1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
|
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <rte_mbuf.h>
#include <rte_hash.h>
#include <rte_hash_crc.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_version.h>
#include <rte_byteorder.h>
#include <rte_lpm.h>
#include "prox_lua_types.h"
#include "prox_lua.h"
#include "prox_malloc.h"
#include "prox_cksum.h"
#include "prefetch.h"
#include "etypes.h"
#include "log.h"
#include "quit.h"
#include "task_init.h"
#include "task_base.h"
#include "lconf.h"
#include "log.h"
#include "prox_port_cfg.h"
#include "hash_entry_types.h"
#include "prox_shared.h"
#include "handle_cgnat.h"
#define ALL_32_BITS 0xffffffff
#define BIT_16_TO_31 0xffff0000
#define BIT_8_TO_15 0x0000ff00
#define BIT_0_TO_15 0x0000ffff
#define IP4(x) x & 0xff, (x >> 8) & 0xff, (x >> 16) & 0xff, x >> 24
struct private_key {
uint32_t ip_addr;
uint16_t l4_port;
} __attribute__((packed));
struct private_flow_entry {
uint64_t flow_time;
uint32_t ip_addr;
uint32_t private_ip_idx;
uint16_t l4_port;
};
struct public_key {
uint32_t ip_addr;
uint16_t l4_port;
} __attribute__((packed));
struct public_entry {
uint32_t ip_addr;
uint16_t l4_port;
uint32_t private_ip_idx;
uint8_t dpdk_port;
};
struct public_ip_config_info {
uint32_t public_ip;
uint32_t max_port_count;
uint32_t port_free_count;
uint16_t *port_list;
};
struct private_ip_info {
uint64_t mac_aging_time;
uint32_t public_ip;
uint32_t public_ip_idx;
struct rte_ether *private_mac;
uint8_t static_entry;
};
struct task_nat {
struct task_base base;
struct rte_hash *private_ip_hash;
struct rte_hash *private_ip_port_hash;
struct rte_hash *public_ip_port_hash;
struct private_flow_entry *private_flow_entries;
struct public_entry *public_entries;
struct next_hop *next_hops;
struct lcore_cfg *lconf;
struct rte_lpm *ipv4_lpm;
uint32_t total_free_port_count;
uint32_t number_free_rules;
int private;
uint32_t public_ip_count;
uint32_t last_ip;
struct public_ip_config_info *public_ip_config_info;
struct private_ip_info *private_ip_info;
uint8_t runtime_flags;
int offload_crc;
uint64_t src_mac[PROX_MAX_PORTS];
uint64_t src_mac_from_dpdk_port[PROX_MAX_PORTS];
volatile int dump_public_hash;
volatile int dump_private_hash;
};
static __m128i proto_ipsrc_portsrc_mask;
static __m128i proto_ipdst_portdst_mask;
struct pkt_eth_ipv4 {
struct ether_hdr ether_hdr;
struct ipv4_hdr ipv4_hdr;
struct udp_hdr udp_hdr;
} __attribute__((packed));
void task_cgnat_dump_public_hash(struct task_nat *task)
{
task->dump_public_hash = 1;
}
void task_cgnat_dump_private_hash(struct task_nat *task)
{
task->dump_private_hash = 1;
}
static void set_l2(struct task_nat *task, struct rte_mbuf *mbuf, uint8_t nh_idx)
{
struct ether_hdr *peth = rte_pktmbuf_mtod(mbuf, struct ether_hdr *);
*((uint64_t *)(&peth->d_addr)) = task->next_hops[nh_idx].mac_port_8bytes;
*((uint64_t *)(&peth->s_addr)) = task->src_mac[task->next_hops[nh_idx].mac_port.out_idx];
}
static uint8_t route_ipv4(struct task_nat *task, struct rte_mbuf *mbuf)
{
struct pkt_eth_ipv4 *pkt = rte_pktmbuf_mtod(mbuf, struct pkt_eth_ipv4 *);
struct ipv4_hdr *ip = &pkt->ipv4_hdr;
struct ether_hdr *peth_out;
uint8_t tx_port;
uint32_t dst_ip;
switch(ip->next_proto_id) {
case IPPROTO_TCP:
case IPPROTO_UDP:
dst_ip = ip->dst_addr;
break;
default:
/* Routing for other protocols is not implemented */
plogx_info("Routing nit implemented for this protocol\n");
return OUT_DISCARD;
}
#if RTE_VERSION >= RTE_VERSION_NUM(16,4,0,1)
uint32_t next_hop_index;
#else
uint8_t next_hop_index;
#endif
if (unlikely(rte_lpm_lookup(task->ipv4_lpm, rte_bswap32(dst_ip), &next_hop_index) != 0)) {
uint8_t* dst_ipp = (uint8_t*)&dst_ip;
plog_warn("lpm_lookup failed for ip %d.%d.%d.%d: rc = %d\n",
dst_ipp[0], dst_ipp[1], dst_ipp[2], dst_ipp[3], -ENOENT);
return OUT_DISCARD;
}
tx_port = task->next_hops[next_hop_index].mac_port.out_idx;
set_l2(task, mbuf, next_hop_index);
return tx_port;
}
static int release_ip(struct task_nat *task, uint32_t *ip_addr, int public_ip_idx)
{
return 0;
}
static int release_port(struct task_nat *task, uint32_t public_ip_idx, uint16_t udp_src_port)
{
struct public_ip_config_info *public_ip_config_info = &task->public_ip_config_info[public_ip_idx];
if (public_ip_config_info->max_port_count > public_ip_config_info->port_free_count) {
public_ip_config_info->port_list[public_ip_config_info->port_free_count] = udp_src_port;
public_ip_config_info->port_free_count++;
task->total_free_port_count ++;
plogx_dbg("Now %d free ports for IP %d.%d.%d.%d\n", public_ip_config_info->port_free_count, IP4(public_ip_config_info->public_ip));
} else {
plogx_err("Unable to release port for ip index %d: max_port_count = %d, port_free_count = %d", public_ip_idx, public_ip_config_info->max_port_count, public_ip_config_info->port_free_count);
return -1;
}
return 0;
}
static int get_new_ip(struct task_nat *task, uint32_t *ip_addr)
{
struct public_ip_config_info *ip_info;
if (++task->last_ip >= task->public_ip_count)
task->last_ip = 0;
for (uint32_t ip_idx = task->last_ip; ip_idx < task->public_ip_count; ip_idx++) {
ip_info = &task->public_ip_config_info[ip_idx];
plogx_dbg("Checking public IP index %d\n", ip_idx);
if ((ip_info->port_free_count) > 0) {
plogx_dbg("Public IP index %d (IP %d.%d.%d.%d) has %d free ports\n", ip_idx, IP4(ip_info->public_ip), ip_info->port_free_count);
*ip_addr = ip_info->public_ip;
task->last_ip = ip_idx;
return ip_idx;
}
}
for (uint32_t ip_idx = 0; ip_idx < task->last_ip; ip_idx++) {
ip_info = &task->public_ip_config_info[ip_idx];
if ((ip_info->port_free_count) > 0) {
plogx_dbg("Public IP index %d (IP %d.%d.%d.%d) has %d free ports\n", ip_idx, IP4(ip_info->public_ip), ip_info->port_free_count);
*ip_addr = ip_info->public_ip;
task->last_ip = ip_idx;
return ip_idx;
}
}
return -1;
}
static int get_new_port(struct task_nat *task, uint32_t ip_idx, uint16_t *udp_src_port)
{
int ret;
struct public_ip_config_info *public_ip_config_info = &task->public_ip_config_info[ip_idx];
if (public_ip_config_info->port_free_count > 0) {
public_ip_config_info->port_free_count--;
*udp_src_port = public_ip_config_info->port_list[public_ip_config_info->port_free_count];
task->total_free_port_count --;
plogx_info("Now %d free ports for IP %d.%d.%d.%d\n", public_ip_config_info->port_free_count, IP4(public_ip_config_info->public_ip));
} else
return -1;
return 0;
}
static int delete_port_entry(struct task_nat *task, uint8_t proto, uint32_t private_ip, uint16_t private_port, uint32_t public_ip, uint16_t public_port, int public_ip_idx)
{
int ret;
struct private_key private_key;
struct public_key public_key;
// private_key.proto = proto;
private_key.ip_addr = private_ip;
private_key.l4_port = private_port;
ret = rte_hash_del_key(task->private_ip_port_hash, (const void *)&private_key);
if (ret < 0) {
plogx_info("Unable delete key ip %d.%d.%d.%d / port %x in private ip_port hash\n", IP4(private_ip), private_port);
return -1;
} else {
plogx_dbg("Deleted ip %d.%d.%d.%d / port %x from private ip_port hash\n", IP4(private_ip), private_port);
}
public_key.ip_addr = public_ip;
public_key.l4_port = public_port;
ret = rte_hash_del_key(task->public_ip_port_hash, (const void *)&public_key);
if (ret < 0) {
plogx_info("Unable delete key ip %d.%d.%d.%d / port %x in public ip_port hash\n", IP4(public_ip), public_port);
return -1;
} else {
plogx_dbg("Deleted ip %d.%d.%d.%d / port %x (hash index %d) from public ip_port hash\n", IP4(public_ip), public_port, ret);
release_port(task, public_ip_idx, public_port);
}
return 0;
}
static int add_new_port_entry(struct task_nat *task, uint8_t proto, int public_ip_idx, int private_ip_idx, uint32_t private_src_ip, uint16_t private_udp_port, struct rte_mbuf *mbuf, uint64_t tsc, uint16_t *port)
{
struct private_key private_key;
struct public_key public_key;
uint32_t ip = task->public_ip_config_info[public_ip_idx].public_ip;
int ret;
if (get_new_port(task, public_ip_idx, port) < 0) {
plogx_info("Unable to find new port for IP %x\n", private_src_ip);
return -1;
}
// private_key.proto = proto;
private_key.ip_addr = private_src_ip;
private_key.l4_port = private_udp_port;
ret = rte_hash_add_key(task->private_ip_port_hash, (const void *)&private_key);
if (ret < 0) {
plogx_info("Unable add ip %d.%d.%d.%d / port %x in private ip_port hash\n", IP4(private_src_ip), private_udp_port);
release_port(task, public_ip_idx, *port);
return -1;
} else if (task->private_flow_entries[ret].ip_addr) {
plogx_dbg("Race condition properly handled: port alrerady added\n");
release_port(task, public_ip_idx, *port);
return ret;
} else {
plogx_dbg("Added ip %d.%d.%d.%d / port %x in private ip_port hash => %d.%d.%d.%d / %d - index = %d\n", IP4(private_src_ip), private_udp_port, IP4(ip), *port, ret);
}
task->private_flow_entries[ret].ip_addr = ip;
task->private_flow_entries[ret].l4_port = *port;
task->private_flow_entries[ret].flow_time = tsc;
task->private_flow_entries[ret].private_ip_idx = private_ip_idx;
public_key.ip_addr = ip;
public_key.l4_port = *port;
plogx_dbg("Adding key ip %d.%d.%d.%d / port %x in public ip_port hash\n", IP4(ip), *port);
ret = rte_hash_add_key(task->public_ip_port_hash, (const void *)&public_key);
if (ret < 0) {
plogx_info("Unable add ip %x / port %x in public ip_port hash\n", ip, *port);
// TODO: remove from private_ip_port_hash
release_port(task, public_ip_idx, *port);
return -1;
} else {
plogx_dbg("Added ip %d.%d.%d.%d / port %x in public ip_port hash\n", IP4(ip), *port);
}
task->public_entries[ret].ip_addr = private_src_ip;
task->public_entries[ret].l4_port = private_udp_port;
task->public_entries[ret].dpdk_port = mbuf->port;
task->public_entries[ret].private_ip_idx = private_ip_idx;
return ret;
}
static int handle_nat_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
struct task_nat *task = (struct task_nat *)tbase;
uint8_t out[MAX_PKT_BURST];
uint16_t j;
uint32_t *ip_addr, public_ip, private_ip;
uint16_t *udp_src_port, port, private_port, public_port;
struct pkt_eth_ipv4 *pkt[MAX_PKT_BURST];
int ret, private_ip_idx, public_ip_idx = -1, port_idx;
int new_entry = 0;
uint8_t proto;
uint64_t tsc = rte_rdtsc();
void *keys[MAX_PKT_BURST];
int32_t positions[MAX_PKT_BURST];
int map[MAX_PKT_BURST] = {0};
if (unlikely(task->dump_public_hash)) {
const struct public_key *next_key;
void *next_data;
uint32_t iter = 0;
int i = 0;
int ret;
while ((ret = rte_hash_iterate(task->public_ip_port_hash, (const void **)&next_key, &next_data, &iter)) >= 0) {
plogx_info("Public entry %d (index %d): ip = %d.%d.%d.%d, port = %d ===> private entry: ip = %d.%d.%d.%d, port = %d\n", i++, ret, IP4(next_key->ip_addr), next_key->l4_port, IP4(task->public_entries[ret].ip_addr),task->public_entries[ret].l4_port);
}
task->dump_public_hash = 0;
}
if (unlikely(task->dump_private_hash)) {
const struct private_key *next_key;
void *next_data;
uint32_t iter = 0;
int i = 0;
int ret;
while ((ret = rte_hash_iterate(task->private_ip_port_hash, (const void **)&next_key, &next_data, &iter)) >= 0) {
plogx_info("Private entry %d (index %d): ip = %d.%d.%d.%d, port = %d ===> public entry: ip = %d.%d.%d.%d, port = %d\n", i++, ret, IP4(next_key->ip_addr), next_key->l4_port, IP4(task->private_flow_entries[ret].ip_addr),task->private_flow_entries[ret].l4_port);
}
task->dump_private_hash = 0;
}
for (j = 0; j < n_pkts; ++j) {
PREFETCH0(mbufs[j]);
}
for (j = 0; j < n_pkts; ++j) {
pkt[j] = rte_pktmbuf_mtod(mbufs[j], struct pkt_eth_ipv4 *);
PREFETCH0(pkt[j]);
}
if (task->private) {
struct private_key key[MAX_PKT_BURST];
for (j = 0; j < n_pkts; ++j) {
/* Currently, only support eth/ipv4 packets */
if (pkt[j]->ether_hdr.ether_type != ETYPE_IPv4) {
plogx_info("Currently, only support eth/ipv4 packets\n");
out[j] = OUT_DISCARD;
keys[j] = (void *)NULL;
continue;
}
key[j].ip_addr = pkt[j]->ipv4_hdr.src_addr;
key[j].l4_port = pkt[j]->udp_hdr.src_port;
keys[j] = &key[j];
}
ret = rte_hash_lookup_bulk(task->private_ip_port_hash, (const void **)&keys, n_pkts, positions);
if (unlikely(ret < 0)) {
plogx_info("lookup_bulk failed in private_ip_port_hash\n");
return -1;
}
int n_new_mapping = 0;
for (j = 0; j < n_pkts; ++j) {
port_idx = positions[j];
if (unlikely(port_idx < 0)) {
plogx_dbg("ip %d.%d.%d.%d / port %x not found in private ip/port hash\n", IP4(pkt[j]->ipv4_hdr.src_addr), pkt[j]->udp_hdr.src_port);
map[n_new_mapping] = j;
keys[n_new_mapping++] = (void *)&(pkt[j]->ipv4_hdr.src_addr);
} else {
ip_addr = &(pkt[j]->ipv4_hdr.src_addr);
udp_src_port = &(pkt[j]->udp_hdr.src_port);
plogx_dbg("ip/port %d.%d.%d.%d / %x found in private ip/port hash\n", IP4(pkt[j]->ipv4_hdr.src_addr), pkt[j]->udp_hdr.src_port);
*ip_addr = task->private_flow_entries[port_idx].ip_addr;
*udp_src_port = task->private_flow_entries[port_idx].l4_port;
uint64_t flow_time = task->private_flow_entries[port_idx].flow_time;
if (flow_time + tsc_hz < tsc) {
task->private_flow_entries[port_idx].flow_time = tsc;
}
private_ip_idx = task->private_flow_entries[port_idx].private_ip_idx;
if (task->private_ip_info[private_ip_idx].mac_aging_time + tsc_hz < tsc)
task->private_ip_info[private_ip_idx].mac_aging_time = tsc;
prox_ip_udp_cksum(mbufs[j], &pkt[j]->ipv4_hdr, sizeof(struct ether_hdr), sizeof(struct ipv4_hdr), task->offload_crc);
out[j] = route_ipv4(task, mbufs[j]);
}
}
if (n_new_mapping) {
// Find whether at least IP is already known...
ret = rte_hash_lookup_bulk(task->private_ip_hash, (const void **)&keys, n_new_mapping, positions);
if (unlikely(ret < 0)) {
plogx_info("lookup_bulk failed for private_ip_hash\n");
for (int k = 0; k < n_new_mapping; ++k) {
j = map[k];
out[j] = OUT_DISCARD;
}
n_new_mapping = 0;
}
for (int k = 0; k < n_new_mapping; ++k) {
private_ip_idx = positions[k];
j = map[k];
ip_addr = &(pkt[j]->ipv4_hdr.src_addr);
proto = pkt[j]->ipv4_hdr.next_proto_id;
udp_src_port = &(pkt[j]->udp_hdr.src_port);
int new_ip_entry = 0;
if (unlikely(private_ip_idx < 0)) {
private_ip = *ip_addr;
private_port = *udp_src_port;
plogx_dbg("Did not find private ip %d.%d.%d.%d in ip hash table, looking for new public ip\n", IP4(*ip_addr));
// IP not found, need to get a new IP/port mapping
public_ip_idx = get_new_ip(task, &public_ip);
if (public_ip_idx < 0) {
plogx_info("Unable to find new ip/port\n");
out[j] = OUT_DISCARD;
continue;
} else {
plogx_dbg("found new public ip %d.%d.%d.%d at public IP index %d\n", IP4(public_ip), public_ip_idx);
}
private_ip_idx = rte_hash_add_key(task->private_ip_hash, (const void *)ip_addr);
// The key might be added multiple time - in case the same key was present in the bulk_lookup multiple times
// As such this is not an issue - the add_key will returns the index as for a new key
// This scenario should not happen often in real time use case
// as a for a new flow (flow renewal), probably only one packet will be sent (e.g. TCP SYN)
if (private_ip_idx < 0) {
release_ip(task, &public_ip, public_ip_idx);
plogx_info("Unable add ip %d.%d.%d.%d in private ip hash\n", IP4(*ip_addr));
out[j] = OUT_DISCARD;
continue;
} else if (task->private_ip_info[private_ip_idx].public_ip) {
plogx_info("race condition properly handled : ip %d.%d.%d.%d already in private ip hash\n", IP4(*ip_addr));
release_ip(task, &public_ip, public_ip_idx);
public_ip = task->private_ip_info[private_ip_idx].public_ip;
public_ip_idx = task->private_ip_info[private_ip_idx].public_ip_idx;
} else {
plogx_dbg("Added ip %d.%d.%d.%d in private ip hash\n", IP4(*ip_addr));
rte_memcpy(&task->private_ip_info[private_ip_idx].private_mac, ((uint8_t *)pkt) + 6, 6);
task->private_ip_info[private_ip_idx].public_ip = public_ip;
task->private_ip_info[private_ip_idx].static_entry = 0;
task->private_ip_info[private_ip_idx].public_ip_idx = public_ip_idx;
new_ip_entry = 1;
}
} else {
public_ip = task->private_ip_info[private_ip_idx].public_ip;
public_ip_idx = task->private_ip_info[private_ip_idx].public_ip_idx;
}
port_idx = add_new_port_entry(task, proto, public_ip_idx, private_ip_idx, *ip_addr, *udp_src_port, mbufs[j], tsc, &public_port);
if (port_idx < 0) {
// TODO: delete IP in ip_hash
if ((new_ip_entry) && (task->last_ip != 0)) {
release_ip(task, &public_ip, public_ip_idx);
task->last_ip--;
} else if (new_ip_entry) {
release_ip(task, &public_ip, public_ip_idx);
task->last_ip = task->public_ip_count-1;
}
plogx_info("Failed to add new port entry\n");
out[j] = OUT_DISCARD;
continue;
} else {
private_ip = *ip_addr;
private_port = *udp_src_port;
plogx_info("Added new ip/port: private ip/port = %d.%d.%d.%d/%x public ip/port = %d.%d.%d.%d/%x, index = %d\n", IP4(private_ip), private_port, IP4(public_ip), public_port, port_idx);
}
// task->private_flow_entries[port_idx].ip_addr = task->private_ip_info[private_ip_idx].public_ip;
plogx_info("Added new port: private ip/port = %d.%d.%d.%d/%x, public ip/port = %d.%d.%d.%d/%x\n", IP4(private_ip), private_port, IP4(task->private_ip_info[private_ip_idx].public_ip), public_port);
*ip_addr = public_ip ;
*udp_src_port = public_port;
uint64_t flow_time = task->private_flow_entries[port_idx].flow_time;
if (flow_time + tsc_hz < tsc) {
task->private_flow_entries[port_idx].flow_time = tsc;
}
if (task->private_ip_info[private_ip_idx].mac_aging_time + tsc_hz < tsc)
task->private_ip_info[private_ip_idx].mac_aging_time = tsc;
prox_ip_udp_cksum(mbufs[j], &pkt[j]->ipv4_hdr, sizeof(struct ether_hdr), sizeof(struct ipv4_hdr), task->offload_crc);
// TODO: if route fails while just added new key in table, should we delete the key from the table?
out[j] = route_ipv4(task, mbufs[j]);
if (out[j] && new_entry) {
delete_port_entry(task, proto, private_ip, private_port, *ip_addr, *udp_src_port, public_ip_idx);
plogx_info("Deleted port: private ip/port = %d.%d.%d.%d/%x, public ip/port = %d.%d.%d.%d/%x\n", IP4(private_ip), private_port, IP4(*ip_addr), *udp_src_port);
}
}
}
return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
} else {
struct public_key public_key[MAX_PKT_BURST];
for (j = 0; j < n_pkts; ++j) {
/* Currently, only support eth/ipv4 packets */
if (pkt[j]->ether_hdr.ether_type != ETYPE_IPv4) {
plogx_info("Currently, only support eth/ipv4 packets\n");
out[j] = OUT_DISCARD;
keys[j] = (void *)NULL;
continue;
}
public_key[j].ip_addr = pkt[j]->ipv4_hdr.dst_addr;
public_key[j].l4_port = pkt[j]->udp_hdr.dst_port;
keys[j] = &public_key[j];
}
ret = rte_hash_lookup_bulk(task->public_ip_port_hash, (const void **)&keys, n_pkts, positions);
if (ret < 0) {
plogx_err("Failed lookup bulk public_ip_port_hash\n");
return -1;
}
for (j = 0; j < n_pkts; ++j) {
port_idx = positions[j];
ip_addr = &(pkt[j]->ipv4_hdr.dst_addr);
udp_src_port = &(pkt[j]->udp_hdr.dst_port);
if (port_idx < 0) {
plogx_err("Failed to find ip/port %d.%d.%d.%d/%x in public_ip_port_hash\n", IP4(*ip_addr), *udp_src_port);
out[j] = OUT_DISCARD;
} else {
plogx_dbg("Found ip/port %d.%d.%d.%d/%x in public_ip_port_hash\n", IP4(*ip_addr), *udp_src_port);
*ip_addr = task->public_entries[port_idx].ip_addr;
*udp_src_port = task->public_entries[port_idx].l4_port;
private_ip_idx = task->public_entries[port_idx].private_ip_idx;
plogx_dbg("Found private IP info for ip %d.%d.%d.%d\n", IP4(*ip_addr));
rte_memcpy(((uint8_t *)(pkt[j])) + 0, &task->private_ip_info[private_ip_idx].private_mac, 6);
rte_memcpy(((uint8_t *)(pkt[j])) + 6, &task->src_mac_from_dpdk_port[task->public_entries[port_idx].dpdk_port], 6);
out[j] = task->public_entries[port_idx].dpdk_port;
}
prox_ip_udp_cksum(mbufs[j], &pkt[j]->ipv4_hdr, sizeof(struct ether_hdr), sizeof(struct ipv4_hdr), task->offload_crc);
}
return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}
}
static int lua_to_hash_nat(struct task_args *targ, struct lua_State *L, enum lua_place from, const char *name, uint8_t socket)
{
struct rte_hash *tmp_priv_ip_hash, *tmp_priv_hash, *tmp_pub_hash;
struct private_flow_entry *tmp_priv_flow_entries;
struct public_entry *tmp_pub_entries;
uint32_t n_entries = 0;;
uint32_t ip_from, ip_to;
uint16_t port_from, port_to;
int ret, idx, pop, pop2, pop3, n_static_entries = 0;
uint32_t dst_ip1, dst_ip2;
struct val_range dst_port;
struct public_ip_config_info *ip_info;
struct public_ip_config_info *tmp_public_ip_config_info;
if ((pop = lua_getfrom(L, from, name)) < 0)
return -1;
if (!lua_istable(L, -1)) {
plogx_err("Can't read cgnat since data is not a table\n");
return -1;
}
struct tmp_public_ip {
uint32_t ip_beg;
uint32_t ip_end;
uint16_t port_beg;
uint16_t port_end;
};
struct tmp_static_ip {
uint32_t private_ip;
uint32_t public_ip;
};
struct tmp_static_ip_port {
uint32_t private_ip;
uint32_t public_ip;
uint32_t n_ports;
uint16_t private_port;
uint16_t public_port;
int ip_found;
uint8_t port_found;
};
uint32_t n_public_groups = 0;
uint32_t n_public_ip = 0;
uint32_t n_static_ip = 0;
uint32_t n_static_ip_port = 0;
unsigned int i = 0;
struct tmp_public_ip *tmp_public_ip = NULL;
struct tmp_static_ip *tmp_static_ip = NULL;
struct tmp_static_ip_port *tmp_static_ip_port = NULL;
// Look for Dynamic entries configuration
plogx_info("Reading dynamic NAT table\n");
if ((pop2 = lua_getfrom(L, TABLE, "dynamic")) < 0) {
plogx_info("No dynamic table found\n");
} else {
uint64_t n_ip, n_port;
if (!lua_istable(L, -1)) {
plogx_err("Can't read cgnat since data is not a table\n");
return -1;
}
lua_len(L, -1);
n_public_groups = lua_tointeger(L, -1);
plogx_info("%d groups of public IP\n", n_public_groups);
tmp_public_ip = (struct tmp_public_ip *)malloc(n_public_groups * sizeof(struct tmp_public_ip));
PROX_PANIC(tmp_public_ip == NULL, "Failed to allocated tmp_public_ip\n");
lua_pop(L, 1);
lua_pushnil(L);
while (lua_next(L, -2)) {
if (lua_to_ip(L, TABLE, "public_ip_range_start", &dst_ip1) ||
lua_to_ip(L, TABLE, "public_ip_range_stop", &dst_ip2) ||
lua_to_val_range(L, TABLE, "public_port", &dst_port))
return -1;
PROX_PANIC(dst_ip2 < dst_ip1, "public_ip_range error: %d.%d.%d.%d < %d.%d.%d.%d\n", (dst_ip2 >> 24), (dst_ip2 >> 16) & 0xFF, (dst_ip2 >> 8) & 0xFF, dst_ip2 & 0xFF, dst_ip1 >> 24, (dst_ip1 >> 16) & 0xFF, (dst_ip1 >> 8) & 0xFF, dst_ip1 & 0xFF);
PROX_PANIC(dst_port.end < dst_port.beg, "public_port error: %d < %d\n", dst_port.end, dst_port.beg);
n_ip = dst_ip2 - dst_ip1 + 1;
n_port = dst_port.end - dst_port.beg + 1;
n_public_ip += n_ip;
plogx_info("Found IP from %d.%d.%d.%d to %d.%d.%d.%d and port from %d to %d\n", dst_ip1 >> 24, (dst_ip1 >> 16) & 0xFF, (dst_ip1 >> 8) & 0xFF, dst_ip1 & 0xFF, (dst_ip2 >> 24), (dst_ip2 >> 16) & 0xFF, (dst_ip2 >> 8) & 0xFF, dst_ip2 & 0xFF, dst_port.beg, dst_port.end);
tmp_public_ip[i].ip_beg = dst_ip1;
tmp_public_ip[i].ip_end = dst_ip2;
tmp_public_ip[i].port_beg = dst_port.beg;
tmp_public_ip[i++].port_end = dst_port.end;
n_entries += n_ip * n_port;
lua_pop(L, 1);
}
lua_pop(L, pop2);
}
i = 0;
if ((pop2 = lua_getfrom(L, TABLE, "static_ip")) < 0) {
plogx_info("No static ip table found\n");
} else {
if (!lua_istable(L, -1)) {
plogx_err("Can't read cgnat since data is not a table\n");
return -1;
}
lua_len(L, -1);
n_static_ip = lua_tointeger(L, -1);
plogx_info("%d entries in static ip table\n", n_static_ip);
lua_pop(L, 1);
tmp_static_ip = (struct tmp_static_ip *)malloc(n_static_ip * sizeof(struct tmp_static_ip));
PROX_PANIC(tmp_static_ip == NULL, "Failed to allocated tmp_static_ip\n");
lua_pushnil(L);
while (lua_next(L, -2)) {
if (lua_to_ip(L, TABLE, "src_ip", &ip_from) ||
lua_to_ip(L, TABLE, "dst_ip", &ip_to))
return -1;
ip_from = rte_bswap32(ip_from);
ip_to = rte_bswap32(ip_to);
tmp_static_ip[i].private_ip = ip_from;
tmp_static_ip[i++].public_ip = ip_to;
for (unsigned int j = 0; j < n_public_groups; j++) {
if ((tmp_public_ip[j].ip_beg <= ip_to) && (ip_to <= tmp_public_ip[j].ip_end)) {
PROX_PANIC(1, "list of static ip mapping overlap with list of dynamic IP => not supported yet\n");
}
}
n_public_ip++;
lua_pop(L, 1);
}
lua_pop(L, pop2);
}
i = 0;
if ((pop2 = lua_getfrom(L, TABLE, "static_ip_port")) < 0) {
plogx_info("No static table found\n");
} else {
if (!lua_istable(L, -1)) {
plogx_err("Can't read cgnat since data is not a table\n");
return -1;
}
lua_len(L, -1);
n_static_ip_port = lua_tointeger(L, -1);
plogx_info("%d entries in static table\n", n_static_ip_port);
lua_pop(L, 1);
tmp_static_ip_port = (struct tmp_static_ip_port *)malloc(n_static_ip_port * sizeof(struct tmp_static_ip_port));
PROX_PANIC(tmp_static_ip_port == NULL, "Failed to allocated tmp_static_ip_port\n");
lua_pushnil(L);
while (lua_next(L, -2)) {
if (lua_to_ip(L, TABLE, "src_ip", &ip_from) ||
lua_to_ip(L, TABLE, "dst_ip", &ip_to) ||
lua_to_port(L, TABLE, "src_port", &port_from) ||
lua_to_port(L, TABLE, "dst_port", &port_to))
return -1;
ip_from = rte_bswap32(ip_from);
ip_to = rte_bswap32(ip_to);
port_from = rte_bswap16(port_from);
port_to = rte_bswap16(port_to);
tmp_static_ip_port[i].private_ip = ip_from;
tmp_static_ip_port[i].public_ip = ip_to;
tmp_static_ip_port[i].private_port = port_from;
tmp_static_ip_port[i].public_port = port_to;
tmp_static_ip_port[i].n_ports = 1;
for (unsigned int j = 0; j < n_public_groups; j++) {
if ((tmp_public_ip[j].ip_beg <= rte_bswap32(ip_to)) && (rte_bswap32(ip_to) <= tmp_public_ip[j].ip_end)) {
tmp_static_ip_port[i].ip_found = j + 11;
PROX_PANIC(1, "list of static ip/port mapping overlap with list of dynamic IP => not supported yet\n");
}
}
for (unsigned int j = 0; j < n_static_ip; j++) {
if ((tmp_static_ip[j].public_ip == ip_to) ) {
tmp_static_ip_port[i].ip_found = j + 1;
PROX_PANIC(1, "list of static ip/port mapping overlap with list of static ip => not supported yet\n");
}
}
for (unsigned int j = 0; j <= i; j++) {
if (ip_to == tmp_static_ip_port[j].public_ip) {
tmp_static_ip_port[i].ip_found = j + 1;
tmp_static_ip_port[j].n_ports++;
tmp_static_ip_port[i].n_ports = 0;
}
}
i++;
if (!tmp_static_ip_port[i].ip_found) {
n_public_ip++;
n_entries++;
}
lua_pop(L, 1);
}
lua_pop(L, pop2);
}
lua_pop(L, pop);
tmp_public_ip_config_info = (struct public_ip_config_info *)prox_zmalloc(n_public_ip * sizeof(struct public_ip_config_info), socket);
PROX_PANIC(tmp_public_ip_config_info == NULL, "Failed to allocate PUBLIC IP INFO\n");
plogx_info("%d PUBLIC IP INFO allocated\n", n_public_ip);
struct private_ip_info *tmp_priv_ip_info = (struct private_ip_info *)prox_zmalloc(4 * n_public_ip * sizeof(struct public_ip_config_info), socket);
PROX_PANIC(tmp_priv_ip_info == NULL, "Failed to allocate PRIVATE IP INFO\n");
plogx_info("%d PRIVATE IP INFO allocated\n", 4 * n_public_ip);
uint32_t ip_free_count = 0;
for (i = 0; i < n_public_groups; i++) {
for (uint32_t ip = tmp_public_ip[i].ip_beg; ip <= tmp_public_ip[i].ip_end; ip++) {
ip_info = &tmp_public_ip_config_info[ip_free_count];
ip_info->public_ip = rte_bswap32(ip);
ip_info->port_list = (uint16_t *)prox_zmalloc((dst_port.end - dst_port.beg) * sizeof(uint16_t), socket);
PROX_PANIC(ip_info->port_list == NULL, "Failed to allocate list of ports for ip %x\n", ip);
for (uint32_t port = tmp_public_ip[i].port_beg; port <= tmp_public_ip[i].port_end; port++) {
ip_info->port_list[ip_info->port_free_count] = rte_bswap16(port);
ip_info->port_free_count++;
}
ip_info->max_port_count = ip_info->port_free_count;
plogx_dbg("Added IP %d.%d.%d.%d with ports from %x to %x at index %x\n", IP4(ip_info->public_ip), tmp_public_ip[i].port_beg, tmp_public_ip[i].port_end, ip_free_count);
ip_free_count++;
}
}
uint32_t public_ip_count = ip_free_count;
for (i = 0; i < n_static_ip; i++) {
ip_info = &tmp_public_ip_config_info[ip_free_count];
ip_info->public_ip = tmp_static_ip[i].public_ip;
ip_info->port_list = NULL;
ip_info->max_port_count = 0;
ip_free_count++;
}
for (i = 0; i < n_static_ip_port; i++) {
if (!tmp_static_ip_port[i].ip_found) {
ip_info = &tmp_public_ip_config_info[ip_free_count];
ip_info->public_ip = tmp_static_ip_port[i].public_ip;
ip_info->port_list = (uint16_t *)prox_zmalloc(tmp_static_ip_port[i].n_ports * sizeof(uint16_t), socket);
PROX_PANIC(ip_info->port_list == NULL, "Failed to allocate list of ports for ip %x\n", tmp_static_ip_port[i].public_ip);
ip_info->port_list[ip_info->port_free_count] = tmp_static_ip_port[i].public_port;
ip_info->port_free_count++;
ip_info->max_port_count = ip_info->port_free_count;
ip_free_count++;
} else {
for (unsigned j = 0; j < ip_free_count; j++) {
ip_info = &tmp_public_ip_config_info[j];
if (ip_info->public_ip == tmp_static_ip_port[i].public_ip) {
ip_info = &tmp_public_ip_config_info[j];
ip_info->port_list[ip_info->port_free_count] = tmp_static_ip_port[i].public_port;
ip_info->port_free_count++;
ip_info->max_port_count = ip_info->port_free_count;
break;
}
}
}
}
plogx_info("%d entries in dynamic table\n", n_entries);
n_entries = n_entries * 4;
static char hash_name[30];
sprintf(hash_name, "A%03d_hash_nat_table", targ->lconf->id);
struct rte_hash_parameters hash_params = {
.name = hash_name,
.entries = n_entries,
.key_len = sizeof(struct private_key),
.hash_func = rte_hash_crc,
.hash_func_init_val = 0,
};
plogx_info("hash table name = %s\n", hash_params.name);
struct private_key private_key;
struct public_key public_key;
tmp_priv_hash = rte_hash_create(&hash_params);
PROX_PANIC(tmp_priv_hash == NULL, "Failed to set up private hash table for NAT\n");
plogx_info("private hash table allocated, with %d entries of size %d\n", hash_params.entries, hash_params.key_len);
tmp_priv_flow_entries = (struct private_flow_entry *)prox_zmalloc(n_entries * sizeof(struct private_flow_entry), socket);
PROX_PANIC(tmp_priv_flow_entries == NULL, "Failed to allocate memory for private NAT %u entries\n", n_entries);
plogx_info("private data allocated, with %d entries of size %ld\n", n_entries, sizeof(struct private_flow_entry));
hash_name[0]++;
//hash_params.name[0]++;
plogx_info("hash table name = %s\n", hash_params.name);
hash_params.key_len = sizeof(uint32_t);
hash_params.entries = 4 * ip_free_count;
tmp_priv_ip_hash = rte_hash_create(&hash_params);
PROX_PANIC(tmp_priv_ip_hash == NULL, "Failed to set up private ip hash table for NAT\n");
plogx_info("private ip hash table allocated, with %d entries of size %d\n", hash_params.entries, hash_params.key_len);
hash_name[0]++;
//hash_params.name[0]++;
plogx_info("hash table name = %s\n", hash_params.name);
hash_params.entries = n_entries;
hash_params.key_len = sizeof(struct public_key),
tmp_pub_hash = rte_hash_create(&hash_params);
PROX_PANIC(tmp_pub_hash == NULL, "Failed to set up public hash table for NAT\n");
plogx_info("public hash table allocated, with %d entries of size %d\n", hash_params.entries, hash_params.key_len);
hash_name[0]++;
//hash_params.name[0]++;
tmp_pub_entries = (struct public_entry *)prox_zmalloc(n_entries * sizeof(struct public_entry), socket);
PROX_PANIC(tmp_pub_entries == NULL, "Failed to allocate memory for public NAT %u entries\n", n_entries);
plogx_info("public data allocated, with %d entries of size %ld\n", n_entries, sizeof(struct private_flow_entry));
for (i = 0; i < n_static_ip_port; i++) {
ip_to = tmp_static_ip_port[i].public_ip;
ip_from = tmp_static_ip_port[i].private_ip;
port_to = tmp_static_ip_port[i].public_port;
port_from = tmp_static_ip_port[i].private_port;
private_key.ip_addr = ip_from;
private_key.l4_port = port_from;
ret = rte_hash_lookup(tmp_priv_hash, (const void *)&private_key);
PROX_PANIC(ret >= 0, "Key %x %x already exists in NAT private hash table\n", ip_from, port_from);
idx = rte_hash_add_key(tmp_priv_ip_hash, (const void *)&ip_from);
PROX_PANIC(idx < 0, "Failed to add ip %x to NAT private hash table\n", ip_from);
ret = rte_hash_add_key(tmp_priv_hash, (const void *)&private_key);
PROX_PANIC(ret < 0, "Failed to add Key %x %x to NAT private hash table\n", ip_from, port_from);
tmp_priv_flow_entries[ret].ip_addr = ip_to;
tmp_priv_flow_entries[ret].flow_time = -1;
tmp_priv_flow_entries[ret].private_ip_idx = idx;
tmp_priv_flow_entries[ret].l4_port = port_to;
public_key.ip_addr = ip_to;
public_key.l4_port = port_to;
ret = rte_hash_lookup(tmp_pub_hash, (const void *)&public_key);
PROX_PANIC(ret >= 0, "Key %d.%d.%d.%d port %x (for private IP %d.%d.%d.%d port %x) already exists in NAT public hash table fir IP %d.%d.%d.%d port %x\n", IP4(ip_to), port_to, IP4(ip_from), port_from, IP4(tmp_pub_entries[ret].ip_addr), tmp_pub_entries[ret].l4_port);
ret = rte_hash_add_key(tmp_pub_hash, (const void *)&public_key);
PROX_PANIC(ret < 0, "Failed to add Key %x %x to NAT public hash table\n", ip_to, port_to);
tmp_pub_entries[ret].ip_addr = ip_from;
tmp_pub_entries[ret].l4_port = port_from;
tmp_pub_entries[ret].private_ip_idx = idx;
}
for (uint8_t task_id = 0; task_id < targ->lconf->n_tasks_all; ++task_id) {
struct task_args *target_targ = (struct task_args *)&(targ->lconf->targs[task_id]);
enum task_mode smode = target_targ->mode;
if (CGNAT == smode) {
target_targ->public_ip_count = public_ip_count;
target_targ->private_ip_hash = tmp_priv_ip_hash;
target_targ->private_ip_port_hash = tmp_priv_hash;
target_targ->private_ip_info = tmp_priv_ip_info;
target_targ->private_flow_entries = tmp_priv_flow_entries;
target_targ->public_ip_port_hash = tmp_pub_hash;
target_targ->public_entries = tmp_pub_entries;
target_targ->public_ip_config_info = tmp_public_ip_config_info;
}
}
return 0;
}
static void early_init_task_nat(struct task_args *targ)
{
int ret;
const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
if (!targ->private_ip_hash) {
ret = lua_to_hash_nat(targ, prox_lua(), GLOBAL, targ->nat_table, socket_id);
PROX_PANIC(ret != 0, "Failed to load NAT table from lua:\n%s\n", get_lua_to_errors());
}
}
static void init_task_nat(struct task_base *tbase, struct task_args *targ)
{
struct task_nat *task = (struct task_nat *)tbase;
const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
/* Use destination IP by default. */
task->private = targ->use_src;
PROX_PANIC(!strcmp(targ->nat_table, ""), "No nat table specified\n");
task->lconf = targ->lconf;
task->runtime_flags = targ->runtime_flags;
task->public_ip_count = targ->public_ip_count;
task->last_ip = targ->public_ip_count;
task->private_ip_hash = targ->private_ip_hash;
task->private_ip_port_hash = targ->private_ip_port_hash;
task->private_ip_info = targ->private_ip_info;
task->private_flow_entries = targ->private_flow_entries;
task->public_ip_port_hash = targ->public_ip_port_hash;
task->public_entries = targ->public_entries;
task->public_ip_config_info = targ->public_ip_config_info;
proto_ipsrc_portsrc_mask = _mm_set_epi32(BIT_0_TO_15, 0, ALL_32_BITS, BIT_8_TO_15);
proto_ipdst_portdst_mask = _mm_set_epi32(BIT_16_TO_31, ALL_32_BITS, 0, BIT_8_TO_15);
struct lpm4 *lpm;
PROX_PANIC(!strcmp(targ->route_table, ""), "route table not specified\n");
if (targ->flags & TASK_ARG_LOCAL_LPM) {
int ret = lua_to_lpm4(prox_lua(), GLOBAL, targ->route_table, socket_id, &lpm);
PROX_PANIC(ret, "Failed to load IPv4 LPM:\n%s\n", get_lua_to_errors());
prox_sh_add_socket(socket_id, targ->route_table, lpm);
task->number_free_rules = lpm->n_free_rules;
} else {
lpm = prox_sh_find_socket(socket_id, targ->route_table);
if (!lpm) {
int ret = lua_to_lpm4(prox_lua(), GLOBAL, targ->route_table, socket_id, &lpm);
PROX_PANIC(ret, "Failed to load IPv4 LPM:\n%s\n", get_lua_to_errors());
prox_sh_add_socket(socket_id, targ->route_table, lpm);
}
}
task->ipv4_lpm = lpm->rte_lpm;
task->next_hops = lpm->next_hops;
task->number_free_rules = lpm->n_free_rules;
for (uint32_t i = 0; i < MAX_HOP_INDEX; i++) {
int tx_port = task->next_hops[i].mac_port.out_idx;
if ((tx_port > targ->nb_txports - 1) && (tx_port > targ->nb_txrings - 1)) {
PROX_PANIC(1, "Routing Table contains port %d but only %d tx port/ %d ring:\n", tx_port, targ->nb_txports, targ->nb_txrings);
}
}
if (targ->nb_txrings) {
struct task_args *dtarg;
struct core_task ct;
for (uint32_t i = 0; i < targ->nb_txrings; ++i) {
ct = targ->core_task_set[0].core_task[i];
dtarg = core_targ_get(ct.core, ct.task);
dtarg = find_reachable_task_sending_to_port(dtarg);
task->src_mac[i] = (0x0000ffffffffffff & ((*(uint64_t*)&prox_port_cfg[dtarg->tx_port_queue[0].port].eth_addr))) | ((uint64_t)ETYPE_IPv4 << (64 - 16));
task->src_mac_from_dpdk_port[dtarg->tx_port_queue[0].port] = task->src_mac[i];
plogx_dbg("src_mac = %lx for port %d %d\n", task->src_mac[i], i, dtarg->tx_port_queue[0].port);
}
} else {
for (uint32_t i = 0; i < targ->nb_txports; ++i) {
task->src_mac[i] = (0x0000ffffffffffff & ((*(uint64_t*)&prox_port_cfg[targ->tx_port_queue[i].port].eth_addr))) | ((uint64_t)ETYPE_IPv4 << (64 - 16));
task->src_mac_from_dpdk_port[targ->tx_port_queue[0].port] = task->src_mac[i];
plogx_dbg("src_mac = %lx for port %d %d\n", task->src_mac[i], i, targ->tx_port_queue[i].port);
}
}
struct prox_port_cfg *port = find_reachable_port(targ);
if (port) {
task->offload_crc = port->capabilities.tx_offload_cksum;
}
}
/* Basic static nat. */
static struct task_init task_init_nat = {
.mode = CGNAT,
.mode_str = "cgnat",
.early_init = early_init_task_nat,
.init = init_task_nat,
.handle = handle_nat_bulk,
#ifdef SOFT_CRC
.flag_features = TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS|TASK_FEATURE_TXQ_FLAGS_NOMULTSEGS|TASK_FEATURE_ROUTING|TASK_FEATURE_ZERO_RX,
#else
.flag_features = TASK_FEATURE_TXQ_FLAGS_NOMULTSEGS|TASK_FEATURE_ROUTING|TASK_FEATURE_ZERO_RX,
#endif
.size = sizeof(struct task_nat),
.mbuf_size = 2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM,
};
__attribute__((constructor)) static void reg_task_nat(void)
{
reg_task(&task_init_nat);
}
|