blob: 06c90acf54db8de0f8a408915df203bd250439f5 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
#!/usr/bin/python
#
# Copyright (c) 2015 Orange
# morgan.richomme@orange.com
#
# This program and the accompanying materials
# are made available under the terms of the Apache License, Version 2.0
# which accompanies this distribution, and is available at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# This script is used to retieve data from test DB
# and format them into a json format adapted for a dashboard
#
# v0.1: basic example
#
import os
import re
from functest2Dashboard import format_functest_for_dashboard, \
check_functest_case_exist
# any project test project wishing to provide dashboard ready values
# must include at least 2 methods
# - format_<Project>_for_dashboard
# - check_<Project>_case_exist
def check_dashboard_ready_project(test_project, path):
# Check that the first param corresponds to a project
# for whoch dashboard processing is available
subdirectories = os.listdir(path)
for testfile in subdirectories:
m = re.search('^(.*)(2Dashboard.py)$', testfile)
if m:
if (m.group(1) == test_project):
return True
return False
def check_dashboard_ready_case(project, case):
cmd = "check_" + project + "_case_exist(case)"
return eval(cmd)
def get_dashboard_cases(path):
# Retrieve all the test cases that could provide
# Dashboard ready graphs
# look in the releng repo
# search all the project2Dashboard.py files
# we assume that dashboard processing of project <Project>
# is performed in the <Project>2Dashboard.py file
dashboard_test_cases = []
subdirectories = os.listdir(path)
for testfile in subdirectories:
m = re.search('^(.*)(2Dashboard.py)$', testfile)
if m:
dashboard_test_cases.append(m.group(1))
return dashboard_test_cases
def get_dashboard_result(project, case, results):
# get the dashboard ready results
# paramters are:
# project: project name
# results: array of raw results pre-filterded
# according to the parameters of the request
cmd = "format_" + project + "_for_dashboard(case,results)"
res = eval(cmd)
return res
|