8_t*)&ret_tmp;
rte_memcpy(hdr + task->rand[i].rand_offset, pret_tmp + 4 - task->rand[i].rand_len, task->rand[i].rand_len);
}
}
static void task_gen_apply_all_random_fields(struct task_gen *task, uint8_t **pkt_hdr, uint32_t count)
{
if (!task->n_rands)
return;
for (uint16_t i = 0; i < count; ++i)
task_gen_apply_random_fields(task, pkt_hdr[i]);
}
static void task_gen_apply_accur_pos(struct task_gen *task, uint8_t *pkt_hdr, uint32_t accuracy)
{
*(uint32_t *)(pkt_hdr + task->accur_pos) = accuracy;
}
static void task_gen_apply_sig(struct task_gen *task, struct pkt_template *dst)
{
if (task->sig_pos)
*(uint32_t *)(dst->buf + task->sig_pos) = task->sig;
}
static void task_gen_apply_all_accur_pos(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
if (!task->accur_pos)
return;
/* The accuracy of task->pkt_queue_index - ACCURACY_WINDOW is stored in
packet task->pkt_queue_index. The ID modulo ACCURACY_WINDOW is the
same. */
for (uint16_t j = 0; j < count; ++j) {
uint32_t accuracy = task->accur[(task->pkt_queue_index + j) & (ACCURACY_WINDOW - 1)];
task_gen_apply_accur_pos(task, pkt_hdr[j], accuracy);
}
}
static void task_gen_apply_unique_id(struct task_gen *task, uint8_t *pkt_hdr, const struct unique_id *id)
{
struct unique_id *dst = (struct unique_id *)(pkt_hdr + task->packet_id_pos);
*dst = *id;
}
static void task_gen_apply_all_unique_id(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
if (!task->packet_id_pos)
return;
for (uint16_t i = 0; i < count; ++i) {
struct unique_id id;
unique_id_init(&id, task->generator_id, task->pkt_queue_index++);
task_gen_apply_unique_id(task, pkt_hdr[i], &id);
}
}
static void task_gen_checksum_packets(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
if (!(task->runtime_flags & TASK_TX_CRC))
return;
if (!task->runtime_checksum_needed)
return;
uint32_t pkt_idx = task_gen_offset_pkt_idx(task, - count);
for (uint16_t i = 0; i < count; ++i) {
struct pkt_template *pkt_template = &task->pkt_template[pkt_idx];
checksum_packet(pkt_hdr[i], mbufs[i], pkt_template, task->cksum_offload);
pkt_idx = task_gen_next_pkt_idx(task, pkt_idx);
}
}
static void task_gen_consume_tokens(struct task_gen *task, uint32_t tokens, uint32_t send_count)
{
/* If max burst has been sent, we can't keep up so just assume
that we can (leaving a "gap" in the packet stream on the
wire) */
task->token_time.bytes_now -= tokens;
if (send_count == task->max_bulk_size && task->token_time.bytes_now > tokens) {
task->token_time.bytes_now = tokens;
}
}
static uint64_t task_gen_calc_bulk_duration(struct task_gen *task, uint32_t count)
{
uint32_t pkt_idx = task_gen_offset_pkt_idx(task, - 1);
struct pkt_template *last_pkt_template = &task->pkt_template[pkt_idx];
uint32_t last_pkt_len = pkt_len_to_wire_size(last_pkt_template->len);
#ifdef NO_EXTRAPOLATION
uint64_t bulk_duration = task->pkt_tsc_offset[count - 1];
#else
uint64_t last_pkt_duration = bytes_to_tsc(task, last_pkt_len);
uint64_t bulk_duration = task->pkt_tsc_offset[count - 1] + last_pkt_duration;
#endif
return bulk_duration;
}
static uint64_t task_gen_write_latency(struct task_gen *task, uint8_t **pkt_hdr, uint32_t count)
{
if (!task->lat_enabled)
return 0;
uint64_t tx_tsc, delta_t;
uint64_t tsc_before_tx = 0;
/* Just before sending the packets, apply the time stamp
relative to when the first packet will be sent. The first
packet will be sent now. The time is read for each packet
to reduce the error towards the actual time the packet will
be sent. */
uint64_t write_tsc_after, write_tsc_before;
write_tsc_before = rte_rdtsc();
/* The time it took previously to write the time stamps in the
packets is used as an estimate for how long it will take to
write the time stamps now. The estimated time at which the
packets will actually be sent will be at tx_tsc. */
tx_tsc = write_tsc_before + task->write_duration_estimate;
/* The offset delta_t tracks the difference between the actual
time and the time written in the packets. Adding the offset
to the actual time insures that the time written in the
packets is monotonically increasing. At the same time,
simply sleeping until delta_t is zero would leave a period
of silence on the line. The error has been introduced
earlier, but the packets have already been sent. */
/* This happens typically if previous bulk was delayed
by an interrupt e.g. (with Time in nsec)
Time x: sleep 4 microsec
Time x+4000: send 64 packets (64 packets as 4000 nsec, w/ 10Gbps 64 bytes)
Time x+5000: send 16 packets (16 packets as 1000 nsec)
When we send the 16 packets, the 64 ealier packets are not yet
fully sent */
if (tx_tsc < task->earliest_tsc_next_pkt)
delta_t = task->earliest_tsc_next_pkt - tx_tsc;
else
delta_t = 0;
for (uint16_t i = 0; i < count; ++i) {
uint32_t *pos = (uint32_t *)(pkt_hdr[i] + task->lat_pos);
const uint64_t pkt_tsc = tx_tsc + delta_t + task->pkt_tsc_offset[i];
*pos = pkt_tsc >> LATENCY_ACCURACY;
}
uint64_t bulk_duration = task_gen_calc_bulk_duration(task, count);
task->earliest_tsc_next_pkt = tx_tsc + delta_t + bulk_duration;
write_tsc_after = rte_rdtsc();
task->write_duration_estimate = write_tsc_after - write_tsc_before;
/* Make sure that the time stamps that were written
are valid. The offset must be taken into account */
do {
tsc_before_tx = rte_rdtsc();
} while (tsc_before_tx < tx_tsc);
return tsc_before_tx;
}
static void task_gen_store_accuracy(struct task_gen *task, uint32_t count, uint64_t tsc_before_tx)
{
if (!task->accur_pos)
return;
uint64_t accur = rte_rdtsc() - tsc_before_tx;
uint64_t first_accuracy_idx = task->pkt_queue_index - count;
for (uint32_t i = 0; i < count; ++i) {
uint32_t accuracy_idx = (first_accuracy_idx + i) & (ACCURACY_WINDOW - 1);
task->accur[accuracy_idx] = accur;
}
}
static void task_gen_load_and_prefetch(struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
for (uint16_t i = 0; i < count; ++i)
rte_prefetch0(mbufs[i]);
for (uint16_t i = 0; i < count; ++i)
pkt_hdr[i] = rte_pktmbuf_mtod(mbufs[i], uint8_t *);
for (uint16_t i = 0; i < count; ++i)
rte_prefetch0(pkt_hdr[i]);
}
static void task_gen_build_packets(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
uint64_t will_send_bytes = 0;
for (uint16_t i = 0; i < count; ++i) {
struct pkt_template *pktpl = &task->pkt_template[task->pkt_idx];
struct pkt_template *pkt_template = &task->pkt_template[task->pkt_idx];
pkt_template_init_mbuf(pkt_template, mbufs[i], pkt_hdr[i]);
prox_rte_ether_hdr *hdr = (prox_rte_ether_hdr *)pkt_hdr[i];
if (task->lat_enabled) {
#ifdef NO_EXTRAPOLATION
task->pkt_tsc_offset[i] = 0;
#else
task->pkt_tsc_offset[i] = bytes_to_tsc(task, will_send_bytes);
#endif
will_send_bytes += pkt_len_to_wire_size(pkt_template->len);
}
task->pkt_idx = task_gen_next_pkt_idx(task, task->pkt_idx);
}
}
static int task_gen_allocate_templates(struct task_gen *task, uint32_t orig_nb_pkts, uint32_t nb_pkts, int do_panic, int pcap)
{
size_t mem_size = nb_pkts * sizeof(*task->pkt_template);
size_t orig_mem_size = orig_nb_pkts * sizeof(*task->pkt_template);
task->pkt_template = prox_zmalloc(mem_size, task->socket_id);
task->pkt_template_orig = prox_zmalloc(orig_mem_size, task->socket_id);
if (task->pkt_template == NULL || task->pkt_template_orig == NULL) {
plog_err_or_panic(do_panic, "Failed to allocate %lu bytes (in huge pages) for %s\n", mem_size, pcap ? "pcap file":"packet template");
return -1;
}
for (size_t i = 0; i < orig_nb_pkts; i++) {
task->pkt_template_orig[i].buf = prox_zmalloc(task->max_frame_size, task->socket_id);
if (task->pkt_template_orig[i].buf == NULL) {
plog_err_or_panic(do_panic, "Failed to allocate %u bytes (in huge pages) for %s\n", task->max_frame_size, pcap ? "packet from pcap": "packet");
return -1;
}
}
for (size_t i = 0; i < nb_pkts; i++) {
task->pkt_template[i].buf = prox_zmalloc(task->max_frame_size, task->socket_id);
if (task->pkt_template[i].buf == NULL) {
plog_err_or_panic(do_panic, "Failed to allocate %u bytes (in huge pages) for %s\n", task->max_frame_size, pcap ? "packet from pcap": "packet");
return -1;
}
}
return 0;
}
static int task_gen_reallocate_templates(struct task_gen *task, uint32_t nb_pkts, int do_panic)
{
// Need to free up bufs allocated in previous (longer) imix
for (size_t i = nb_pkts; i < task->n_pkts; i++) {
if (task->pkt_template[i].buf) {
rte_free(task->pkt_template[i].buf);
task->pkt_template[i].buf = NULL;
}
}
size_t mem_size = nb_pkts * sizeof(*task->pkt_template);
struct pkt_template *ptr;
// re-allocate memory for new pkt_template (this might allocate additional memory or free up some...)
if ((ptr = rte_realloc_socket(task->pkt_template, mem_size, RTE_CACHE_LINE_SIZE, task->socket_id)) != NULL) {
task->pkt_template = ptr;
} else {
plog_err_or_panic(do_panic, "Failed to allocate %lu bytes (in huge pages) for packet template for IMIX\n", mem_size);
return -1;
}
// Need to allocate bufs for new template but no need to reallocate for existing ones
for (size_t i = task->n_pkts; i < nb_pkts; ++i) {
task->pkt_template[i].buf = prox_zmalloc(task->max_frame_size, task->socket_id);
if (task->pkt_template[i].buf == NULL) {
plog_err_or_panic(do_panic, "Failed to allocate %u bytes (in huge pages) for packet %zd in IMIX\n", task->max_frame_size, i);
return -1;
}
}
return 0;
}
static int check_pkt_size(struct task_gen *task, uint32_t pkt_size, int do_panic)
{
const uint16_t min_len = sizeof(prox_rte_ether_hdr) + sizeof(prox_rte_ipv4_hdr);
const uint16_t max_len = task->max_frame_size;
if (do_panic) {
PROX_PANIC(pkt_size == 0, "Invalid packet size length (no packet defined?)\n");
PROX_PANIC(pkt_size > max_len, "pkt_size out of range (must be <= %u)\n", max_len);
PROX_PANIC(pkt_size < min_len, "pkt_size out of range (must be >= %u)\n", min_len);
return 0;
} else {
if (pkt_size == 0) {
plog_err("Invalid packet size length (no packet defined?)\n");
return -1;
}
if (pkt_size > max_len) {
if (pkt_size > PROX_RTE_ETHER_MAX_LEN + 2 * PROX_VLAN_TAG_SIZE - 4)
plog_err("pkt_size too high and jumbo frames disabled\n");
else
plog_err("pkt_size out of range (must be <= (mtu=%u))\n", max_len);
return -1;
}
if (pkt_size < min_len) {
plog_err("pkt_size out of range (must be >= %u)\n", min_len);
return -1;
}
return 0;
}
}
static int check_fields_in_bounds(struct task_gen *task, uint32_t pkt_size, int do_panic)
{
if (task->lat_enabled) {
uint32_t pos_beg = task->lat_pos;
uint32_t pos_end = task->lat_pos + 3U;
if (do_panic)
PROX_PANIC(pkt_size <= pos_end, "Writing latency at %u-%u, but packet size is %u bytes\n",
pos_beg, pos_end, pkt_size);
else if (pkt_size <= pos_end) {
plog_err("Writing latency at %u-%u, but packet size is %u bytes\n", pos_beg, pos_end, pkt_size);
return -1;
}
}
if (task->packet_id_pos) {
uint32_t pos_beg = task->packet_id_pos;
uint32_t pos_end = task->packet_id_pos + 4U;
if (do_panic)
PROX_PANIC(pkt_size <= pos_end, "Writing packet at %u-%u, but packet size is %u bytes\n",
pos_beg, pos_end, pkt_size);
else if (pkt_size <= pos_end) {
plog_err("Writing packet at %u-%u, but packet size is %u bytes\n", pos_beg, pos_end, pkt_size);
return -1;
}
}
if (task->accur_pos) {
uint32_t pos_beg = task->accur_pos;
uint32_t pos_end = task->accur_pos + 3U;
if (do_panic)
PROX_PANIC(pkt_size <= pos_end, "Writing accuracy at %u-%u, but packet size is %u bytes\n",
pos_beg, pos_end, pkt_size);
else if (pkt_size <= pos_end) {
plog_err("Writing accuracy at %u-%u, but packet size is %u bytes\n", pos_beg, pos_end, pkt_size);
return -1;
}
}
return 0;
}
static int task_gen_set_eth_ip_udp_sizes(struct task_gen *task, uint32_t n_orig_pkts, uint32_t nb_pkt_sizes, uint32_t *pkt_sizes)
{
size_t k;
uint32_t l4_len;
prox_rte_ipv4_hdr *ip;
struct pkt_template *template;
for (size_t j = 0; j < nb_pkt_sizes; ++j) {
for (size_t i = 0; i < n_orig_pkts; ++i) {
k = j * n_orig_pkts + i;
template = &task->pkt_template[k];
template->len = pkt_sizes[j];
rte_memcpy(template->buf, task->pkt_template_orig[i].buf, pkt_sizes[j]);
parse_l2_l3_len(template->buf, &template->l2_len, &template->l3_len, template->len);
if (template->l2_len == 0)
continue;
ip = (prox_rte_ipv4_hdr *)(template->buf + template->l2_len);
ip->total_length = rte_bswap16(pkt_sizes[j] - template->l2_len);
l4_len = pkt_sizes[j] - template->l2_len - template->l3_len;
ip->hdr_checksum = 0;
prox_ip_cksum_sw(ip);
if (ip->next_proto_id == IPPROTO_UDP) {
prox_rte_udp_hdr *udp = (prox_rte_udp_hdr *)(((uint8_t *)ip) + template->l3_len);
udp->dgram_len = rte_bswap16(l4_len);
prox_udp_cksum_sw(udp, l4_len, ip->src_addr, ip->dst_addr);
} else if (ip->next_proto_id == IPPROTO_TCP) {
prox_rte_tcp_hdr *tcp = (prox_rte_tcp_hdr *)(((uint8_t *)ip) + template->l3_len);
prox_tcp_cksum_sw(tcp, l4_len, ip->src_addr, ip->dst_addr);
}
}
}
return 0;
}
static int task_gen_apply_imix(struct task_gen *task, int do_panic)
{
struct pkt_template *ptr;
int rc;
task->imix_nb_pkts = task->new_imix_nb_pkts;
uint32_t n_pkts = task->imix_nb_pkts * task->orig_n_pkts;
if ((n_pkts != task->n_pkts) && ((rc = task_gen_reallocate_templates(task, n_pkts, do_panic)) < 0))
return rc;
task->n_pkts = n_pkts;
if (task->pkt_idx >= n_pkts)
task->pkt_idx = 0;
task_gen_set_eth_ip_udp_sizes(task, task->orig_n_pkts, task->imix_nb_pkts, task->imix_pkt_sizes);
return 0;
}
static void task_gen_update_config(struct task_gen *task)
{
if (task->token_time.cfg.bpp != task->new_rate_bps)
task_gen_reset_token_time(task);
if (task->new_imix_nb_pkts)
task_gen_apply_imix(task, DO_NOT_PANIC);
task->new_imix_nb_pkts = 0;
}
static inline void build_value(struct task_gen *task, uint32_t mask, int bit_pos, uint32_t val, uint32_t fixed_bits)
{
struct task_base *tbase = (struct task_base *)task;
if (bit_pos < 32) {
build_value(task, mask >> 1, bit_pos + 1, val, fixed_bits);
if (mask & 1) {
build_value(task, mask >> 1, bit_pos + 1, val | (1 << bit_pos), fixed_bits);
}
} else {
register_ip_to_ctrl_plane(tbase->l3.tmaster, rte_cpu_to_be_32(val | fixed_bits), tbase->l3.reachable_port_id, tbase->l3.core_id, tbase->l3.task_id);
}
}
static inline void build_value_ipv6(struct task_gen *task, uint32_t mask, int var_bit_pos, int init_var_bit_pos, struct ipv6_addr val, struct ipv6_addr fixed_bits)
{
struct task_base *tbase = (struct task_base *)task;
if (var_bit_pos < 32) {
build_value_ipv6(task, mask >> 1, var_bit_pos + 1, init_var_bit_pos, val, fixed_bits);
if (mask & 1) {
int byte_pos = (var_bit_pos + init_var_bit_pos) / 8;
int bit_pos = (var_bit_pos + init_var_bit_pos) % 8;
val.bytes[byte_pos] = val.bytes[byte_pos] | (1 << bit_pos);
build_value_ipv6(task, mask >> 1, var_bit_pos + 1, init_var_bit_pos, val, fixed_bits);
}
} else {
for (uint i = 0; i < sizeof(struct ipv6_addr) / 8; i++)
val.bytes[i] = val.bytes[i] | fixed_bits.bytes[i];
register_node_to_ctrl_plane(tbase->l3.tmaster, &null_addr, &val, tbase->l3.reachable_port_id, tbase->l3.core_id, tbase->l3.task_id);
}
}
static inline void register_all_ip_to_ctrl_plane(struct task_gen *task)
{
struct task_base *tbase = (struct task_base *)task;
int i, len, fixed;
unsigned int offset;
uint32_t mask, ip_len;
struct ipv6_addr *ip6_src = NULL;
uint32_t *ip_src;
for (uint32_t i = 0; i < task->n_pkts; ++i) {
struct pkt_template *pktpl = &task->pkt_template[i];
unsigned int ip_src_pos = 0;
int ipv4 = 0;
unsigned int l2_len = sizeof(prox_rte_ether_hdr);
uint8_t *pkt = pktpl->buf;
prox_rte_ether_hdr *eth_hdr = (prox_rte_ether_hdr*)pkt;
uint16_t ether_type = eth_hdr->ether_type;
prox_rte_vlan_hdr *vlan_hdr;
prox_rte_ipv4_hdr *ip;
// Unstack VLAN tags
while (((ether_type == ETYPE_8021ad) || (ether_type == ETYPE_VLAN)) && (l2_len + sizeof(prox_rte_vlan_hdr) < pktpl->len)) {
vlan_hdr = (prox_rte_vlan_hdr *)(pkt + l2_len);
l2_len +=4;
ether_type = vlan_hdr->eth_proto;
}
if ((ether_type == ETYPE_MPLSU) || (ether_type == ETYPE_MPLSM)) {
l2_len +=4;
ip = (prox_rte_ipv4_hdr *)(pkt + l2_len);
if (ip->version_ihl >> 4 == 4)
ipv4 = 1;
else if (ip->version_ihl >> 4 != 6) // Version field at same location for IPv4 and IPv6
continue;
} else if (ether_type == ETYPE_IPv4) {
ip = (prox_rte_ipv4_hdr *)(pkt + l2_len);
PROX_PANIC(ip->version_ihl >> 4 != 4, "IPv4 ether_type but IP version = %d != 4", ip->version_ihl >> 4); // Invalid Packet
ipv4 = 1;
} else if (ether_type == ETYPE_IPv6) {
ip = (prox_rte_ipv4_hdr *)(pkt + l2_len);
PROX_PANIC(ip->version_ihl >> 4 != 6, "IPv6 ether_type but IP version = %d != 6", ip->version_ihl >> 4); // Invalid Packet
} else {
continue;
}
PROX_PANIC(ipv4 && ((prox_cfg.flags & DSF_L3_ENABLED) == 0), "Trying to generate an IPv4 packet in NDP mode => not supported\n");
PROX_PANIC((ipv4 == 0) && ((prox_cfg.flags & DSF_NDP_ENABLED) == 0), "Trying to generate an IPv6 packet in L3 (IPv4) mode => not supported\n");
if (ipv4) {
// Even if IPv4 header contains options, options are after ip src and dst
ip_src_pos = l2_len + sizeof(prox_rte_ipv4_hdr) - 2 * sizeof(uint32_t);
ip_src = ((uint32_t *)(pktpl->buf + ip_src_pos));
plog_info("\tip_src_pos = %d, ip_src = %x\n", ip_src_pos, *ip_src);
register_ip_to_ctrl_plane(tbase->l3.tmaster, *ip_src, tbase->l3.reachable_port_id, tbase->l3.core_id, tbase->l3.task_id);
ip_len = sizeof(uint32_t);
} else {
ip_src_pos = l2_len + sizeof(prox_rte_ipv6_hdr) - 2 * sizeof(struct ipv6_addr);
ip6_src = ((struct ipv6_addr *)(pktpl->buf + ip_src_pos));
plog_info("\tip_src_pos = %d, ip6_src = "IPv6_BYTES_FMT"\n", ip_src_pos, IPv6_BYTES(ip6_src->bytes));
register_node_to_ctrl_plane(tbase->l3.tmaster, ip6_src, &null_addr, tbase->l3.reachable_port_id, tbase->l3.core_id, tbase->l3.task_id);
ip_len = sizeof(struct ipv6_addr);
}
for (int j = 0; j < task->n_rands; j++) {
offset = task->rand[j].rand_offset;
len = task->rand[j].rand_len;
mask = task->rand[j].rand_mask;
fixed = task->rand[j].fixed_bits;
plog_info("offset = %d, len = %d, mask = %x, fixed = %x\n", offset, len, mask, fixed);
if (offset >= ip_src_pos + ip_len) // First random bit after IP
continue;
if (offset + len < ip_src_pos) // Last random bit before IP
continue;
if (ipv4) {
if (offset >= ip_src_pos) {
int32_t ip_src_mask = (1 << (4 + ip_src_pos - offset) * 8) - 1;
mask = mask & ip_src_mask;
fixed = (fixed & ip_src_mask) | (rte_be_to_cpu_32(*ip_src) & ~ip_src_mask);
build_value(task, mask, 0, 0, fixed);
} else {
int32_t bits = ((ip_src_pos + 4 - offset - len) * 8);
mask = mask << bits;
fixed = (fixed << bits) | (rte_be_to_cpu_32(*ip_src) & ((1 << bits) - 1));
build_value(task, mask, 0, 0, fixed);
}
} else {
// We do not support when random partially covers IP - either starting before or finishing after
if (offset + len >= ip_src_pos + ip_len) { // len over the ip
plog_err("Not supported: random_offset = %d, random_len = %d, ip_src_pos = %d, ip_len = %d\n", offset, len, ip_src_pos, ip_len);
continue;
}
if (offset < ip_src_pos) {
plog_err("Not supported: random_offset = %d, random_len = %d, ip_src_pos = %d, ip_len = %d\n", offset, len, ip_src_pos, ip_len);
continue;
}
// Even for IPv6 the random mask supported by PROX are 32 bits only
struct ipv6_addr fixed_ipv6;
uint init_var_byte_pos = (offset - ip_src_pos);
for (uint i = 0; i < sizeof(struct ipv6_addr); i++) {
if (i < init_var_byte_pos)
fixed_ipv6.bytes[i] = ip6_src->bytes[i];
else if (i < init_var_byte_pos + len)
fixed_ipv6.bytes[i] = (fixed >> (i - init_var_byte_pos)) & 0xFF;
else
fixed_ipv6.bytes[i] = ip6_src->bytes[i];
}
build_value_ipv6(task, mask, 0, init_var_byte_pos * 8, null_addr, fixed_ipv6);
}
}
}
}
static int handle_gen_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
struct task_gen *task = (struct task_gen *)tbase;
uint8_t out[MAX_PKT_BURST] = {0};
int ret;
int i, j;
task_gen_update_config(task);
if (task->pkt_count == 0) {
task_gen_reset_token_time(task);
return 0;
}
if (!task->token_time.cfg.bpp)
return 0;
token_time_update(&task->token_time, rte_rdtsc());
uint32_t would_send_bytes;
uint32_t send_bulk = task_gen_calc_send_bulk(task, &would_send_bytes);
if (send_bulk == 0)
return 0;
task_gen_take_count(task, send_bulk);
task_gen_consume_tokens(task, would_send_bytes, send_bulk);
struct rte_mbuf **new_pkts = local_mbuf_refill_and_take(&task->local_mbuf, send_bulk);
if (new_pkts == NULL)
return 0;
uint8_t *pkt_hdr[MAX_RING_BURST];
task_gen_load_and_prefetch(new_pkts, pkt_hdr, send_bulk);
task_gen_build_packets(task, new_pkts, pkt_hdr, send_bulk);
task_gen_apply_all_random_fields(task, pkt_hdr, send_bulk);
task_gen_apply_all_accur_pos(task, new_pkts, pkt_hdr, send_bulk);
task_gen_apply_all_unique_id(task, new_pkts, pkt_hdr, send_bulk);
uint64_t tsc_before_tx;
tsc_before_tx = task_gen_write_latency(task, pkt_hdr, send_bulk);
task_gen_checksum_packets(task, new_pkts, pkt_hdr, send_bulk);
ret = task->base.tx_pkt(&task->base, new_pkts, send_bulk, out);
task_gen_store_accuracy(task, send_bulk, tsc_before_tx);
// If we failed to send some packets, we need to do some clean-up:
if (unlikely(ret)) {
// We need re-use the packets indexes not being sent
// Hence non-sent packets will not be considered as lost by the receiver when it looks at
// packet ids. This should also increase the percentage of packets used for latency measurements
task->pkt_queue_index -= ret;
// In case of failures, the estimate about when we can send next packet (earliest_tsc_next_pkt) is wrong
// This would result in under-estimated latency (up to 0 or negative)
uint64_t bulk_duration = task_gen_calc_bulk_duration(task, ret);
task->earliest_tsc_next_pkt -= bulk_duration;
}
return ret;
}
static void init_task_gen_seeds(struct task_gen *task)
{
for (size_t i = 0; i < sizeof(task->rand)/sizeof(task->rand[0]); ++i)
random_init_seed(&task->rand[i].state);
}
static uint32_t pcap_count_pkts(pcap_t *handle, uint32_t *max_frame_size)
{
struct pcap_pkthdr header;
const uint8_t *buf;
uint32_t ret = 0;
*max_frame_size = 0;
long pkt1_fpos = ftell(pcap_file(handle));
while ((buf = pcap_next(handle, &header))) {
if (header.len > *max_frame_size)
*max_frame_size = header.len;
ret++;
}
int ret2 = fseek(pcap_file(handle), pkt1_fpos, SEEK_SET);
PROX_PANIC(ret2 != 0, "Failed to reset reading pcap file\n");
return ret;
}
static uint64_t avg_time_stamp(uint64_t *time_stamp, uint32_t n)
{
uint64_t tot_inter_pkt = 0;
for (uint32_t i = 0; i < n; ++i)
tot_inter_pkt += time_stamp[i];
return (tot_inter_pkt + n / 2)/n;
}
static int pcap_read_pkts(pcap_t *handle, const char *file_name, uint32_t n_pkts, struct pkt_template *proto, uint64_t *time_stamp, uint32_t max_frame_size)
{
struct pcap_pkthdr header;
const uint8_t *buf;
size_t len;
for (uint32_t i = 0; i < n_pkts; ++i) {
buf = pcap_next(handle, &header);
PROX_PANIC(buf == NULL, "Failed to read packet %d from pcap %s\n", i, file_name);
proto[i].len = header.len;
len = RTE_MIN(header.len, max_frame_size);
if (header.len > len)
plogx_warn("Packet truncated from %u to %zu bytes\n", header.len, len);
if (time_stamp) {
static struct timeval beg;
struct timeval tv;
if (i == 0)
beg = header.ts;
tv = tv_diff(&beg, &header.ts);
tv_to_tsc(&tv, time_stamp + i);
}
rte_memcpy(proto[i].buf, buf, len);
}
if (time_stamp && n_pkts) {
for (uint32_t i = n_pkts - 1; i > 0; --i)
time_stamp[i] -= time_stamp[i - 1];
/* Since the handle function will loop the packets,
there is one time-stamp that is not provided by the
pcap file. This is the time between the last and
the first packet. This implementation takes the
average of the inter-packet times here. */
if (n_pkts > 1)
time_stamp[0] = avg_time_stamp(time_stamp + 1, n_pkts - 1);
}
return 0;
}
static int check_all_pkt_size(struct task_gen *task, int do_panic)
{
int rc;
for (uint32_t i = 0; i < task->n_pkts;++i) {
if ((rc = check_pkt_size(task, task->pkt_template[i].len, do_panic)) != 0)
return rc;
}
return 0;
}
static int check_all_fields_in_bounds(struct task_gen *task, int do_panic)
{
int rc;
for (uint32_t i = 0; i < task->n_pkts;++i) {
if ((rc = check_fields_in_bounds(task, task->pkt_template[i].len, do_panic)) != 0)
return rc;
}
return 0;
}
static void task_gen_pkt_template_recalc_metadata(struct task_gen *task)
{
struct pkt_template *template;
for (size_t i = 0; i < task->n_pkts; ++i) {
template = &task->pkt_template[i];
parse_l2_l3_len(template->buf, &template->l2_len, &template->l3_len, template->len);
}
}
static void task_gen_pkt_template_recalc_checksum(struct task_gen *task)
{
struct pkt_template *template;
prox_rte_ipv4_hdr *ip;
task->runtime_checksum_needed = 0;
for (size_t i = 0; i < task->n_pkts; ++i) {
template = &task->pkt_template[i];
if (template->l2_len == 0)
continue;
ip = (prox_rte_ipv4_hdr *)(template->buf + template->l2_len);
if (ip->version_ihl >> 4 == 4) {
ip->hdr_checksum = 0;
prox_ip_cksum_sw(ip);
uint32_t l4_len = rte_bswap16(ip->total_length) - template->l3_len;
if (ip->next_proto_id == IPPROTO_UDP) {
prox_rte_udp_hdr *udp = (prox_rte_udp_hdr *)(((uint8_t *)ip) + template->l3_len);
prox_udp_cksum_sw(udp, l4_len, ip->src_addr, ip->dst_addr);
} else if (ip->next_proto_id == IPPROTO_TCP) {
prox_rte_tcp_hdr *tcp = (prox_rte_tcp_hdr *)(((uint8_t *)ip) + template->l3_len);
prox_tcp_cksum_sw(tcp, l4_len, ip->src_addr, ip->dst_addr);
}
} else if (ip->version_ihl >> 4 == 6) {
prox_rte_ipv6_hdr *ip6;
ip6 = (prox_rte_ipv6_hdr *)(template->buf + template->l2_len);
if (ip6->proto == IPPROTO_UDP) {
prox_rte_udp_hdr *udp = (prox_rte_udp_hdr *)(ip6 + 1);
udp->dgram_cksum = 0;
udp->dgram_cksum = rte_ipv6_udptcp_cksum(ip6, udp);
} else if (ip6->proto == IPPROTO_TCP) {
prox_rte_tcp_hdr *tcp = (prox_rte_tcp_hdr *)(ip6 + 1);
tcp->cksum = 0;
tcp->cksum = rte_ipv6_udptcp_cksum(ip6, tcp);
}
}
/* The current implementation avoids checksum
calculation by determining that at packet
construction time, no fields are applied that would
require a recalculation of the checksum. */
if (task->lat_enabled && task->lat_pos > template->l2_len)
task->runtime_checksum_needed = 1;
if (task->accur_pos > template->l2_len)
task->runtime_checksum_needed = 1;
if (task->packet_id_pos > template->l2_len)
task->runtime_checksum_needed = 1;
}
}
static void task_gen_pkt_template_recalc_all(struct task_gen *task)
{
task_gen_pkt_template_recalc_metadata(task);
task_gen_pkt_template_recalc_checksum(task);
}
static void task_gen_reset_pkt_templates_len(struct task_gen *task)
{
struct pkt_template *src, *dst;
for (size_t j = 0; j < task->n_pkts / task->orig_n_pkts; ++j) {
for (size_t i = 0; i < task->orig_n_pkts; ++i) {
src = &task->pkt_template_orig[i];
dst = &task->pkt_template[j * task->orig_n_pkts + i];
dst->len = src->len;
}
}
}
static void task_gen_reset_pkt_templates_content(struct task_gen *task)
{
struct pkt_template *src, *dst;
for (size_t j = 0; j < task->n_pkts / task->orig_n_pkts; ++j) {
for (size_t i = 0; i < task->orig_n_pkts; ++i) {
src = &task->pkt_template_orig[i];
dst = &task->pkt_template[j * task->orig_n_pkts + i];
memcpy(dst->buf, src->buf, RTE_MAX(src->len, dst->len));
task_gen_apply_sig(task, dst);
}
}
}
static void task_gen_reset_pkt_templates(struct task_gen *task)
{
task_gen_reset_pkt_templates_len(task);
task_gen_reset_pkt_templates_content(task);
task_gen_pkt_template_recalc_all(task);
}
static void task_init_gen_load_pkt_inline(struct task_gen *task, struct task_args *targ)
{
int rc;
task->orig_n_pkts = 1;
if (task->imix_nb_pkts == 0) {
task->n_pkts = 1;
task->imix_pkt_sizes[0] = targ->pkt_size;
} else {
task->n_pkts = task->imix_nb_pkts;
}
task_gen_allocate_templates(task, task->orig_n_pkts, task->n_pkts, DO_PANIC, NOT_FROM_PCAP);
rte_memcpy(task->pkt_template_orig[0].buf, targ->pkt_inline, task->max_frame_size);
task->pkt_template_orig[0].len = task->imix_pkt_sizes[0];
task_gen_reset_pkt_templates(task);
check_all_pkt_size(task, DO_PANIC);
check_all_fields_in_bounds(task, DO_PANIC);
// If IMIX was not specified then pkt_size is specified using pkt_size parameter or the length of pkt_inline
// In that case, for backward compatibility, we do NOT adapt the length of IP and UDP to the length of the packet
task_gen_set_eth_ip_udp_sizes(task, task->orig_n_pkts, task->imix_nb_pkts, task->imix_pkt_sizes);
}
static void task_init_gen_load_pcap(struct task_gen *task, struct task_args *targ)
{
char err[PCAP_ERRBUF_SIZE];
uint32_t max_frame_size;
pcap_t *handle = pcap_open_offline(targ->pcap_file, err);
PROX_PANIC(handle == NULL, "Failed to open PCAP file: %s\n", err);
task->orig_n_pkts = pcap_count_pkts(handle, &max_frame_size);
plogx_info("%u packets in pcap file '%s'; max frame size=%d\n", task->orig_n_pkts, targ->pcap_file, max_frame_size);
PROX_PANIC(max_frame_size > task->max_frame_size,
max_frame_size > PROX_RTE_ETHER_MAX_LEN + 2 * PROX_VLAN_TAG_SIZE -4 ?
"pkt_size too high and jumbo frames disabled" : "pkt_size > mtu");
if (targ->n_pkts)
task->orig_n_pkts = RTE_MIN(task->orig_n_pkts, targ->n_pkts);
if (task->imix_nb_pkts == 0) {
task->n_pkts = task->orig_n_pkts;
} else {
task->n_pkts = task->imix_nb_pkts * task->orig_n_pkts;
}
task_gen_allocate_templates(task, task->orig_n_pkts, task->n_pkts, DO_PANIC, FROM_PCAP);
plogx_info("Loading %u packets from pcap\n", task->n_pkts);
pcap_read_pkts(handle, targ->pcap_file, task->orig_n_pkts, task->pkt_template_orig, NULL, max_frame_size);
pcap_close(handle);
task_gen_reset_pkt_templates(task);
check_all_pkt_size(task, DO_PANIC);
check_all_fields_in_bounds(task, DO_PANIC);
task_gen_set_eth_ip_udp_sizes(task, task->orig_n_pkts, task->imix_nb_pkts, task->imix_pkt_sizes);
}
static struct rte_mempool *task_gen_create_mempool(struct task_args *targ, uint16_t max_frame_size)
{
static char name[] = "gen_pool";
struct rte_mempool *ret;
const int sock_id = rte_lcore_to_socket_id(targ->lconf->id);
name[0]++;
uint32_t mbuf_size = TX_MBUF_SIZE;
if (max_frame_size + (unsigned)sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM > mbuf_size)
mbuf_size = max_frame_size + (unsigned)sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM;
plog_info("\tCreating mempool with name '%s'\n", name);
ret = rte_mempool_create(name, targ->nb_mbuf - 1, mbuf_size,
targ->nb_cache_mbuf, sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, 0,
sock_id, 0);
PROX_PANIC(ret == NULL, "Failed to allocate dummy memory pool on socket %u with %u elements\n",
sock_id, targ->nb_mbuf - 1);
plog_info("\tMempool %p size = %u * %u cache %u, socket %d\n", ret,
targ->nb_mbuf - 1, mbuf_size, targ->nb_cache_mbuf, sock_id);
return ret;
}
void task_gen_set_pkt_count(struct task_base *tbase, uint32_t count)
{
struct task_gen *task = (struct task_gen *)tbase;
task->pkt_count = count;
}
int task_gen_set_pkt_size(struct task_base *tbase, uint32_t pkt_size)
{
struct task_gen *task = (struct task_gen *)tbase;
int rc;
for (size_t i = 0; i < task->n_pkts; ++i) {
if ((rc = check_pkt_size(task, pkt_size, 0)) != 0)
return rc;
if ((rc = check_fields_in_bounds(task, pkt_size, 0)) != 0)
return rc;
}
for (size_t i = 0; i < task->n_pkts; ++i) {
task->pkt_template[i].len = pkt_size;
}
return 0;
}
int task_gen_set_imix(struct task_base *tbase, uint32_t nb_pkt_sizes, uint32_t *pkt_sizes)
{
struct task_gen *task = (struct task_gen *)tbase;
int rc;
memcpy(task->imix_pkt_sizes, pkt_sizes, nb_pkt_sizes * sizeof(uint32_t));
for (size_t i = 0; i < nb_pkt_sizes; ++i) {
if ((rc = check_pkt_size(task, pkt_sizes[i], DO_NOT_PANIC)) != 0)
return rc;
if ((rc = check_fields_in_bounds(task, pkt_sizes[i], DO_NOT_PANIC)) != 0)
return rc;
}
// only set new_imix_nb_pkts if checks of pkt sizes succeeded
task->new_imix_nb_pkts = nb_pkt_sizes;
return 0;
}
void task_gen_set_rate(struct task_base *tbase, uint64_t bps)
{
struct task_gen *task = (struct task_gen *)tbase;
task->new_rate_bps = bps;
}
void task_gen_reset_randoms(struct task_base *tbase)
{
struct task_gen *task = (struct task_gen *)tbase;
for (uint32_t i = 0; i < task->n_rands; ++i) {
task->rand[i].rand_mask = 0;
task->rand[i].fixed_bits = 0;
task->rand[i].rand_offset = 0;
}
task->n_rands = 0;
}
int task_gen_set_value(struct task_base *tbase, uint32_t value, uint32_t offset, uint32_t len)
{
struct task_gen *task = (struct task_gen *)tbase;
if (offset + len > task->max_frame_size)
return -1;
for (size_t i = 0; i < task->n_pkts; ++i) {
uint32_t to_write = rte_cpu_to_be_32(value) >> ((4 - len) * 8);
uint8_t *dst = task->pkt_template[i].buf;
rte_memcpy(dst + offset, &to_write, len);
}
task_gen_pkt_template_recalc_all(task);
return 0;
}
void task_gen_reset_values(struct task_base *tbase)
{
struct task_gen *task = (struct task_gen *)tbase;
task_gen_reset_pkt_templates_content(task);
if (task->flags & TASK_OVERWRITE_SRC_MAC_WITH_PORT_MAC) {
for (uint32_t i = 0; i < task->n_pkts; ++i) {
rte_memcpy(&task->pkt_template[i].buf[sizeof(prox_rte_ether_addr)], &task->src_mac, sizeof(prox_rte_ether_addr));
}
}
}
uint32_t task_gen_get_n_randoms(struct task_base *tbase)
{
struct task_gen *task = (struct task_gen *)tbase;
return task->n_rands;
}
static void init_task_gen_pcap(struct task_base *tbase, struct task_args *targ)
{
struct task_gen_pcap *task = (struct task_gen_pcap *)tbase;
task->socket_id = rte_lcore_to_socket_id(targ->lconf->id);
uint32_t max_frame_size;
task->loop = targ->loop;
task->pkt_idx = 0;
task->hz = rte_get_tsc_hz();
char err[PCAP_ERRBUF_SIZE];
pcap_t *handle = pcap_open_offline(targ->pcap_file, err);
PROX_PANIC(handle == NULL, "Failed to open PCAP file: %s\n", err);
task->n_pkts = pcap_count_pkts(handle, &max_frame_size);
plogx_info("%u packets in pcap file '%s'\n", task->n_pkts, targ->pcap_file);
task->local_mbuf.mempool = task_gen_create_mempool(targ, max_frame_size);
PROX_PANIC(!strcmp(targ->pcap_file, ""), "No pcap file defined\n");
if (targ->n_pkts) {
plogx_info("Configured to load %u packets\n", targ->n_pkts);
if (task->n_pkts > targ->n_pkts)
task->n_pkts = targ->n_pkts;
}
plogx_info("Loading %u packets from pcap\n", task->n_pkts);
size_t mem_size = task->n_pkts * (sizeof(*task->proto) + sizeof(*task->proto_tsc));
uint8_t *mem = prox_zmalloc(mem_size, task->socket_id);
PROX_PANIC(mem == NULL, "Failed to allocate %lu bytes (in huge pages) for pcap file\n", mem_size);
task->proto = (struct pkt_template *) mem;
task->proto_tsc = (uint64_t *)(mem + task->n_pkts * sizeof(*task->proto));
for (uint i = 0; i < targ->n_pkts; i++) {
task->proto[i].buf = prox_zmalloc(max_frame_size, task->socket_id);
PROX_PANIC(task->proto[i].buf == NULL, "Failed to allocate %u bytes (in huge pages) for pcap file\n", max_frame_size);
}
pcap_read_pkts(handle, targ->pcap_file, task->n_pkts, task->proto, task->proto_tsc, max_frame_size);
pcap_close(handle);
}
static int task_gen_find_random_with_offset(struct task_gen *task, uint32_t offset)
{
for (uint32_t i = 0; i < task->n_rands; ++i) {
if (task->rand[i].rand_offset == offset) {
return i;
}
}
return UINT32_MAX;
}
int task_gen_add_rand(struct task_base *tbase, const char *rand_str, uint32_t offset, uint32_t rand_id)
{
struct task_gen *task = (struct task_gen *)tbase;
uint32_t existing_rand;
if (rand_id == UINT32_MAX && task->n_rands == 64) {
plog_err("Too many randoms\n");
return -1;
}
uint32_t mask, fixed, len;
if (parse_random_str(&mask, &fixed, &len, rand_str)) {
plog_err("%s\n", get_parse_err());
return -1;
}
task->runtime_checksum_needed = 1;
existing_rand = task_gen_find_random_with_offset(task, offset);
if (existing_rand != UINT32_MAX) {
plog_warn("Random at offset %d already set => overwriting len = %d %s\n", offset, len, rand_str);
rand_id = existing_rand;
task->rand[rand_id].rand_len = len;
task->rand[rand_id].rand_offset = offset;
task->rand[rand_id].rand_mask = mask;
task->rand[rand_id].fixed_bits = fixed;
return 0;
}
task->rand[task->n_rands].rand_len = len;
task->rand[task->n_rands].rand_offset = offset;
task->rand[task->n_rands].rand_mask = mask;
task->rand[task->n_rands].fixed_bits = fixed;
task->n_rands++;
return 0;
}
static void start(struct task_base *tbase)
{
struct task_gen *task = (struct task_gen *)tbase;
task->pkt_queue_index = 0;
task_gen_reset_token_time(task);
if (tbase->l3.tmaster) {
register_all_ip_to_ctrl_plane(task);
}
/* TODO
Handle the case when two tasks transmit to the same port
and one of them is stopped. In that case ARP (requests or replies)
might not be sent. Master will have to keep a list of rings.
stop will have to de-register IP from ctrl plane.
un-registration will remove the ring. when having more than
one active rings, master can always use the first one
*/
}
static void start_pcap(struct task_base *tbase)
{
struct task_gen_pcap *task = (struct task_gen_pcap *)tbase;
/* When we start, the first packet is sent immediately. */
task->last_tsc = rte_rdtsc() - task->proto_tsc[0];
task->pkt_idx = 0;
}
static void init_task_gen_early(struct task_args *targ)
{
uint8_t *generator_count = prox_sh_find_system("generator_count");
if (generator_count == NULL) {
generator_count = prox_zmalloc(sizeof(*generator_count), rte_lcore_to_socket_id(targ->lconf->id));
PROX_PANIC(generator_count == NULL, "Failed to allocate generator count\n");
prox_sh_add_system("generator_count", generator_count);
}
targ->generator_id = *generator_count;
(*generator_count)++;
}
static void init_task_gen(struct task_base *tbase, struct task_args *targ)
{
struct task_gen *task = (struct task_gen *)tbase;
task->socket_id = rte_lcore_to_socket_id(targ->lconf->id);
task->packet_id_pos = targ->packet_id_pos;
struct prox_port_cfg *port = find_reachable_port(targ);
// TODO: check that all reachable ports have the same mtu...
if (port) {
task->cksum_offload = port->requested_tx_offload & (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM);
task->port = port;
task->max_frame_size = port->mtu + PROX_RTE_ETHER_HDR_LEN + 2 * PROX_VLAN_TAG_SIZE;
} else {
// Not generating to any port...
task->max_frame_size = PROX_RTE_ETHER_MAX_LEN;
}
task->local_mbuf.mempool = task_gen_create_mempool(targ, task->max_frame_size);
PROX_PANIC(task->local_mbuf.mempool == NULL, "Failed to create mempool\n");
task->pkt_idx = 0;
task->hz = rte_get_tsc_hz();
task->lat_pos = targ->lat_pos;
task->accur_pos = targ->accur_pos;
task->sig_pos = targ->sig_pos;
task->sig = targ->sig;
task->new_rate_bps = targ->rate_bps;
/*
* For tokens, use 10 Gbps as base rate
* Scripts can then use speed command, with speed=100 as 10 Gbps and speed=400 as 40 Gbps
* Script can query prox "port info" command to find out the port link speed to know
* at which rate to start. Note that virtio running on OVS returns 10 Gbps, so a script has
* probably also to check the driver (as returned by the same "port info" command.
*/
struct token_time_cfg tt_cfg = token_time_cfg_create(1250000000, rte_get_tsc_hz(), -1);
token_time_init(&task->token_time, &tt_cfg);
init_task_gen_seeds(task);
task->min_bulk_size = targ->min_bulk_size;
task->max_bulk_size = targ->max_bulk_size;
if (task->min_bulk_size < 1)
task->min_bulk_size = 1;
if (task->max_bulk_size < 1)
task->max_bulk_size = 64;
PROX_PANIC(task->max_bulk_size > 64, "max_bulk_size higher than 64\n");
PROX_PANIC(task->max_bulk_size < task->min_bulk_size, "max_bulk_size must be > than min_bulk_size\n");
task->pkt_count = -1;
task->lat_enabled = targ->lat_enabled;
task->runtime_flags = targ->runtime_flags;
PROX_PANIC((task->lat_pos || task->accur_pos) && !task->lat_enabled, "lat not enabled by lat pos or accur pos configured\n");
task->generator_id = targ->generator_id;
plog_info("\tGenerator id = %d\n", task->generator_id);
// Allocate array holding bytes to tsc for supported frame sizes
task->bytes_to_tsc = prox_zmalloc(task->max_frame_size * MAX_PKT_BURST * sizeof(task->bytes_to_tsc[0]), task->socket_id);
PROX_PANIC(task->bytes_to_tsc == NULL,
"Failed to allocate %u bytes (in huge pages) for bytes_to_tsc\n", task->max_frame_size);
// task->port->max_link_speed reports the maximum, non negotiated ink speed in Mbps e.g. 40k for a 40 Gbps NIC.
// It can be UINT32_MAX (virtual devices or not supported by DPDK < 16.04)
uint64_t bytes_per_hz = UINT64_MAX;
if ((task->port) && (task->port->max_link_speed != UINT32_MAX)) {
bytes_per_hz = task->port->max_link_speed * 125000L;
plog_info("\tPort %u: max link speed is %ld Mbps\n",
(uint8_t)(task->port - prox_port_cfg), 8 * bytes_per_hz / 1000000);
}
// There are cases where hz estimate might be slighly over-estimated
// This results in too much extrapolation
// Only account for 99% of extrapolation to handle cases with up to 1% error clocks
for (unsigned int i = 0; i < task->max_frame_size * MAX_PKT_BURST ; i++) {
if (bytes_per_hz == UINT64_MAX)
task->bytes_to_tsc[i] = 0;
else
task->bytes_to_tsc[i] = (task->hz * i * 0.99) / bytes_per_hz;
}
task->imix_nb_pkts = targ->imix_nb_pkts;
for (uint32_t i = 0; i < targ->imix_nb_pkts; i++) {
task->imix_pkt_sizes[i] = targ->imix_pkt_sizes[i];
}
if (!strcmp(targ->pcap_file, "")) {
plog_info("\tUsing inline definition of a packet\n");
task_init_gen_load_pkt_inline(task, targ);
} else {
plog_info("Loading from pcap %s\n", targ->pcap_file);
task_init_gen_load_pcap(task, targ);
}
PROX_PANIC(((targ->nb_txrings == 0) && (targ->nb_txports == 0)), "Gen mode requires a tx ring or a tx port");
if ((targ->flags & DSF_KEEP_SRC_MAC) == 0) {
task->flags |= TASK_OVERWRITE_SRC_MAC_WITH_PORT_MAC;
memcpy(&task->src_mac, &prox_port_cfg[task->base.tx_params_hw.tx_port_queue->port].eth_addr, sizeof(prox_rte_ether_addr));
for (uint32_t i = 0; i < task->n_pkts; ++i) {
rte_memcpy(&task->pkt_template[i].buf[sizeof(prox_rte_ether_addr)], &task->src_mac, sizeof(prox_rte_ether_addr));
}
}
for (uint32_t i = 0; i < targ->n_rand_str; ++i) {
PROX_PANIC(task_gen_add_rand(tbase, targ->rand_str[i], targ->rand_offset[i], UINT32_MAX),
"Failed to add random\n");
}
}
static struct task_init task_init_gen = {
.mode_str = "gen",
.init = init_task_gen,
.handle = handle_gen_bulk,
.start = start,
.early_init = init_task_gen_early,
#ifdef SOFT_CRC
// For SOFT_CRC, no offload is needed. If both NOOFFLOADS and NOMULTSEGS flags are set the
// vector mode is used by DPDK, resulting (theoretically) in higher performance.
.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX | TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS,
#else
.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX,
#endif
.size = sizeof(struct task_gen)
};
static struct task_init task_init_gen_l3 = {
.mode_str = "gen",
.sub_mode_str = "l3",
.init = init_task_gen,
.handle = handle_gen_bulk,
.start = start,
.early_init = init_task_gen_early,
#ifdef SOFT_CRC
// For SOFT_CRC, no offload is needed. If both NOOFFLOADS and NOMULTSEGS flags are set the
// vector mode is used by DPDK, resulting (theoretically) in higher performance.
.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX | TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS,
#else
.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX,
#endif
.size = sizeof(struct task_gen)
};
/* This mode uses time stamps in the pcap file */
static struct task_init task_init_gen_pcap = {
.mode_str = "gen",
.sub_mode_str = "pcap",
.init = init_task_gen_pcap,
.handle = handle_gen_pcap_bulk,
.start = start_pcap,
.early_init = init_task_gen_early,
#ifdef SOFT_CRC
.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX | TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS,
#else
.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX,
#endif
.size = sizeof(struct task_gen_pcap)
};
__attribute__((constructor)) static void reg_task_gen(void)
{
reg_task(&task_init_gen);
reg_task(&task_init_gen_l3);
reg_task(&task_init_gen_pcap);
}
|