summaryrefslogtreecommitdiffstats
path: root/examples/compute-qpi-report/report.ipynb
blob: 98b5f40d50d8518c1f14c6de3dca4882d26a3ee9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "from prettytable import PrettyTable\n",
    "import matplotlib.pyplot as plt\n",
    "from asq.initiators import query\n",
    "import json\n",
    "\n",
    "project_name = 'workspace'\n",
    "\n",
    "with open(\"qpi.json\") as result:\n",
    "    final = json.load(result)\n",
    "\n",
    "def extract_results(node_name, section_name):\n",
    "    workload_name = []\n",
    "    workload_score = []\n",
    "    if section_name == 'system_info':\n",
    "        for node in final['nodes']:\n",
    "            if node['name'] == node_name: \n",
    "                return node['system_info']\n",
    "    qpi = query(final['nodes']).where(lambda child: child['name'] == node_name) \\\n",
    "            .select_many(lambda child: child['sections']) \\\n",
    "            .where(lambda child: child['name'] == section_name) \\\n",
    "            .select_many(lambda child: child['metrics']).to_list()\n",
    "\n",
    "    for wl in qpi[0]['workloads']:\n",
    "        workload_name.append(wl['name'])\n",
    "        workload_score.append(wl['score'])\n",
    "\n",
    "    x_axis = range(len(workload_name))\n",
    "\n",
    "    plt.bar(x_axis, workload_score)\n",
    "    plt.xticks(x_axis, workload_name, rotation=45)\n",
    "    plt.xlabel('Workloads')\n",
    "    plt.ylabel('Score')\n",
    "    plt.title('Metric Result')\n",
    "    return plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAFUCAYAAAA3VAsIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecXVW9/vHPQ+hFCGRECYEgRREQxAgX4UpQSvAiWFAB\nC3jhxoaK7QoWRCw/LhYEAQG5EbgqqCAYFQUsCFI0QZBeIjVBJRCkKyR5fn+sNXoYZjI7JDtnJvO8\nX6955Zy99znzDczkOavstWSbiIiIwSzT7QIiImJ4SGBEREQjCYyIiGgkgREREY0kMCIiopEERkRE\nNJLAiHiWJH1C0qndrqMJSeMlWdKy3a4lhq8ERixVJN0p6UlJY/ocv7r+gzm+wXtMlDRzsOtsf9H2\nQc+ixosl/V3So5Lul/RDSc9f2PdZFLWGha49RrYERiyN7gD27X0iaQtg5cX5DRbDJ/WDba8KbASs\nCnx50auKaFcCI5ZG/we8o+P5/sAZnRdIWkHSlyXdLemvkk6StJKkVYCfAevUFsCjktaRdISksyV9\nW9LDwAH12Lc73nMHSZdL+pukeyQdMFihtv8GnAds1fE+y0g6VNKfJD0g6fuS1qznVqw1PFC/zzRJ\na9dzd0raueN9nlZfx/EvAP8OHF//fsc3+G8akcCIpdKVwHMkbSppFLAP0PcfzqOATSj/UG8EjAUO\nt/0YsDtwr+1V69e99TV7AWcDawDf6XwzSetTgubrQE9932sGK1TSWsAbgBkdh98PvA7YEVgHeBA4\noZ7bH1gdGAesBbwbeGKw79PJ9ieBS6mtHNsHL8zrY+RKYMTSqreVsQtwEzCr94QkAZOBD9meY/sR\n4IuUYFmQK2yfZ3u+7b7/SO8H/ML2mbafsv2A7QUFxnGSHgLuB8ZQQqLXu4FP2p5p+x/AEcDetRvs\nKUpQbGR7nu2rbD88SN0Ri0VmTMTS6v+AS4AN6NMdRWkBrAxcVbIDAAGjBnnPexZwbhzwp4Wo7wO2\nT63jKz8B1gXurufWB86VNL/j+nnA2pS/1zjgLElrUFpOn7T91EJ874hnJS2MWCrZvosy+P0a4Id9\nTt9P6cbZzPYa9Wv1OggNMNASzgta2vkeYMNnUed1wOeBE/Sv9LoH2L2jtjVsr2h7Vm29fNb2i4FX\nAHvwr/Gax3j64P7zFvStF7bWiARGLM0OBF5VxyX+yfZ84JvAMZKeCyBprKTd6iV/BdaStPpCfK/v\nADtLerOkZSWtJWmrQV9VnE5pPexZn58EfKGOiyCpR9Je9fFOkraoYzMPU7qoelsi1wD7SFpO0gRg\n7wV8z78CL1iIv19EAiOWXrb/ZHv6AKc/ThlovrLOevoF8ML6upuBM4Hb60ykdRp8r7sprZmPAHMo\n/3hv2bDOJ4FjgU/XQ8cCU4ELJT1CGcTftp57HmXg/WHK2MxvKN1U1NdvSBkk/yzw3QV822Mp4yIP\nSjquSZ0RygZKERHRRFoYERHRSAIjIiIaSWBEREQjCYyIiGhkqbpxb8yYMR4/fny3y4iIGDauuuqq\n+233NLl2qQqM8ePHM336QLMoIyKiL0l3Nb02XVIREdFIa4EhaZykX0u6UdINkj7YzzWSdJykGZKu\nlbR1x7n9Jd1Wv/Zvq86IiGimzS6pucBHbP9B0mqUhd4usn1jxzW7AxvXr22BbwDb1rX/PwNMoKx5\nc5WkqbYfbLHeiIhYgNZaGLb/bPsP9fEjlGUMxva5bC/gDBdXAmvUrSp3Ay6qS08/CFwETGqr1oiI\nGNwSGcOo+yi/FPhdn1NjefqS0TPrsYGO9/fekyVNlzR99uzZi6vkiIjoo/XAkLQqcA5wSBsbvdg+\nxfYE2xN6ehrNDIuIiGeh1cCQtBwlLL5ju++eBFB2QRvX8Xzdemyg4xER0SVtzpIS8L/ATba/OsBl\nU4F31NlS/wY8ZPvPwAXArpJGSxoN7FqPRUREl7Q5S2p74O3AdZJ69zb+BLAegO2TgPMpewjMAB4H\n3lnPzZH0OWBafd2Rtue0WGtERAyitcCw/VvKPskLusbA+wY4NwWY0kJpEcPS+EN/2u0SYoi686j/\nWCLfJ3d6R0REIwmMiIhoJIERERGNJDAiIqKRBEZERDSSwIiIiEYSGBER0UgCIyIiGklgREREIwmM\niIhoJIERERGNJDAiIqKRBEZERDSSwIiIiEYSGBER0UgCIyIiGklgREREI63tuCdpCrAHcJ/tzfs5\n/zHgrR11bAr01O1Z7wQeAeYBc21PaKvOiIhops0WxmnApIFO2v6S7a1sbwUcBvymz77dO9XzCYuI\niCGgtcCwfQkwZ9ALi32BM9uqJSIiFl3XxzAkrUxpiZzTcdjAhZKukjS5O5VFRESn1sYwFsJrgcv6\ndEftYHuWpOcCF0m6ubZYnqEGymSA9dZbr/1qIyJGqK63MIB96NMdZXtW/fM+4Fxgm4FebPsU2xNs\nT+jp6Wm10IiIkayrgSFpdWBH4Ecdx1aRtFrvY2BX4PruVBgREb3anFZ7JjARGCNpJvAZYDkA2yfV\ny14PXGj7sY6Xrg2cK6m3vu/a/nlbdUZERDOtBYbtfRtccxpl+m3nsduBLdupKiIinq2hMIYRERHD\nQAIjIiIaSWBEREQjCYyIiGgkgREREY0kMCIiopEERkRENJLAiIiIRhIYERHRSAIjIiIaSWBEREQj\nCYyIiGgkgREREY0kMCIiopEERkRENJLAiIiIRhIYERHRSAIjIiIaaS0wJE2RdJ+k6wc4P1HSQ5Ku\nqV+Hd5ybJOkWSTMkHdpWjRER0VybLYzTgEmDXHOp7a3q15EAkkYBJwC7Ay8G9pX04hbrjIiIBloL\nDNuXAHOexUu3AWbYvt32k8BZwF6LtbiIiFho3R7D2E7SHyX9TNJm9dhY4J6Oa2bWY/2SNFnSdEnT\nZ8+e3WatEREjWjcD4w/A+ra3BL4OnPds3sT2KbYn2J7Q09OzWAuMiIh/6Vpg2H7Y9qP18fnAcpLG\nALOAcR2XrluPRUREF3UtMCQ9T5Lq421qLQ8A04CNJW0gaXlgH2Bqt+qMiIhi2bbeWNKZwERgjKSZ\nwGeA5QBsnwTsDbxH0lzgCWAf2wbmSjoYuAAYBUyxfUNbdUZERDOtBYbtfQc5fzxw/ADnzgfOb6Ou\niIh4dro9SyoiIoaJBEZERDSSwIiIiEYSGBER0UgCIyIiGklgREREIwmMiIhoJIERERGNJDAiIqKR\nBEZERDSSwIiIiEYSGBER0UgCIyIiGklgREREIwmMiIhoJIERERGNJDAiIqKR1gJD0hRJ90m6foDz\nb5V0raTrJF0uacuOc3fW49dImt5WjRER0VybLYzTgEkLOH8HsKPtLYDPAaf0Ob+T7a1sT2ipvoiI\nWAht7ul9iaTxCzh/ecfTK4F126olIiIW3VAZwzgQ+FnHcwMXSrpK0uQu1RQRER1aa2E0JWknSmDs\n0HF4B9uzJD0XuEjSzbYvGeD1k4HJAOutt17r9UZEjFRdbWFIeglwKrCX7Qd6j9ueVf+8DzgX2Gag\n97B9iu0Jtif09PS0XXJExIjVtcCQtB7wQ+Dttm/tOL6KpNV6HwO7Av3OtIqIiCWntS4pSWcCE4Ex\nkmYCnwGWA7B9EnA4sBZwoiSAuXVG1NrAufXYssB3bf+8rTojIqKZNmdJ7TvI+YOAg/o5fjuw5TNf\nERER3TRUZklFRMQQl8CIiIhGEhgREdFIAiMiIhpJYERERCMJjIiIaCSBERERjTQODEk7SHpnfdwj\naYP2yoqIiKGmUWBI+gzwceCwemg54NttFRUREUNP0xbG64E9gccAbN8LrNZWURERMfQ0DYwnbZuy\nT0XvooARETGCNA2M70s6GVhD0n8BvwC+2V5ZEREx1DRafND2lyXtAjwMvBA43PZFrVYWERFDyqCB\nIWkU8AvbOwEJiYiIEWrQLinb84D5klZfAvVERMQQ1XQ/jEeB6yRdRJ0pBWD7A61UFRERQ07TwPhh\n/YqIiBGq6aD36ZKWBzaph26x/VR7ZUVExFDT9E7vicBtwAnAicCtkl7Z4HVTJN0n6foBzkvScZJm\nSLpW0tYd5/aXdFv92r/R3yYiIlrTtEvqK8Cutm8BkLQJcCbwskFedxpwPHDGAOd3BzauX9sC3wC2\nlbQm8BlgAuVmwaskTbX9YMN6IyJiMWt6495yvWEBYPtWynpSC2T7EmDOAi7ZCzjDxZWUGwOfD+wG\nXGR7Tg2Ji4BJDWuNiIgWNG1hTJd0Kv9acPCtwPTF8P3HAvd0PJ9Zjw10/BkkTQYmA6y33nqLoaSI\niOhP0xbGe4AbgQ/Urxvrsa6zfYrtCbYn9PT0dLuciIilVtMWxrLAsba/Cv+8+3uFxfD9ZwHjOp6v\nW4/NAib2OX7xYvh+ERHxLDVtYfwSWKnj+UqUBQgX1VTgHXW21L8BD9n+M3ABsKuk0ZJGA7vWYxER\n0SVNWxgr2n6094ntRyWtPNiLJJ1JaSmMkTSTMvNpufoeJwHnA68BZgCPA++s5+ZI+hwwrb7VkbYX\nNHgeEREtaxoYj0na2vYfACRNAJ4Y7EW29x3kvIH3DXBuCjClYX0REdGypoFxCPADSffW588H3tJO\nSRERMRQtMDAkvRy4x/Y0SS8C3gW8Afg5cMcSqG+JGX/oT7tdQgxRdx71H90uIWJIGGzQ+2Tgyfp4\nO+ATlOVBHgROabGuiIgYYgbrkhrVMdj8FuAU2+cA50i6pt3SIiJiKBmshTFKUm+ovBr4Vce5puMf\nERGxFBjsH/0zgd9Iup8yK+pSAEkbAQ+1XFtERAwhCwwM21+Q9EvKrKgL6zRYKC2T97ddXEREDB2D\ndivVVWT7Hru1nXIiImKoaro0SEREjHAJjIiIaCSBERERjSQwIiKikQRGREQ0ksCIiIhGEhgREdFI\nAiMiIhpJYERERCOtBoakSZJukTRD0qH9nD9G0jX161ZJf+s4N6/j3NQ264yIiMG1tuKspFGUvTN2\nAWYC0yRNtX1j7zW2P9Rx/fuBl3a8xRO2t2qrvoiIWDhttjC2AWbYvt32k8BZwF4LuH5fyuq4EREx\nBLUZGGOBezqez6zHnkHS+sAGPH2/jRUlTZd0paTXDfRNJE2u102fPXv24qg7IiL6MVQGvfcBzrY9\nr+PY+rYnAPsBX5O0YX8vtH2K7Qm2J/T09CyJWiMiRqQ2A2MWMK7j+br1WH/2oU93lO1Z9c/bgYt5\n+vhGREQsYW0GxjRgY0kbSFqeEgrPmO0k6UXAaOCKjmOjJa1QH48Btgdu7PvaiIhYclqbJWV7rqSD\ngQuAUcAU2zdIOhKYbrs3PPYBzurYzQ9gU+BkSfMpoXZU5+yqiIhY8loLDADb5wPn9zl2eJ/nR/Tz\nusuBLdqsLSIiFs5QGfSOiIghLoERERGNJDAiIqKRBEZERDSSwIiIiEYSGBER0UgCIyIiGklgRERE\nIwmMiIhoJIERERGNJDAiIqKRBEZERDSSwIiIiEYSGBER0UgCIyIiGklgREREIwmMiIhoJIERERGN\ntBoYkiZJukXSDEmH9nP+AEmzJV1Tvw7qOLe/pNvq1/5t1hkREYNrbU9vSaOAE4BdgJnANElTbd/Y\n59Lv2T64z2vXBD4DTAAMXFVf+2Bb9UZExIK12cLYBphh+3bbTwJnAXs1fO1uwEW259SQuAiY1FKd\nERHRQJuBMRa4p+P5zHqsrzdKulbS2ZLGLeRrkTRZ0nRJ02fPnr046o6IiH50e9D7x8B42y+htCJO\nX9g3sH2K7Qm2J/T09Cz2AiMiomgzMGYB4zqer1uP/ZPtB2z/oz49FXhZ09dGRMSS1WZgTAM2lrSB\npOWBfYCpnRdIen7H0z2Bm+rjC4BdJY2WNBrYtR6LiIguaW2WlO25kg6m/EM/Cphi+wZJRwLTbU8F\nPiBpT2AuMAc4oL52jqTPUUIH4Ejbc9qqNSIiBtdaYADYPh84v8+xwzseHwYcNsBrpwBT2qwvIiKa\n6/agd0REDBMJjIiIaCSBERERjSQwIiKikQRGREQ0ksCIiIhGEhgREdFIAiMiIhpJYERERCMJjIiI\naCSBERERjSQwIiKikQRGREQ0ksCIiIhGEhgREdFIAiMiIhpJYERERCOtBoakSZJukTRD0qH9nP+w\npBslXSvpl5LW7zg3T9I19Wtq39dGRMSS1doWrZJGAScAuwAzgWmSptq+seOyq4EJth+X9B7gaOAt\n9dwTtrdqq76IiFg4bbYwtgFm2L7d9pPAWcBenRfY/rXtx+vTK4F1W6wnIiIWQZuBMRa4p+P5zHps\nIAcCP+t4vqKk6ZKulPS6gV4kaXK9bvrs2bMXreKIiBhQa11SC0PS24AJwI4dh9e3PUvSC4BfSbrO\n9p/6vtb2KcApABMmTPASKTgiYgRqs4UxCxjX8XzdeuxpJO0MfBLY0/Y/eo/bnlX/vB24GHhpi7VG\nRMQg2gyMacDGkjaQtDywD/C02U6SXgqcTAmL+zqOj5a0Qn08Btge6Bwsj4iIJay1LinbcyUdDFwA\njAKm2L5B0pHAdNtTgS8BqwI/kARwt+09gU2BkyXNp4TaUX1mV0VExBLW6hiG7fOB8/scO7zj8c4D\nvO5yYIs2a4uIiIWTO70jIqKRBEZERDSSwIiIiEYSGBER0UgCIyIiGklgREREIwmMiIhoJIERERGN\nJDAiIqKRBEZERDSSwIiIiEYSGBER0UgCIyIiGklgREREIwmMiIhoJIERERGNJDAiIqKRBEZERDTS\namBImiTpFkkzJB3az/kVJH2vnv+dpPEd5w6rx2+RtFubdUZExOBaCwxJo4ATgN2BFwP7Snpxn8sO\nBB60vRFwDPA/9bUvBvYBNgMmASfW94uIiC5ps4WxDTDD9u22nwTOAvbqc81ewOn18dnAqyWpHj/L\n9j9s3wHMqO8XERFdsmyL7z0WuKfj+Uxg24GusT1X0kPAWvX4lX1eO7a/byJpMjC5Pn1U0i2LXvqI\nNwa4v9tFDBX6n25XEAPIz2m1iD+j6ze9sM3AWCJsnwKc0u06liaSptue0O06IhYkP6dLXptdUrOA\ncR3P163H+r1G0rLA6sADDV8bERFLUJuBMQ3YWNIGkpanDGJP7XPNVGD/+nhv4Fe2XY/vU2dRbQBs\nDPy+xVojImIQrXVJ1TGJg4ELgFHAFNs3SDoSmG57KvC/wP9JmgHMoYQK9brvAzcCc4H32Z7XVq3x\nDOnii+EgP6dLmMoH+oiIiAXLnd4REdFIAiMiIhpJYERERCMJjIiIaCSBEUtUXfolYtiQNE7S1t2u\nYyhIYESregNC0osAnGl5MYxI2hQ4D3iFpJW7XU+3JTCiVbYtaXfgXElbdbueiKYkvQA4AzjG9vG2\nH+92Td027NeSiqFN0kuBY4F9bF8jqQd4wPb8LpcWMZgtgUtsfxtA0vaUVbMfoaym/Wg3i+uGBEa0\nQpJq99OalCa96yZabwIekPRO21kfLIayh4EtJG0OfBJYDlgFeB7wIuCjXaytK9IlFYtVx6D2avXP\n3wNbAf8P+CuwR/1zhyVfXcSCSdpU0lGSjgF+B1wPHA2sROma2h14FfAqSet0sdSuSAsjFoveFkUd\ns9gTOKyuEXa97V07rnshpan/9W7VGtGfOjHjDOA7lK6ni4DdgEf7dKFuAjxGWeduREkLIxaL3tlP\nNRDeCnwe+BJl1eHT67ldgO8Dn7ad1YdjyJC0JnAa8FvbX7O9H3Av8NHesJA0WtKOlEUPv2T7vq4V\n3CUJjFgkktaWtLOkVWsT/VfAY7Z/avta4GXACyVNAqYD/2n7R7kfI4YKSSsAjwMXAw/XDzYAV/P0\nHf22AT5O+cAzdST+DCcwYlG9ETgI2N72vcBXgB3rQCH109klwCq2H7R9VT2e+zGi6yStARwFvIQy\nzjYPmCjpOGB34Ae919q+ADioNyxG4s9wAiMWie0TgSsoXU+72f4qcDJwlqSD6qe1fSg7KUYMGZKe\nQ5nxNAc4ENiAMgX878COwAm2/1yvXRagfigasR94sh9GPGuSluno3/0wsAVlfvoFkg4BDgPOAk6z\nfXUXS414mnrX9nnA8cBPgQ8DLwROAG4GPkbZ+O0K2z/vVp1DTVoY8azZni9pmfr4q8B1lJbGLra/\nRhn43onyCS7rSMWQUe/aPhM4DngBZffPm4H3UoLjWMos0l3rgHiQFkYsBn1aGh8EtqO0Kn4u6Wjg\nFcCrbD/ZzTojJI0DngtcZ/tJSUcAqwKHA2MoN5ZuDHwTmAH02J7RpXKHnLQwYqF0thJ6H/dpaRxL\nmQ31l/r8v4HXJSyi2+rP6/cpA9lHSFoJ+CEwGtjC9t3Aj4G7gPcB8xMWT5cWRjTSOytE0hjgQdvz\n6vHO1sU/H9fno2zPG6kzSmLokfQS4GDKSgTLU8bZPgY8z/Zr6zWbAE/ZvqNrhQ5RCYxorK46exhl\nmuxatt/TzzXL2p5b57avZvv+vtdELEmS1gNWp7QcHgM+AEwD1qd0P82mTK39mu1Pd6vO4SBdUtGI\npJdT5qm/FzCwmaRVO86rtijm1rnt3wVG/P4BMSTsQZn99EFgI8qsqE9TPvicBNwOPATsLel53Spy\nOEhgRFPLAZ8Deijr6+xv+9HOnchq99MalD7ir9c+4YiukLSJpG8D36K0KkZRxjCeR1kG5ERgnu2f\nUX6mJ9v+S5fKHRYSGNGvfqbAzqfckHciMNH2HZJ2At4raa06vrE6ZW77kbYvXrIVRzzDZGA/SkjM\nsn0EcCQlQNah3NW9e+1GvcH2pZn6vWAZw4gBSZpIWcr5J8BVlF/At1Oa9j2Uft9P1aUSlgG+APzE\n9mXdqTjiX+oEjc9TpsuOBfa1fWdtFb8BeBvwBDDB9mPdq3T4SGBEvyS9gtLvO53yy/ZDSp/vdpTQ\nmA182/ZPO2ZQrZxtLKObJD0XeMT2E5JWBD4F/AFYG3gn8Cbbd9XW8AuA59j+TfcqHl4SGPEMdeP7\nk4BP2L5M0t7AzpRWxun1hqd/TpmFkbu2TgwdksZSZj9dTxlvu5OyQ97pwAGUVsXuwFtt39Xxukz7\nbihjGNGfMZSBwXcC2D4buACYCBxYP7nNr+ecX7YYIuZQ7s7eun59A9iM0qW6ue0vUBbKPFvSCvmw\ns/DSwoi+N+UtY/u+2iV1MHCT7c/V6/YGbrF9XTfrjeiro8W7MmXa7PWULtX/Bl4K3GD7bTUkNrJ9\nWxfLHbYSGAGApNdR7nhdgbIJ0nmUaYjvAu7IDU0x1HWExqqUn+ELKF1TawIbApenNbFo0iUVSNqQ\ncgf3QZSbnEZR5qXfQlmE7cWSNupehRGDq2ExyvajwKuBXShbqf7F9mW1FZ1ps4sgLYwRSNIKtv9R\nH69CWVfnTOCNtudI6gF+BEyxfaqk0bYf7GLJEY31aWlcDlzW3zI2sfCW7XYBsWTV+yX2qjuI3UaZ\nPfIVyl4Ar5J0se3Zkr5FXdojYRHDQe9YXGdLQ9L2lI29YjFIC2MEqnPVr6S0LF5p+yZJ/wVsRbn7\n9Y+U+esH2f5l9yqNeKaOSRqbAXOBR23P6ue6Ub2rKsfikTGMEaSj//bvwA3An4FdAWx/k7KEwi3A\nlsB/JSxiKKphsRdwKmUm35dqS6JfklaRNH4JlbdUS5fUCNHxqew1lA8K76DsNPb9OkZxBDCLMiPq\nhC6WGrFAktYFDqHcTDqZcs/FTZ0tio5xjDWAXwD/2bWClyJpYYwQHWHxFeAJ2w/avocybfa1kr4D\nfI9yw17EULY8cBOwL7A3ZeXkOcC2kkZ3hMXqwNnAh2xf28V6lxoJjBGi3p39XuAQ27+UtJOk9wMC\n/gO4G/iY7d93s86Ivnq7UuvPMLZvp0zI+ASl63SGpJ2B44DVO1oWPwGOsH1pl0pf6mTQewSo91ks\nAxwIrAU8nzJ+sTZwje3DO67Nujox5EjaA3gzZVLGuyj3WbyGspPer4GPAofa/nG9fhKlJZ2FBRej\nBMZSrH4yW5kyOHgmZeXZnYGbbf9e0q6UpRPeSFnhc/6AbxbRJZJeRlkX6nDgfZQlyT9EWVjwDcCT\nwLW2f5EPPO1KYIwAHct+7G37z/XYTsDxlG6o87tZX8RAJG1MWYXgr7YPq8dOo3wQer/tv3axvBEn\nYxhLKUkbSJoo6Tm2z6Pcd7FOPTeOsvTHRxMWMcQtD/wD2FLSdgC2D6CslvwtSct3sbYRJy2MpUjH\n1NldgHcD91Ducn0/pYWh+suGpNVsP9K1YiP60fEzvCVlTbOHgfsoA9xPUnZ0/H299iWZ/bRkpYWx\nFKm/aNtRmvBftn0I8GPKPRerU/YvfnW9PFtSxpBTf4Z3A35AWbbmUmBHSvfpssCbJf1bvTZhsYQl\nMJYiktYHDgV+Z/sKANtfA75IWerjN8C/1+MZ4I4hRcXqlA88B9v+ALAP8HVgU+BESlfUnO5VObIl\nMIa5Pss1rwDcBewiaULH8cds30jpptpNUm7OiyFB0oqSnl+fjqVMm70BeFjSMnVa7CeAybZnAp+3\nfWuXyh3xsjTIMCVpFDC/o7/XlDGLj1PGK/5T0jzbV3cswLYJMJoyiBjRVfXDzuaUVZLnA727PELp\njrqa8rN6P/BUXWk5425dlBbGMFRnOb0fWKkOcF8AfKT+uTbljteZwAfrHPZe9wOTslx5DAX1folZ\nlLWgDgN+Zfteyj0W6wKnSToGOBo4y/b83GPRXZklNcxIWpOykNp+lE2O1gDOtn2ZpEOBt1OW+vgb\n8EHgHNvXd6veiP503mAn6R3AK4GHgB/ZvqQe35vSRTXb9m9zU173pUtqGKlN+D2AMcA5lNkjAs6p\nv0xHSTJlcHsi8AXbc7tVb0R/OqbO7kFZbfb1lJ/ZfYH9JM2mTKedZ/vc3tclLLovXVLDSN1N7AzK\nLJGVKV1Q8ygzn3rqNf8DnAKMS1jEUNQxdfZo4Djb82zfBZwB/An4MnAVpZUcQ0i6pIaZ+ov2CcpN\nTfcC1wE7ARcCp/cu/VGvTRM+hgRJy/Z+gJG0AmU/iz8A11Jaw+8CjgUuA8YDy9q+sivFxoASGMNI\n3Vr1h5QphjdKOpjSPfUYpVl/PnC07Se7WGbE09SAeDllIsY4yrjb5sCbKK3lC4HlKB983t75oSeG\nloxhDC+zERlvAAAFe0lEQVRPUf6fjanPTwZOoPwSXgBclLCIIWgFYEPKyshbA6+x/WNJVwK32Z4p\naSxlssZKXawzBpExjGGkTof9PjBR0ua2n6IMfs8FzrD9u64WGNEP2w8DNwPbULqceo//uobFmyit\n4y/VzZFiiEqX1DBT9zN+N+WXbxpli8r32f5FVwuL6KNjNtSqlMkZawJvoayafL7tX9VzbwdurTtB\nZtxtCEtgDEOSVgO2o/QDX5VdxWKokrQn8B7KHds/pdw79F5KN9Xfge0pe3Jn3GIYSGBERCskbU+Z\nIvtmSkjsaXuzukjmqyl7spzVea9FDG0JjIhoRZ0CvgxlK9WPAPvZvkPSOrbvlbSc7afSDTV8ZJZU\nRCyyugqB+iybvxLwWcrU2dfavl/SJOAdkt5HvTEvYTF8JDAiYpFIWtX2o4Al7Qy8CLjW9nl1ccyX\nAivWveW/SNkaOAtgDkPpkoqIZ03SKpT9Kw6hzNr7JfBbykoEN9k+WtJXKTs+rgWcZPvn3ao3Fk0C\nIyIWiaRXUbZUnQqcWldOnkiZQnsHZbvg+R0tkRimcuNeRCyqacBtwNsomyABXAGcSeme+kId43i8\nO+XF4pIxjIhYaH1mNm0InAecDRwp6Q7bZ9elP5YB7qvXpjtjmEsLIyIWWr2De1tJ77J9DWWnx7so\ne7ScLGm/uq7Zb+p+8rEUyBhGRCw0SctRliN/G2Vp8n9QtgbeE3gO8DNgA0rrYv5A7xPDSwIjIhZK\n3VP+78BqwPeAW+ufnwIeAXYB1rA9p2tFRivSJRURjUlaidKi+DJlEcEDKRt53ULZq2VTYMPesKiD\n3bGUSAsjIhaKpNUpGyKdCJwLjAaOsX2TpPVs393VAqM1CYyIeFYkbUJZiXY/4C7b20gaZXtel0uL\nliQwIuJZk7QysBmwku1Lul1PtCuBERGLRVadXfolMCIiopHMkoqIiEYSGBER0UgCIyIiGklgRERE\nIwmMGNEkHSPpkI7nF0g6teP5VyR9uOF7jZd0fT/HJ0r6yWKq92JJExbHe0UsrARGjHSXUfdwkLQM\nMIZyX0GvVwCXD/YmkrJVQCz1Ehgx0l0ObFcfbwZcDzwiabSkFShrI10t6UuSrpd0naS3wD9bDpdK\nmgo8bQlvSS+QdLWkl/c5vqak8yRdK+lKSS+px7eRdEV9zeWSXliPryTpLEk3SToXWKkeHyXptI6a\nPtTef6KIIp+KYkSzfa+kuZLWo7QmrgDGUkLkIeA6YA9gK2BLSgtkmqTeu5q3Bja3fYek8QD1H/uz\ngANs/7FuV9rrs8DVtl9XtzY9o773zcC/254raWfgi8AbKUtvPG570xouf6jvsxUw1vbm9XuusZj/\n00Q8QwIjorQyXlG/vkoJjFdQAuMyYAfgzLpG0l8l/Yay+N7DwO9t39HxXj3Aj4A3DLBx0A6UIMD2\nryStJek5wOrA6ZI2puxMt1y9/pWUfSawfa2ka+vx24EXSPo68FPgwkX/zxCxYOmSivjXOMYWlC6p\nKyktjCbjF4/1ef4QcDclGBbG54Bf1xbDa4EVF3Sx7QcpLZ6LgXcDpy7o+ojFIYERUUJhD2CO7Xl1\nL4c1KKFxOXAp8JY6btBD+dT/+wHe60ng9cA7JO3Xz/lLgbdCGQMB7rf9MKWFMatec0DH9ZdQVoNF\n0uZA75jHGGAZ2+dQNi7aeuH/2hELJ11SEWWcYgzw3T7HVrV9fx1s3g74I6W76L9t/0XSi/p7M9uP\nSdoDuEjSo5Suq15HAFNq19LjwP71+NGULqlPUbqYen0D+Jakm4CbgKvq8bH1eO+HvsOexd87YqFk\n8cGIiGgkXVIREdFIAiMiIhpJYERERCMJjIiIaCSBERERjSQwIiKikQRGREQ08v8BjS3pB/qEyzoA\nAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fccb0451b10>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "arith = extract_results('node-9', 'arithmetic')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFMCAYAAAAkxKA0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XvcZWP9//HXe2YYo8GEQRjG+VgOTc5FSiEZSZGEckii\nHDooJZRSKSkj4VeJkCQmhyg55VAGRYivUwwR4ywM4/P743PtNdvdPfd9z23WXntm3s/HYz9mr7XX\nvfdnrn34rOuwrksRgZmZGcCQpgMwM7Pu4aRgZmYVJwUzM6s4KZiZWcVJwczMKk4KZmZWcVIw64Ok\nL0s6pek4BkLSWEkhaVjTsdjsy0nBZjuS7pc0VdKiPfbfXH4Uxw7gOTaTNLm/4yLimxGx5yBivELS\ni5Kek/S4pHMlvWlmn+f1KDHMdOw2d3NSsNnVfcBHWhuS3gzMPytfYBacce8XESOBFYGRwDGvPyqz\nejkp2OzqNGDXtu3dgF+0HyBpuKRjJD0g6VFJJ0oaIekNwMXAkuVM/jlJS0o6XNI5kk6X9Aywe9l3\nettzbiLpWklPSXpQ0u79BRoRTwHnAWu3Pc8QSYdIukfSFElnS1q4PDZfiWFKeZ0bJC1eHrtf0rvb\nnuc18bXtPwp4O3B8+f8dP4AyNXNSsNnW9cCCklaTNBTYCej543g0sDL5Y7wisBRwWEQ8D2wFPBwR\nI8vt4fI344FzgFHAL9ufTNKyZDL5ETC6PO/f+gtU0iLA9sDdbbv3B7YDNgWWBJ4EJpTHdgMWAsYA\niwD7AC/09zrtIuJQ4GpKbSUi9puZv7e5l5OCzc5atYUtgDuAh1oPSBKwN3BgRDwREc8C3ySTR1+u\ni4jzIuLViOj5Q7wz8MeIODMiXo6IKRHRV1L4oaSngceBRclE0LIPcGhETI6Il4DDgR1Kk9XLZDJY\nMSKmRcSNEfFMP3GbzRIepWCzs9OAq4Dl6NF0RJ7Jzw/cmPkBAAFD+3nOB/t4bAxwz0zE95mIOKX0\nd1wALA08UB5bFvitpFfbjp8GLE7+v8YAZ0kaRdaADo2Il2fitc0GxTUFm21FxL/IDuetgXN7PPw4\n2eSyRkSMKreFSscvwIymB+5r2uAHgRUGEeetwDeACZqeoR4EtmqLbVREzBcRD5VayBERsTqwEbAN\n0/tPnue1HepL9PXSMxurmZOCze72ADYv/QSViHgVOBk4VtJiAJKWkvTecsijwCKSFpqJ1/ol8G5J\nH5Y0TNIiktbu96/SqWQtYNuyfSJwVOmnQNJoSePL/XdKenPpK3mGbE5q1Sj+BuwkaR5J44Ad+njN\nR4HlZ+L/Z+akYLO3iLgnIibN4OEvkp2715fRRH8EVil/90/gTODeMsJnyQG81gNkreRg4AnyB3qt\nAcY5FTgO+GrZdRwwEbhU0rNkx/n65bElyM7uZ8i+kivJJiXK369AdkwfAZzRx8seR/ZTPCnphwOJ\n00xeZMfMzFpcUzAzs4qTgpmZVZwUzMys4qRgZmYVJwUzM6vMdlc0L7roojF27NimwzAzm63ceOON\nj0fE6P6Om+2SwtixY5k0aUbD0s3MrDeS/jWQ49x8ZGZmFScFMzOrOCmYmVnFScHMzCpOCmZmVnFS\nMDOzipOCmZlVnBTMzKwy2128Zp039pALG339+49+X6OvbzY3cU3BzMwqc1VNoZvPeLs5NjObe7im\nYGZmFScFMzOrOCmYmVnFScHMzCpOCmZmVnFSMDOzipOCmZlVnBTMzKzipGBmZhUnBTMzqzgpmJlZ\nZa6a+8jmPJ4zymzWck3BzMwqTgpmZlZxUjAzs4qTgpmZVZwUzMys4tFHZnMhj9qyGXFNwczMKk4K\nZmZWqTUpSNpS0p2S7pZ0SC+PLyPpckk3S7pF0tZ1xmNmZn2rLSlIGgpMALYCVgc+Imn1Hod9BTg7\nItYBdgJOqCseMzPrX501hfWAuyPi3oiYCpwFjO9xTAALlvsLAQ/XGI+ZmfWjzqSwFPBg2/bksq/d\n4cAukiYDFwH79/ZEkvaWNEnSpMcee6yOWM3MjOY7mj8C/Dwilga2Bk6T9D8xRcRJETEuIsaNHj26\n40Gamc0t6kwKDwFj2raXLvva7QGcDRAR1wHzAYvWGJOZmfWhzqRwA7CSpOUkzUt2JE/sccwDwLsA\nJK1GJgW3D5mZNaS2pBARrwD7AZcAd5CjjG6TdKSkbcthBwN7Sfo7cCawe0REXTGZmVnfap3mIiIu\nIjuQ2/cd1nb/dmDjOmMwM7OBa7qj2czMuoiTgpmZVZwUzMys4qRgZmYVJwUzM6s4KZiZWcUrr5lZ\nV/GqcM1yTcHMzCpOCmZmVnFSMDOzipOCmZlVnBTMzKzipGBmZhUPSTUzG6C5YbisawpmZlZxUjAz\ns4qTgpmZVZwUzMys4qRgZmYVJwUzM6s4KZiZWcVJwczMKk4KZmZWcVIwM7OKk4KZmVWcFMzMrOKk\nYGZmFScFMzOrOCmYmVnFScHMzCpOCmZmVnFSMDOzipOCmZlVnBTMzKzipGBmZhUnBTMzq9SaFCRt\nKelOSXdLOmQGx3xY0u2SbpN0Rp3xmJlZ34bV9cSShgITgC2AycANkiZGxO1tx6wEfAnYOCKelLRY\nXfGYmVn/6qwprAfcHRH3RsRU4CxgfI9j9gImRMSTABHxnxrjMTOzftSZFJYCHmzbnlz2tVsZWFnS\nNZKul7Rlb08kaW9JkyRNeuyxx2oK18zMmu5oHgasBGwGfAQ4WdKongdFxEkRMS4ixo0ePbrDIZqZ\nzT3qTAoPAWPatpcu+9pNBiZGxMsRcR9wF5kkzMysAXUmhRuAlSQtJ2leYCdgYo9jziNrCUhalGxO\nurfGmMzMrA+1JYWIeAXYD7gEuAM4OyJuk3SkpG3LYZcAUyTdDlwOfD4iptQVk5mZ9a22IakAEXER\ncFGPfYe13Q/goHIzM7OGNd3RbGZmXcRJwczMKk4KZmZWcVIwM7OKk4KZmVWcFMzMrOKkYGZmFScF\nMzOr1HrxmtncbOwhFzb6+vcf/b5GX99mT64pmJlZZcBJQdImkj5e7o+WtFx9YZmZWRMGlBQkfQ34\nIrl0JsA8wOl1BWVmZs0YaE3hA8C2wPMAEfEwsEBdQZmZWTMGmhSmlhlNA0DSG+oLyczMmjLQpHC2\npJ8AoyTtBfwROLm+sMzMrAkDGpIaEcdI2gJ4BlgFOCwi/lBrZGZm1nH9JgVJQ4E/RsQ7AScCM7M5\nWL/NRxExDXhV0kIdiMfMzBo00CuanwNulfQHyggkgIj4TC1RmZlZIwaaFM4tNzMzm4MNtKP5VEnz\nAiuXXXdGxMv1hWVmZk0YUFKQtBlwKnA/IGCMpN0i4qr6QjMzs04baPPR94D3RMSdAJJWBs4E3lpX\nYGZm1nkDvXhtnlZCAIiIu8j5j8zMbA4y0JrCJEmnMH0SvI8Ck+oJyczMmjLQpPAp4NNAawjq1cAJ\ntURkZmaNGWhSGAYcFxHfh+oq5+G1RWVmZo0YaJ/CZcCItu0R5KR4ZmY2BxloUpgvIp5rbZT789cT\nkpmZNWWgSeF5Seu2NiSNA16oJyQzM2vKQPsUDgB+Lenhsv0mYMd6QjIzs6b0WVOQ9DZJS0TEDcCq\nwK+Al4HfA/d1ID4zM+ug/pqPfgJMLfc3BL4MTACeBE6qMS4zM2tAf81HQyPiiXJ/R+CkiPgN8BtJ\nf6s3NDMz67T+agpDJbUSx7uAP7U9NtD+CDMzm03098N+JnClpMfJ0UZXA0haEXi65tjMzKzD+qwp\nRMRRwMHAz4FNIiLa/m7//p5c0paS7pR0t6RD+jjug5KiDHU1M7OG9NsEFBHX97Lvrv7+rkyFMQHY\nApgM3CBpYkTc3uO4BYDPAn8ZaNBmZlaPgV68NhjrAXdHxL0RMRU4Cxjfy3FfB74NvFhjLGZmNgB1\nJoWlgAfbtieXfZVylfSYiLiwxjjMzGyA6kwKfZI0BPg+2WfR37F7S5okadJjjz1Wf3BmZnOpOpPC\nQ8CYtu2ly76WBYA1gSsk3Q9sAEzsrbM5Ik6KiHERMW706NE1hmxmNnerMyncAKwkaTlJ8wI7ARNb\nD0bE0xGxaESMjYixwPXAthHhFd3MzBpSW1KIiFeA/YBLgDuAsyPiNklHStq2rtc1M7PBq/Wq5Ii4\nCLiox77DZnDsZnXGYmZm/Wuso9nMzLqPk4KZmVWcFMzMrOKkYGZmFScFMzOrOCmYmVnFScHMzCpO\nCmZmVnFSMDOzipOCmZlVnBTMzKzipGBmZhUnBTMzqzgpmJlZxUnBzMwqTgpmZlZxUjAzs4qTgpmZ\nVZwUzMys4qRgZmYVJwUzM6s4KZiZWcVJwczMKk4KZmZWcVIwM7OKk4KZmVWcFMzMrOKkYGZmFScF\nMzOrOCmYmVnFScHMzCpOCmZmVnFSMDOzipOCmZlVnBTMzKzipGBmZpVak4KkLSXdKeluSYf08vhB\nkm6XdIukyyQtW2c8ZmbWt9qSgqShwARgK2B14COSVu9x2M3AuIh4C3AO8J264jEzs/7VWVNYD7g7\nIu6NiKnAWcD49gMi4vKI+G/ZvB5YusZ4zMysH3UmhaWAB9u2J5d9M7IHcHGN8ZiZWT+GNR0AgKRd\ngHHApjN4fG9gb4Blllmmg5GZmc1d6qwpPASMadteuux7DUnvBg4Fto2Il3p7oog4KSLGRcS40aNH\n1xKsmZnVmxRuAFaStJykeYGdgIntB0haB/gJmRD+U2MsZmY2ALUlhYh4BdgPuAS4Azg7Im6TdKSk\nbcth3wVGAr+W9DdJE2fwdGZm1gG19ilExEXART32HdZ2/911vr6Zmc0cX9FsZmYVJwUzM6s4KZiZ\nWcVJwczMKk4KZmZWcVIwM7OKk4KZmVWcFMzMrOKkYGZmFScFMzOrOCmYmVnFScHMzCpOCmZmVnFS\nMDOzipOCmZlVnBTMzKzipGBmZhUnBTMzqzgpmJlZxUnBzMwqTgpmZlZxUjAzs4qTgpmZVZwUzMys\n4qRgZmYVJwUzM6s4KZiZWcVJwczMKk4KZmZWcVIwM7OKk4KZmVWcFMzMrOKkYGZmFScFMzOrOCmY\nmVnFScHMzCpOCmZmVqk1KUjaUtKdku6WdEgvjw+X9Kvy+F8kja0zHjMz61ttSUHSUGACsBWwOvAR\nSav3OGwP4MmIWBE4Fvh2XfGYmVn/6qwprAfcHRH3RsRU4CxgfI9jxgOnlvvnAO+SpBpjMjOzPigi\n6nliaQdgy4jYs2x/DFg/IvZrO+Yf5ZjJZfuecszjPZ5rb2DvsrkKcGctQfdvUeDxfo9qhmMbHMc2\nOI5tcJqMbdmIGN3fQcM6EcnrFREnASc1HYekSRExruk4euPYBsexDY5jG5xujq2lzuajh4AxbdtL\nl329HiNpGLAQMKXGmMzMrA91JoUbgJUkLSdpXmAnYGKPYyYCu5X7OwB/irras8zMrF+1NR9FxCuS\n9gMuAYYCP42I2yQdCUyKiInA/wNOk3Q38ASZOLpZ401YfXBsg+PYBsexDU43xwbU2NFsZmazH1/R\nbGZmFScFMzOrOCmYmVnFScH61Y1XmXdjTD1JGtF0DLOjMkVO1yijJ7uepEXK0P7XxUmhwyTN03QM\nA1E+YGMkzRcRIakrPiuSVpa0cbcPXZa0AnCupK2bjgVA0jKS3ibprU3H0hdJKwM/kHSApGW6IJ5V\ngK9IWrrpWPpS5pW7Dtjg9f7GdMUXfW4haVXgeEnfKTPIztd0TL0pcV4GHAPcIWmxiHi16bPz8mE/\nBrhY0npNxjIAa5NTsuxbpnxpjKTVgN8C+wBHSHpHk/HMiKQVgQvIi1q3A3ZvOJ4VyCH1D7Sm4ml7\nrGtqqpIWJ+eQOyYi/hwRL7+e53NS6JByxvEb4CYggPcDb2o0qF6Us7NfA8dGxI7AecAZkoY2fXZe\nPuxXAv8Afinp3U3G04+byB+UCcBukt7VRBCS3kCOjT8uIvYAbgZeljSy7ZjGf+BKDB8DzoyIo4HP\nAMtIel9JFk3YDvhlRJwiaUi5EHd1gFJ7brzc2lwfESdJmkfS5yTtKWmrwTyRk0IHlDPcLwKnRcRP\ngEOAxYBdGg2sd8sAJ0REa/bao4ApETGtwZja25lvAQ4HvgBMkLSTpIO67AsKcD/wRuBp4CfAoZL+\nJmmdDscxL/BvMrkDbAN8DTirtcZJ08m+LYa7gK0kbQacTU57sy+wv6T3NBDWZOC/5f4fgG+QJyPH\nQHeUW/ncLwS8Q9K65GdtReAtwPsl7TWzzzlbTIg3u4uIl8uV3CFpSGmKOQ9Yo3WMJHXDhwz4O/BA\n2/Z/gVUkLR0Rk0sfw4udCqZVXm1JaQpwWERsV9qfTwd+0XTZSRoFvAq8GBFTy5nkI+QPy/3AysCT\nQL+zVM6ieBaIiGcj4klJU4E/lubKm4FPl3hOkPSXiLi8EzHNIM5lyR+1W4GLgWWBnYHbIuJDkhYE\nvgpsCFza4fCeATaV9CA5Bc9RkpYA/izp+og4p8PxVEq5PAvMExF3SfoZWU5PRsQ+5b3+GLDCzD63\nawo1KlX3ln9FxL8i4tWy/Sz5BUDS24DxTXXmSlqq1ZFWfkgeKPuHkj90Q4HHJG1CNiW9YcbPNkvj\nWoVsAz9C0oqlxvVP4Pby2PbAr4D3SNq0EzHNIM5VyR+sHwFXSVqoPHQNeVZ+BXAi8CXgQElvqrNm\no1zB8FJJ+wNExC7AR4EzgKMi4rmIuAm4nmzKbEQZKXMpWUYbkD9o3yTLCklLRsQzwCRgOeVKjXWW\n2yqSPiNpX0lviIiLgb8BJwBPAUTEI8BPgal1xTGAOFclmya/BZxdPm+nAneTtYN1y4nbv4FVJY2c\nmXJzUqiJpDXIN2wvqNogh7S9Oa8CUyStSb6hU9oSRifjXIWsGRwnabn2xyJiWvlwXQd8iOzkPT0i\nnu9AXKsC5wL/AVYjm4uGRsR/yWaZO4DfRMRHgcNo6LNcfoB/A/wY+AT5A/bDkuDvAZYCfhAR3yCT\nw54R8e+aazaLAG8AtmhrIvo/MrlPKJ/DdYB3AR2r9fUUEa+QE2cOA7YF3l4e+idwG9nktifZbHNW\nRLxUV7mVz/4FwCvA+sCxkraLiC+QSeoTytFb7wd2JWt9HSdpNPAL4MSIOITslL+NrG19k+zDOkXS\ngeRJyonlJGDA5ea5j2ogaWHyB+Aesungtog4pTzWaj5aAzif/HAdGRG/ayDOeYEDgRHk4h/zAd+I\niPvL4yrJ7CayuWH7iLi07qauUvX9Bdl59v3yA/sH4LcRcbxytMWaEXFZj7/raBNcSfDjgTER8aOy\nb13ggIjYtWyvVH6QOxJfiWlR4GjgNHLE0Z9KJ+SC5A/cCsBwshmu58zFHSVpRzKJLU0m9muAechm\ny3XJEVxnRMQlNcexP7B8RBxYyvAMciDI8RFxTvmRnZ9MGCdGxEV1xtNHnAsD3wX2jYiXJC1A1vie\nBN4XEU+XWvNC5InmNTP9Gk4K9VCOT7+DrBZvBtzQSgzl8eXJqunOEXFBI0FSnZHfA0wjZ619hTzj\nqJq6JH0euKnnj3DNcY0D7gOeLjPufh54JSKO7XHc0CY6wdsS5vzAEsD9JdkvTp5xvqe057dOAjoa\np6QfkZ3LT5Lv58rAxyLimtIX83xEPNR0X5akD5GrLX5O0o/JdduPjojDyuPzRi7nW3ccW5XX/npE\n/F3SZ8mk9Dzw2dYwT0kjIuKFpspN0iLk8OLTyJPKbck1aUaTSWvPUgMbNHc0z0KlajeitMlfWn7M\nWkvvbVZ+IE6StHBE3CtphYh4rIEz3NWBTSLipIj4Z9sP157AycBXyPH165JnlMeUH0BBfaMuJC1F\nnuVOiYhJPR5+jGxGQtLaJa6/NpQQViX7Bm4ix7BfXPYPI5PrAiUhbArsLWlXsrmwrnha5fZkqz+I\nbAN/hWwaXIUcBbUucE1E3NX62w5/7lYFDiCH6z5SainnAG+T9CZgU3LI8fySNgauLf+HuuJZgqyV\nvARcDWwCfFvSA+TonQ+STTD7AseVP3sROl5uK5HXbNxIlt0eZD/HJsDy5JIDAg5+vQkB3Kcwy5QP\n/IXkWWOrvZSIeJYcVXEVuejQ8cB1ksZExGMNxLky2TRTvfclIQwrP7CfJEddXEi26Y9ofQGiqCmu\nVcn2+M8AV0v6mF57FelwYKqktcjhik2dqS1D9iE8RLbRf1vSoZDveeT64tdLei/wHbLfY1qHyu1K\nSbuW2su5wJ7lsZPI/o7NSw2149rK7WHyZPQbkr5aymVdslY9ISK2IDu/nyoft1qSqfKCvr+Qw5uv\nAtYhO5CPAi4HPhwRD5Hf3WpN5U5/5sr7dTFZZhuQJ21vLuW0D7BtiXMNYEVJC7X1Ww5ORPj2Om/A\nSuSQuo/1c9zRZHV+h4biHAv8H7Bj2W61Pw+lNCWW/ZuTZ7zbdCiuoaVs9i/bW5KJ60BysXGAd5LN\nbdd2Kq4ZxLo+2enZ2l6eHHZ6aNu+e8mazVatcu5guZ1Wyu2dpQw/WR6bBxjdZeX2EJm4xgC7tT02\nT82xzAv8DNinbO9MJoZdehy3FdmJ+64Gy+29wE/K/ZHARuV78OnWZ4tsnn5kVn0v3Hz0OpXO2k+S\nPwxnln1fIs+2IyJOKPuWJs/mdo6I8xpqk5yfHLnzTNn+Fflj8QJwgaRfl+23Ax+KiAs6EWdETJP0\nLLBOqbH8XtLTZLk+RX6BnyPbxXeIhjr5iueAoZIWiYgpkc2AbwculHRPRJxFDhc8J0ofTF3lV8rt\nef633PYmz8g/HVlTJbJNvOM10zbPAcN6KbeLyaakU6HqI3pd0zT0JyKmSnoYWLg0nZ4h6Ungi5Ke\nKp/7Rchm1K9GB/vSejENWK7E/RxwraRPkTWtW8lmr4WAj0TE5bPk+9pUBpyTbuSFNd8gq6I3klW8\ng4E/At9sO26NmJ7dazl77CPGIeXf9cmO5TvJcc6jyIuZfg4sWY4Z2ek4yervseQwyVasW5Bjr1cl\nm7vGtuLqcNkN67F9MnBFj327Aof0LL+a4hnadn8l4Ic9yu29ZI1wlSbKqy22hYEV27ZPBK7sccxu\nwBc7ESfZ19O6vx05xLo9vh3Kd2Ns+/ENfN7Gks1Cre3fAhe2bY8gL1TbvWwPm5Wv7z6FWSAiriNH\nnCwLXBYRe0XE98g3rn0629vb/qajtYTIfoMhEfEXYEfgvIj4UkQ8FRETyL6QseXY51ox1hWnpLGS\n1mpr/7yPbFrbkuyUnzci/kD2bSwVeVXz/XXE0k+cqwMTJb25tS8i9gKeknSlpl/I9yrljJ2sedXy\nHpc+oZ9JOlTSrpHDXR8hmzpa5XYJcBE5zLPjn7US5+pkLeBkSWdIWj4i9gGe6VFu08hyq3W67DIq\n7D7lEFjIfoNFgL0krSBpnsgrlC8GFoSqP7Bj5ac0HDgL+L6kT5TX/wDwX0m/K9svkDXoDcqfztLB\nFh6SOgspL4B5NPICKyR9gOzg27G1r2ltI42GxPQhp2uR7c87RcQdHYhhRfICpRvJzrJbIptCFgQO\nIttO5wV+T17Yt1X872ik2pURMZeSP7qjgE9ExK1tj/+crLo/Sp6pHxg1Di/W9EkVTyOviN8Y+B45\nZ9DnyQvWuqHcxpLDYb8ZEWdLOpHsJ9ijPH4q+cPbkXIrr7kqObLpCXLY6RnKMf/HkhdIPkCetJ0O\nbBkRf68znn5i/RxZPisC18X0a2BOI/tfriJrWHtHDddvOCnMAr214ymnJ/4R2aRwcTOR9U850+gE\n4HPRgQvoyhnhx8kf/vnIprcjyMTwSjmDfAs5hcUbgfM7EdcMYl0S+DA5HPGz5Bdxt4i4pe2Y9cnE\n8HzkNQC19MEoL+g7Frg1Ik5QXrT0LbLcTirl9mZyGGXT5bYx8I6I+FbZXoQ8+90xIp4o+zYgf/hq\nLbcecX2O/PH/NrBfRFxYhqVuTjarLgecEg1d0NcqA0mfBlYnm432JuereiEifiDpw+TorCkR8ada\nyq3u9rG58UY2I11IXmEIDbXpltdepI/HhpLNNVt2Mk5y6ocFy/3DybPKccDwHseNaMXV6TJk+gnT\n8LZ9B5Qv6Dple2FmcXtuPzGNI6+6bW1/HDi5l+MaK7fyuvO2Pnfl/mhyosUxrfgo/R8dimdouZ1B\nNrmsSSaHF4GN245rfSYb+76W118M+Fq5vzvZSX9Wp17ffQozobfxv73ti4h/AXtExIWtw+qOrTfK\ni5qOVK6i1luc0yLi9xHx+9afdCKuyHHVrX6Lw8khdl8FFpX0jnKmBG0XCkX5hnRK6/Ui4qW2fT8g\nm9mOl7QPOU3xYh2MaVJE3Nu26zlySDGS1itnkdBguZXXnRoRU8rmtMjrcR4FHio1q2PI5rhOxTMt\n8hqcM4DFIuIf5EVxT/eIo6N9CH0YCqysnC78AHJU4/zlM1c7J4WZEBEh6Z2SPi9pfUkLln3Vj2np\nLBoSEY+0Os+iQxPd9fLDvxBZa3ljzzjL8UPLv8M7GWfrtdrK53BypNZE8sK0B8r+pr+cr1Gq6seS\nY9dPAH4VEQ83EEfrezsZuKv00ZxIGXLaTeUW0684f4gckn0iebX/Ew2E8xzwdUl3kdd3bAv8uJw8\ndUW5lc/Yv8nrnk4lp4Xfi5xwsSP9Q+5TGIC2tr71gFPIhV5eJt+4n0fEE23HDI3sNF2IbA/8cZTR\nPDXHuCI5lO6PkpaInOIX5dW265GdyC+0Hd+KcxQ52dwOpYbTUW0d3+uQH/rx0aHrIwZDOavtucDn\nI+L8JuNUTqp4LZlEvxwN9SH0pW1U0V/Jifi2j7rawgcWz3HAPRHxw7K9WET8p9Nx9Ee50NDIKB3w\nyutQapvy4zWv3YXfu66knKDtO2SH7E2StidHfzwEnBoRU1pvXEkIF5KdzH/uQGxLktNbv5+8JP8g\nYElgf7LdeycyeT1YagtD2hLXr8k59q+sO84ZKZ2oHwceioiJDf/QLtLW9NHb48uQQ2Sva9W8Gox1\ndXJW0R2i2QusBlJu+5GTLDaauFQmtCv3h1Ba2RqMp89yK8dUIwU7wc1HfejR3DKc7KT6IEBEnEsO\nDVsR2EPS8JIQRpGjBjqSEIphZFLYjKzJTCBnd/wquYDJHuTImVY78zRJbyTPeL9eV0KYiT6YF4Gf\nxfRRH104tfskAAANo0lEQVTZB1OS1QOR16VATfMvzUS53Q68NSIuazVbzupYBqK/citOiojf1Rnn\nQMqtLSEo8tqXJhNCv+XW6YQAniW1T6U5aGNyVMLFkt5HLkYzOSJ+XJoPhgJ3RM5tPoK8MvjwDtUQ\nFievurxb0lPAkcB3I+I+ykU55NC2pYANJa0REbeVP/8UOY786rria/XBkKNmriLL6ZmeNYHSlPWi\npi+92bE+mB4/Cu19MFN6eXwIMK2cALxUV5wDKbfWD2vkdBGtabk7dpHVzJRbiW9qq9zqinMmP2/T\nOv2DO8hym9ZWbh3hmkIvWllbOVLiMHJemx0i17LdD/i4pAMgawzx2gu+Do6IqzoQ43CyuWhouT+J\nHBmzmKRtS2z3lOr67uTSfMu0PcW36mpyaCu/9cgx/muRF6ntqZw2PNqOae+DOVjSyDpi6iXGFckL\np1pTKLfOvK8DvleaGXr7go4i1+hdtoaYBlxuZC3l1VJuB7nc/HmbZaLB8bjdfCObYv5JTg73efKq\nxw+WxzYnO5mXYfp8Mx0bd90W47zkhUoTyOl0IUd4nEK59qDt2OPLcUPowDhs8mztT8C6ZXt78urb\ng5g+hn1Y+Xch4M/kGg+dKLclgX+RF8ktSQ6RPIOc9mAlstmtNaZelLmGSpyXApu63Fxuc0K59Rpv\nJ1+sm29kE8tebdv7At9r2x5Pjv8eX7YXbTDWViLaENiLbDY6jpyOeGSJ/XRg63LcUNoSR41xtU+/\nvTG5pOJRPcrwBHK95eFl36jyZe7IF7S85jLkFbafIecIWo6c5O4HpdzuB77S42/eCFwGvN3l5nKb\nncut33g7/YLdeiOz+BrA4mV7G7I5ZhjTM/dZwIOd/ED1Ee9byZEnK5KziB5G1gaWK4nhM3UngRnE\ntTHT1xF4Jzl891Ntj28PrFbujyCvZn5Hh2JbnDIrJjle/ileuw7CCmST3OXk6LE12h77MjXOq+9y\nc7l1stz6jLuJF+3GG9msMoJcHvCwsn0Bmc1XI9sDTyXXuz2h4VjXJFeJ+lbbvrXI+d9PIWsMnZxG\noDW0eX1yLYFXKQsJAe8gx6gf0MvfjQBW6FCMw8kFXVZpu/9Dsoa1bY9jly3luFXP/6PLzeU2u5bb\ngGNv6oW75db2AVuq/Pt28rLyfckFZ04kF3m5lVw28MPAiQ3H/BZytsxzgVXb9q9LTi63RgMxbYb7\nYFxuLreuLreB3Ob6IakREZK2Ao6WtA25busrwOfIN2cfAOW4/g2AL5ELqnRMa6haGV0BuXLaHuRZ\nxzaSXomIuyMvqvu/KPPA1xzTUmSfxcll1+rkQiBXk2ss3wX8qsR2vqR3Rq5fDHR2So22oYdvJWtZ\nU8iRKceRNa5dgV3KcReVYcYik/8sjdPlNuhYXG6d0mRG6oYb2SZ5F7Bh2W7NMLkBORfPEWV7ATIh\nvKWhOLcmz35aS1SuXW7/j2w2WqnD8bgPxuXmcuvychvMba6f5kLSTuTQsEvJ5R/3Bq4gR/SsSs5j\nfnM5tuPTL5SLlBYlm7T2IJuIDiUX6f63ci6eQ4DD4rUzaHYiruHkgi+3kMuRTiSXz/wJOfRuV3Ia\nkFERsW+nYuuplNFB5AJIXyr71iI7+caS/UT3RwfO0lxug47F5dYhvngtxw/vQ7bnBdmXsAq5vu21\nEXFz68KXTieEQpETdt1IdnYfTC7S/W9JO5AXpe3dqYTQdvHUmyKnDDiO7IjfB/gAuXDOF8gO+uPI\nabGb/pwNIcd8r6JcgYvIlbUuIn9ERtT9BXW5DY7LrQFNV1WavDG9k3kM0xfYGEsupNJIM1F7bGS7\n6XXl/unkWqytONcjr2JuYtjpVpRFU8jOtA3Jju9Ptx3zxnLczZ2Ose19Xa/cViXHp59K9hW1L9a+\nQAfjcrm53DpWboP+/zQdQDfdyDHNfwe2aziOIW33TwPeW74MlwPnk2OYb6ZcSNfh2NwH43JzuXV5\nub2u/0vTATTw5s1wuBfZkbVJf8d1IMZRbfc/BRzbtn0AsDPlApxOx0lOw/1p8vL8fcnq+g/IKbo3\noixV2VQZklX3xcirQceWRH8j2fwAORrkdNqWtXS5udzmtHJ7Xf+npgPowJvWqtqtTFYxe52eoskk\n0COON5GLpuxJVkOHlw/ZHk3HVuLbsJwRXVoS1kbAxZQzuabLkukjUb5DdsxfA6xc9u1ADiqY3+Xm\ncpuTy+11/Z+aDqBDb9w2wA3kBFnH0kubY9ubO5K2KwsbincL4NvkiKMjgI+SnWjzNRyX+2Bcbi63\nLi+31/1/azqADrx544CbyCFrXyern7/gtdXOVkIYBVxJmWmxoXhbX4SRTB+KehXwErBE0+XZI1b3\nwbjcXG5dXm4ze5vjr1OQtAHwAjk51beAA8mZRRcgF5n5azluFLlo/DeiA+sh9Kf9mgjlsovzRcRN\nTcbRy2NrkAuE/LmJazja4hgVEU+V+58iq+8Hlu0DyCkQJkfEVZ2K0+U26Jhcbk1rOivN6hvTz7Q3\nALYo94eSF4y8vWx/k5x/ZK2yPZLM8h2ZPXFGMfey/3/ma5nRsTWUn/tgXG4uty4ttzpvc2RNQdL7\nyY6fT0Y565d0AnlR2lFk+/zuEXFjeWxz4ImI+FuH4mvNZbQy8BjZfPX4DI7t+BqtZQ6or5HNVkOA\nn0bErT2Oaa0MNZJMthd3MsYesWwBvJucAO2uclsP+GLk+s+disPlNrg4XG7dpOmsVEMm34j8cK1Q\ntteitEECPyZXPNq+C+Lsys5v3AfjcnO5dX251fp/bDqAWfxGbQDcAfyBvJrwWHJ9hKvJvgIoI3ho\nsDrazV+EUoZrAe8hq8XvIDvTzgPWaztuFDlMsJEmtxl9Bsr91Tv9w+Fyc7k1HdOsujU9R8gsEREh\naX2yr2B/YBdy9sTzgY+Ra6DOV459sfU3zUQLZGwfJy9s2ZqcMVHA11rTY8f0RbvPBr4aNXUyty1o\nvoGkLSLieuAf5Hz1B0Q2vz0IPE6eDVGq8L+loU75tvlwKuUzMKTcv71VXr0dOytjcLkNLgaXWxdr\nOivNqht5pjEN+FzEa2oPm5PDw97fYGxd3flNzt54R/trkWvbXsb0BUve2vbY5sDaDZRfn52R5ZhO\nrjjncnO5dXzxntr//00HMIvfzPHAncCOZXs5cnWy8e1vdkOxdeUXAffBuNxcbl1fbh39vzcdQA1v\n5tZk2+TOZXtU+bfJhNBVXwTcB+Nyc7l1fbk19v9vOoCa3tTxwO3AEk19uLr9i0Auev4ncmjd4sAv\nyXbdEeXfY5p+H9ti7ZrOSJeby62T5dbI/7/pAGp8Y0d3QQxd+0XAfTAuN5db15dbI+XRdABz8q2b\nvwglDvfBuNxcbl1ebh0vi6YDmNNv3fxFKK/vPhiXm8uty8utk7c5cpqLbiNpa7LD6nsRcUZrQq1u\nmSxL0nhyssDNycXGOx5T29QfGwA/AyYDDwNPkFMnLw5cGRFfkTRfRLzYdPm53AYds8utmzWdleaW\nG13Q+d1PfO6Dcbm53Lq83DpxmyOuaJ4dRMT5wKYR8UiUT2Q3iYjHmo4BWAjYlGyrfRTYJSKuIFff\nOpYc+tdVXG6D43LrXk4KHdQlX4SuFRGXkgup7CVpx4gIScsB+wGHR8Tv5ohpBGYxl9vguNx6N6zp\nAMzaRcT5kl4Gvl6mSz5D0ieii/pgupHLbXBcbv/LHc3WlbqhM3J25HIbHJfbdE4K1rUkjXaT28xz\nuQ2Oyy05KZiZWcUdzWZmVnFSMDOzipOCmZlVnBTMzKzipGBzBUnHSjqgbfsSSae0bX9P0kEDfK6x\nkv7Ry/7NJF0wi+K9QtK4WfFcZjPDScHmFteQs2FSFlxfFFij7fGNgGv7exJJvuDT5mhOCja3uJac\n0wYyGfwDeFbSGyUNB1YDbpb0XUn/kHSrpB2hqgFcLWkiOalhRdLykm6W9LYe+xeWdJ6kWyRdL+kt\nZf96kq4rf3OtpFXK/hGSzpJ0h6TfkpOyIWmopJ+3xXRgfUVk5mkubC4REQ9LekXSMmSt4DpgKTJR\nPE0uorINsDY5n/6iwA2SripPsS6wZkTcJ2ksQPlBPwvYPSL+Lmmztpc8Arg5IraTtDm5xu/awD/J\n1bxekfRuckWvDwKfAv4bEauVBHJTeZ61gaUiYs3ymqNmcdGYvYaTgs1NriUTwkbA98mksBGZFK4B\nNgHOjIhpwKOSrgTeBjwD/DUi7mt7rtHA+eTiK6+pPRSbkD/2RMSfJC0iaUFyZs5TJa0EBDBPOf4d\nwA/L8bdIuqXsvxdYXtKPgAvJNYHNauPmI5ubtPoV3kw2H11P1hQG0p/wfI/tp4EHyB//mfF14PJy\n5v9+YL6+Do6IJ8mayxXAPuQ6wWa1cVKwucm1ZBPRExExLSKeAEaRieFa4Gpgx9KOP5o8e//rDJ5r\nKvABYFdJO/fy+NXARyH7JIDHI+IZsqbwUDlm97bjrwJ2LsevCbT6IBYFhkTEb4CvkM1YZrVx85HN\nTW4l+wrO6LFvZEQ8Xjp4NwT+TjbtfCEiHpG0am9PFhHPS9oG+IOk58hmppbDgZ+WZqD/AruV/d8h\nm4++QjYHtfwY+JmkO8gF5G8s+5cq+1sncF8axP/bbMA8IZ6ZmVXcfGRmZhUnBTMzqzgpmJlZxUnB\nzMwqTgpmZlZxUjAzs4qTgpmZVZwUzMys8v8BAHQ/KDVHwSMAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fccb0619250>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ssl = extract_results('node-9', 'SSL')\n",
    "ssl.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEvCAYAAACqpN3AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFhlJREFUeJzt3Xu0JWV95vHvQzeIitKRPt642CgXRRgvaXE0RlFxhEjA\nGCeAZoSMEwaXaBKzVsQbUbyMdxcqEyWMCUEFGUXtRBwUDUoCaDeBcJXYInLRYRohIBjl9ps/qs7r\npnP6nN3QdTanz/ezVi92Vb279u8c3rOfXe9buypVhSRJAFtMugBJ0gOHoSBJagwFSVJjKEiSGkNB\nktQYCpKkxlCQZpHkzUlOnHQd40iyIkklWTrpWrRwGQpacJJcneSOJMvXW39h/6a4Yox97JPkurna\nVdV7quq/3Ycaz07yiyS3JbkxyelJHrOx+7k/+ho2unYtboaCFqofAodOLyTZC3jIpnyBTfCJ+6iq\n2gbYBdgG+OD9r0oalqGghepk4FUjy4cBfzPaIMmDknwwyTVJbkjyiSQPTvJQ4KvAY/tP8rcleWyS\ntyf5fJJPJ7kVOLxf9+mRfT4nyblJ/jXJtUkOn6vQqvpX4EvAU0f2s0WSo5P8IMlPk5yW5BH9tq37\nGn7av87qJI/qt12dZN+R/dyrvpH17wZ+E/h4//N9fIzfqWQoaME6H3h4kiclWQIcAqz/5vheYDe6\nN+NdgO2BY6rqdmB/4MdVtU3/78f9cw4CPg8sAz4zurMkj6MLk48BU/1+L5qr0CTbAS8D1o6sfh3w\nUuB5wGOBm4Hj+22HAdsCOwLbAUcC/zbX64yqqrcA59AfrVTVURvzfC1ehoIWsumjhRcBVwDXT29I\nEuAI4E+q6qaq+hnwHrrwmM15VfWlqrqnqtZ/I34FcFZVnVJVd1bVT6tqtlD4aJJbgBuB5XRBMO1I\n4C1VdV1V/RJ4O/DyfsjqTrow2KWq7q6qC6rq1jnqljYJz1LQQnYy8G1gZ9YbOqL7JP8Q4IIuHwAI\nsGSOfV47y7YdgR9sRH2vr6oT+/mOvwN2AK7ptz0O+GKSe0ba3w08iu7n2hE4NckyuiOgt1TVnRvx\n2tJ94pGCFqyq+hHdhPNvAaevt/lGuiGXJ1fVsv7ftv3EL8CGLg8822WDrwWecB/qvAR4F3B8fpVQ\n1wL7j9S2rKq2rqrr+6OQd1TVHsCzgQP41fzJ7dx7Qv3Rs730xtYqGQpa6F4NvKCfJ2iq6h7gL4GP\nJHkkQJLtk7y4b3IDsF2SbTfitT4D7Jvk95IsTbJdkqfO+azOSXRHAQf2y58A3t3PU5BkKslB/ePn\nJ9mrnyu5lW44afqI4iLgkCRbJlkJvHyW17wBePxG/HySoaCFrap+UFVrNrD5jXSTu+f3ZxOdBeze\nP+97wCnAVf0ZPo8d47WuoTsq+VPgJro36KeMWecdwHHA2/pVxwGrgK8l+RndxPkz+22PppvsvpVu\nruRbdENK9M9/At3E9DuAz87yssfRzVPcnOSj49QpxZvsSJKmeaQgSWoMBUlSYyhIkhpDQZLUGAqS\npGbBfaN5+fLltWLFikmXIUkLygUXXHBjVU3N1W7BhcKKFStYs2ZDp6VLkmaS5EfjtHP4SJLUGAqS\npMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSmgX35bX7Y8XRX5l0CXoAu/q9L5l0CdLELapQkB7o\n/OCi2czHBxeHjyRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJj\nKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqBg2FJPsluTLJ2iRHz9Lud5NUkpVD1iNJmt1g\noZBkCXA8sD+wB3Bokj1maPcw4I+A7wxViyRpPEMeKewNrK2qq6rqDuBU4KAZ2r0TeB/wiwFrkSSN\nYchQ2B64dmT5un5dk+TpwI5V9ZXZdpTkiCRrkqxZt27dpq9UkgRMcKI5yRbAh4E/nattVZ1QVSur\nauXU1NTwxUnSIjVkKFwP7DiyvEO/btrDgD2Bs5NcDfxHYJWTzZI0OUOGwmpg1yQ7J9kKOARYNb2x\nqm6pquVVtaKqVgDnAwdW1ZoBa5IkzWKwUKiqu4CjgDOBK4DTquqyJMcmOXCo15Uk3XdLh9x5VZ0B\nnLHeumM20HafIWuRJM3NbzRLkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNB\nktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEg\nSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQ\nJDWGgiSpGTQUkuyX5Moka5McPcP2I5NckuSiJP+QZI8h65EkzW6wUEiyBDge2B/YAzh0hjf9z1bV\nXlX1VOD9wIeHqkeSNLchjxT2BtZW1VVVdQdwKnDQaIOqunVk8aFADViPJGkOSwfc9/bAtSPL1wHP\nXL9RktcCbwC2Al4w046SHAEcAbDTTjtt8kIlSZ2JTzRX1fFV9QTgjcBbN9DmhKpaWVUrp6am5rdA\nSVpEhgyF64EdR5Z36NdtyKnASwesR5I0hyFDYTWwa5Kdk2wFHAKsGm2QZNeRxZcA3x+wHknSHAab\nU6iqu5IcBZwJLAE+VVWXJTkWWFNVq4CjkuwL3AncDBw2VD2SpLkNOdFMVZ0BnLHeumNGHv/RkK8v\nSdo4E59oliQ9cBgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIk\nqRk7FJI8J8kf9I+nkuw8XFmSpEkYKxSS/DndndHe1K/aEvj0UEVJkiZj3COF3wEOBG4HqKofAw8b\nqihJ0mSMGwp3VFUBBZDkocOVJEmalHFD4bQknwSWJflD4CzgL4crS5I0CWPdea2qPpjkRcCtwO7A\nMVX19UErkyTNuzlDIckS4Kyqej5gEEjSZmzO4aOquhu4J8m281CPJGmCxho+Am4DLknydfozkACq\n6vWDVCVJmohxQ+H0/p8kaTM27kTzSUm2AnbrV11ZVXcOV5YkaRLGCoUk+wAnAVcDAXZMclhVfXu4\n0iRJ823c4aMPAf+pqq4ESLIbcArw60MVJkmaf+N+eW3L6UAAqKp/obv+kSRpMzLukcKaJCfyq4vg\nvRJYM0xJkqRJGTcUXgO8Fpg+BfUc4H8OUpEkaWLGDYWlwHFV9WFo33J+0GBVSZImYtw5hW8ADx5Z\nfjDdRfEkSZuRcUNh66q6bXqhf/yQYUqSJE3KuKFwe5KnTy8kWQn82zAlSZImZdw5hT8G/neSH/fL\njwEOHqYkSdKkzHqkkOQZSR5dVauBJwKfA+4E/g/ww3moT5I0j+YaPvokcEf/+FnAm4HjgZuBEwas\nS5I0AXMNHy2pqpv6xwcDJ1TVF4AvJLlo2NIkSfNtriOFJUmmg+OFwDdHto07HyFJWiDmCoVTgG8l\n+TLd2UbnACTZBbhlrp0n2S/JlUnWJjl6hu1vSHJ5kouTfCPJ4+7DzyBJ2kRm/bRfVe9O8g26s42+\nVlXVb9oCeN1sz+2/9Xw88CLgOmB1klVVdflIswuBlVX18ySvAd6PZzVJ0sTMOQRUVefPsO5fxtj3\n3sDaqroKIMmpwEFAC4Wq+vuR9ucDvz/GfiVJAxn3y2v3xfbAtSPL1/XrNuTVwFdn2pDkiCRrkqxZ\nt27dJixRkjRqyFAYW5LfB1YCH5hpe1WdUFUrq2rl1NTU/BYnSYvIkGcQXQ/sOLK8Q7/uXpLsC7wF\neF5V/XLAeiRJcxjySGE1sGuSnZNsBRwCrBptkORpdF+QO7Cq/t+AtUiSxjBYKFTVXcBRwJnAFcBp\nVXVZkmOTHNg3+wCwDd11lS5KsmoDu5MkzYNBv4BWVWcAZ6y37piRx/sO+fqSpI3zgJholiQ9MBgK\nkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwF\nSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaC\nJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEnNoKGQZL8kVyZZm+ToGbY/\nN8k/JbkrycuHrEWSNLfBQiHJEuB4YH9gD+DQJHus1+wa4HDgs0PVIUka39IB9703sLaqrgJIcipw\nEHD5dIOqurrfds+AdUiSxjTk8NH2wLUjy9f16zZakiOSrEmyZt26dZukOEnSv7cgJpqr6oSqWllV\nK6empiZdjiRttoYMheuBHUeWd+jXSZIeoIYMhdXArkl2TrIVcAiwasDXkyTdT4OFQlXdBRwFnAlc\nAZxWVZclOTbJgQBJnpHkOuA/A59MctlQ9UiS5jbk2UdU1RnAGeutO2bk8Wq6YSVJ0gPAgpholiTN\nD0NBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJ\njaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKk\nxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkZNBSS7JfkyiRrkxw9\nw/YHJflcv/07SVYMWY8kaXaDhUKSJcDxwP7AHsChSfZYr9mrgZurahfgI8D7hqpHkjS3IY8U9gbW\nVtVVVXUHcCpw0HptDgJO6h9/HnhhkgxYkyRpFksH3Pf2wLUjy9cBz9xQm6q6K8ktwHbAjaONkhwB\nHNEv3pbkykEqXnyWs97vejGLx6kPRPbREfezjz5unEZDhsImU1UnACdMuo7NTZI1VbVy0nVIG2If\nnX9DDh9dD+w4srxDv27GNkmWAtsCPx2wJknSLIYMhdXArkl2TrIVcAiwar02q4DD+scvB75ZVTVg\nTZKkWQw2fNTPERwFnAksAT5VVZclORZYU1WrgP8FnJxkLXATXXBo/jgkpwc6++g8ix/MJUnT/Eaz\nJKkxFCRJjaEgSWoMBUlSYyhog6YvOZJk2aRrkWZiH930DAXNKEmqqpIcALwzyQ6j2yZYmgTYR4di\nKGhG/R/bC4H3ACdX1XXTf2j9Nv/oNFH20WEsiGsfaX4l2aKq7gFeApwMXJHkVcDzktwIHO03zzVJ\n9tHheKSgZuST1ZL+v18Dng+cDawAvgM8HHjMfNcmgX10PnikoKY/5N4X2D/J94ELgCOBO6vqJ0l+\nHXgdsNUk69TiZR8dnkcKapL8BvBh4PvAi4HfA/YCbujHbk8B3lRVV0+sSC1q9tHhee0jAZDk8cDH\ngK9W1ceTPBo4GNgJeDvwXOD2qjp7YkVqUbOPzg+HjzRtOXAHcEiSv62qHyU5mW7M9pFV9ZXJlqfF\naPq0037RPjoPHD5apEa+9LNbkj2AC4E3AucAb+g/lS0DHjS5KrVYJdkS2hzCE+2j88fho0UsyW8B\nnwAuBqboJui2BP478BvAD4D3VdU3JlakFp2RYaHT6OYLTsQ+Om88UlikkuwOvBJ4WVUdAJwO/Blw\nDd347GnA5cC5fXu/CKT5sh3d/MB/pbszo310HhkKi1CSbYA3030KeyRAVb0PWAe8u6quortV6hLg\nTUmW+kUgzZequozuTX9XYDfgUf16++g8MBQWoaq6DXgv8F3g6Un26jd9Cfh53+Y84CTgY1V110QK\n1aJVVZfQXb7iUuBp9tH545zCItb/ob0BeARwCXAg8Laq+vJEC5N6I310GXAFcADw51X1xYkWthkz\nFDZj/YTdsqr63ixtnggcDRRwelX97XzVJ43ZR3cH3kF3OupxVXXBeqeqahNy+GgzlWQrYH+gkmy9\noXb9H+MHgLvphpJ2macStchtRB+9EngX8MGquqBfZyAMxFDYTFXVHcDngJuA45I8Y5a2l9FdOmAK\nuGF+KtRit5F99NKqunjeilvEDIXN0Mg15X9ON1+wDjgsydNnaLu0b3s58I2q+tl81qrFaSP76JL+\nv9sk2X9eC12EDIXNzMjdqJ7czxesAz4E/AT4wyRPG2m7pKruSvJrSb4F/GhCZWsRuQ999O7+dptf\nwSPZwRkKm4kkW0C7LMCL6a4H8xa6SwvvDHwKuBZ4fX95YUb+2D5Hd9bRP02keC0K97OPnoZ9dF4Y\nCpuBJFPAIf3jJwC/AxxSVf8F+B90lxPelu6P7gfAL/q22wBfBN5VVd+eQOlaJOyjC4enpC5w/djs\nK4AXAecBLwd+je4T2Fn9J623AbtW1auSbNN/eY0kLwBuqqqLJlS+FgH76MLikcICV53P0H3zcyfg\nTLqx2WcA2/fNLgbu6tvfNvLcb/rHpqHZRxcW76ewGejHZ3+b7jowP6G7fMULgL2SfI/u5ubvmlyF\nWuzsowuHw0cLXJJH0l098oiqujzJUXQ3I/kZ3Q3NbwH+oqr+YYJlahGzjy4sDh8tfHfSHfEt75c/\nCTyW7v615wMPAw5Msnzmp0uDs48uIIbCAldVN9OdrrdPkj2r6k7gC8Av6W6g8wd047hea14TYR9d\nWBw+2gwk2QE4EtgbWE13dsdrq+qsfvtSLy2sSbKPLhyGwmYiycOAZwF7AhdU1bdGLiXg/2RNnH10\nYTAUJEmNcwqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFLQpJPpLkj0eWz0xy4sjyh5K8Ycx9rUhy6Qzr\n90nyd5uo3rOTrNwU+5I2hqGgxeIfgWdDu9nLcuDJI9ufDZw7106mb18qba4MBS0W59J9cQq6MLgU\n+Fl/K9IHAU8CLkzygSSXJrkkycHQjgDOSbIKuHx0p0ken+TC9W86n+QRSb6U5OIk5yf5D/36vZOc\n1z/n3CS79+sfnOTUJFck+SLw4H79kiR/PVLTnwz3K5K8dLYWiar6cZK7kuxEd1RwHt21/J9Fd5XO\nS4ADgKcCT6E7klidZPpuX08H9qyqHyZZAdC/oZ8KHF5V/5xkn5GXfAdwYVW9tL9RzN/0+/4e8Jv9\nvbH3Bd4D/C7wGuDnVfWkPkCmbzv5VGD7qtqzf81lm/hXI92LoaDF5Fy6QHg28GG6UHg2XSj8I/Ac\n4JSquhu4Icm36G4Ecyvw3ar64ci+poAvAy+rqnsdPfSeQ/dmT1V9M8l2SR5Od8vJk5LsChSwZd/+\nucBH+/YXJ7m4X38V8PgkH6O7cf3X7v+vQdowh4+0mEzPK+xFN3x0Pt2RwjjzCbevt3wLcA3dm//G\neCfw9/0n/98Gtp6tcX+F0acAZ9NdUO7E2dpL95ehoMXkXLohopuq6u6quglYRhcM5wLnAAf34/hT\ndJ/ev7uBfd1Bd/P5VyV5xQzbzwFeCd2cBHBjVd1Kd6Rwfd/m8JH236a7jzFJ9gSm5yCWA1tU1ReA\nt9INY0mDcfhIi8kldHMFn11v3TZVdWM/wfss4J/phnb+rKr+b5InzrSzqro9yQHA15PcRjfMNO3t\nwKf6YaCfA4f1699PN3z0VrrhoGl/AfxVkiuAK4AL+vXb9+unP8C96T783NLYvEqqJKlx+EiS1BgK\nkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkpr/DzWy2Yp2/i/KAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fccb069b310>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "dpi = extract_results('node-9', 'DPI')\n",
    "dpi.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEmCAYAAACNq4wIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGaNJREFUeJzt3XmUHWWd//H3hwRkFZS0OCwSFFBR3CbigCg4wggugIgs\n6lGUEXUE3H9GUQaZwXHn54IL8ptRQUFU1IziICooI8sQBgUhxomAEPAHYZdFw/KdP6q6vLRJd4fu\nm5tOv1/n5JxbS9f95p7u+6l6nqeeSlUhSRLAGoMuQJK06jAUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkd\nQ0EaRZL3Jjlx0HWMR5LZSSrJzEHXoqnLUNCUk+TqJEuTzBqx/pL2S3H2OI6xa5LFY+1XVR+sqr9/\nCDWek+SPSe5MclOS05P81YoeZyLaGla4dk1vhoKmqquAg4YXkmwPrDuZbzAJZ9yHVdX6wNbA+sDH\nJl6V1F+Ggqaqk4BX9yy/BvhK7w5JHpbkY0muSXJDks8nWSfJesAPgE3bM/k7k2ya5Ogk30xycpI7\ngIPbdSf3HHPnJOcluS3JtUkOHqvQqroN+A7wtJ7jrJFkbpLfJrk5yWlJHtluW7ut4eb2fS5Kskm7\n7eoku/Uc50H19aw/FngO8Jn2//eZcXymkqGgKesC4OFJnphkBnAgMPLL8UPAtjRfxlsDmwFHVdVd\nwJ7A9VW1fvvv+vZn9ga+CWwEfLX3YEm2pAmTTwND7XF/MVahSTYG9gUW9aw+HNgH2AXYFLgVOL7d\n9hpgQ2ALYGPgjcA9Y71Pr6o6EjiX9mqlqg5bkZ/X9GUoaCobvlrYHVgAXDe8IUmAQ4G3VdUtVfUH\n4IM04TGa86vqO1X1QFWN/CJ+BfCjqjqlqu6tqpurarRQ+FSS24GbgFk0QTDsjcCRVbW4qv4EHA3s\n1zZZ3UsTBltX1f1VdXFV3TFG3dKkcJSCprKTgJ8BWzGi6YjmTH5d4OImHwAIMGOMY147yrYtgN+u\nQH1HVNWJbX/H94DNgWvabVsC307yQM/+9wOb0Py/tgBOTbIRzRXQkVV17wq8t/SQeKWgKauqfkfT\n4fxC4PQRm2+iaXJ5UlVt1P7bsO34BVje9MCjTRt8LfC4h1DnZcA/A8fnzwl1LbBnT20bVdXaVXVd\nexXygaraDtgJeDF/7j+5iwd3qD96tLde0VolQ0FT3SHA37b9BJ2qegD4InBckkcBJNksyQvaXW4A\nNk6y4Qq811eB3ZLsn2Rmko2TPG3Mn2p8meYqYK92+fPAsW0/BUmGkuzdvn5eku3bvpI7aJqThq8o\nfgEcmGTNJHOA/UZ5zxuAx67A/08yFDS1VdVvq2r+cja/m6Zz94J2NNGPgMe3P/dr4BTgynaEz6bj\neK9raK5K3gHcQvMF/dRx1rkU+CTw/nbVJ4F5wA+T/IGm4/xZ7bZH03R230HTV/JTmiYl2p9/HE3H\n9AeAr43ytp+k6ae4NcmnxlOnFB+yI0ka5pWCJKljKEiSOoaCJKljKEiSOoaCJKkz5e5onjVrVs2e\nPXvQZUjSlHLxxRffVFVDY+035UJh9uzZzJ+/vGHpkqRlSfK78exn85EkqWMoSJI6hoIkqWMoSJI6\nhoIkqWMoSJI6hoIkqWMoSJI6U+7mNWmqmj33+4MuYeCu/tCLBl2CxuCVgiSpYyhIkjqGgiSpYyhI\nkjqGgiSpYyhIkjqGgiSpYyhIkjrevCZpypjuNwCujJv/vFKQJHWm1ZWCZxlOMSBpdH29UkiyR5KF\nSRYlmbuM7Y9JcnaSS5JcmuSF/axHkjS6voVCkhnA8cCewHbAQUm2G7Hb+4DTqurpwIHAZ/tVjyRp\nbP1sPtoBWFRVVwIkORXYG7iiZ58CHt6+3hC4vo/1aIJsfrP5Tau/fjYfbQZc27O8uF3X62jgVUkW\nA2cAhy/rQEkOTTI/yfwlS5b0o1ZJEoMffXQQ8KWq2hx4IXBSkr+oqapOqKo5VTVnaGhopRcpSdNF\nP0PhOmCLnuXN23W9DgFOA6iq84G1gVl9rEmSNIp+hsJFwDZJtkqyFk1H8rwR+1wDPB8gyRNpQsH2\nIUkakL6FQlXdBxwGnAksoBlldHmSY5Ls1e72DuD1SX4JnAIcXFXVr5okSaPr681rVXUGTQdy77qj\nel5fATy7nzVIksZv0B3NkqRViKEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEg\nSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoY\nCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKk\njqEgSeoYCpKkjqEgSeoYCpKkTl9DIckeSRYmWZRk7nL22T/JFUkuT/K1ftYjSRrdzH4dOMkM4Hhg\nd2AxcFGSeVV1Rc8+2wDvAZ5dVbcmeVS/6pEkja2fVwo7AIuq6sqqWgqcCuw9Yp/XA8dX1a0AVXVj\nH+uRJI2hn6GwGXBtz/Lidl2vbYFtk/w8yQVJ9ljWgZIcmmR+kvlLlizpU7mSpEF3NM8EtgF2BQ4C\nvphko5E7VdUJVTWnquYMDQ2t5BIlafroZyhcB2zRs7x5u67XYmBeVd1bVVcBv6EJCUnSAPQzFC4C\ntkmyVZK1gAOBeSP2+Q7NVQJJZtE0J13Zx5okSaPoWyhU1X3AYcCZwALgtKq6PMkxSfZqdzsTuDnJ\nFcDZwLuq6uZ+1SRJGl3fhqQCVNUZwBkj1h3V87qAt7f/JEkDNuiOZknSKsRQkCR1DAVJUsdQkCR1\nDAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJ\nUsdQkCR1xh0KSXZO8tr29VCSrfpXliRpEMYVCkn+EXg38J521ZrAyf0qSpI0GOO9UngpsBdwF0BV\nXQ9s0K+iJEmDMd5QWFpVBRRAkvX6V5IkaVDGGwqnJfkCsFGS1wM/Ar7Yv7IkSYMwczw7VdXHkuwO\n3AE8Hjiqqs7qa2WSpJVuzFBIMgP4UVU9DzAIJGk1NmbzUVXdDzyQZMOVUI8kaYDG1XwE3AlcluQs\n2hFIAFV1RF+qkiQNxHhD4fT2nyRpNTbejuYvJ1kL2LZdtbCq7u1fWZKkQRhXKCTZFfgycDUQYIsk\nr6mqn/WvNEnSyjbe5qOPA39XVQsBkmwLnAL8db8KkyStfOO9eW3N4UAAqKrf0Mx/JElajYz3SmF+\nkhP58yR4rwTm96ckSdKgjDcU3gS8GRgegnou8Nm+VCRJGpjxhsJM4JNV9Qno7nJ+WN+qkiQNxHj7\nFH4MrNOzvA7NpHiSpNXIeENh7aq6c3ihfb1uf0qSJA3KeEPhriTPGF5IMge4pz8lSZIGZbx9Cm8F\nvpHk+nb5r4AD+lOSJGlQRr1SSPLMJI+uqouAJwBfB+4F/gO4aqyDJ9kjycIki5LMHWW/lyWp9gpE\nkjQgYzUffQFY2r7eEXgvcDxwK3DCaD/YjlA6HtgT2A44KMl2y9hvA+AtwIUrVLkkadKNFQozquqW\n9vUBwAlV9a2qej+w9Rg/uwOwqKqurKqlwKnA3svY75+ADwN/XIG6JUl9MGYoJBnud3g+8JOebWP1\nR2wGXNuzvLhd12k7r7eoqu+PdqAkhyaZn2T+kiVLxnhbSdJDNVYonAL8NMl3aUYbnQuQZGvg9om8\ncZI1gE8A7xhr36o6oarmVNWcoaGhibytJGkUo57tV9WxSX5MM9roh1VV7aY1gMPHOPZ1wBY9y5u3\n64ZtADwZOCcJwKOBeUn2qirnVZKkARhzSGpVXbCMdb8Zx7EvArZJshVNGBwIvKLnGLcDs4aXk5wD\nvNNAkKTBGe/Nayusqu4DDgPOBBYAp1XV5UmOSbJXv95XkvTQjffmtYekqs4Azhix7qjl7LtrP2uR\nJI2tb1cKkqSpx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQ\nJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUM\nBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlS\nx1CQJHUMBUlSp6+hkGSPJAuTLEoydxnb357kiiSXJvlxki37WY8kaXR9C4UkM4DjgT2B7YCDkmw3\nYrdLgDlV9RTgm8BH+lWPJGls/bxS2AFYVFVXVtVS4FRg794dqursqrq7XbwA2LyP9UiSxtDPUNgM\nuLZneXG7bnkOAX6wrA1JDk0yP8n8JUuWTGKJkqReq0RHc5JXAXOAjy5re1WdUFVzqmrO0NDQyi1O\nkqaRmX089nXAFj3Lm7frHiTJbsCRwC5V9ac+1iNJGkM/rxQuArZJslWStYADgXm9OyR5OvAFYK+q\nurGPtUiSxqFvoVBV9wGHAWcCC4DTquryJMck2avd7aPA+sA3kvwiybzlHE6StBL0s/mIqjoDOGPE\nuqN6Xu/Wz/eXJK2YVaKjWZK0ajAUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEU\nJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkd\nQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS\n1DEUJEkdQ0GS1DEUJEkdQ0GS1OlrKCTZI8nCJIuSzF3G9ocl+Xq7/cIks/tZjyRpdH0LhSQzgOOB\nPYHtgIOSbDdit0OAW6tqa+A44MP9qkeSNLZ+XinsACyqqiurailwKrD3iH32Br7cvv4m8Pwk6WNN\nkqRRzOzjsTcDru1ZXgw8a3n7VNV9SW4HNgZu6t0pyaHAoe3inUkW9qXi/pvFiP/bypSpfx3m5zdx\nfoYTM5U/vy3Hs1M/Q2HSVNUJwAmDrmOiksyvqjmDrmOq8vObOD/DiZkOn18/m4+uA7boWd68XbfM\nfZLMBDYEbu5jTZKkUfQzFC4CtkmyVZK1gAOBeSP2mQe8pn29H/CTqqo+1iRJGkXfmo/aPoLDgDOB\nGcC/VtXlSY4B5lfVPOD/ASclWQTcQhMcq7Mp3wQ2YH5+E+dnODGr/ecXT8wlScO8o1mS1DEUJEkd\nQ0FTzvANjt7oKE0+Q2EAkmybZJdB1zGFPRGgqspgmJgk6w66Bq1aDIWVrP0jfCWwb5LnDrqeqSSN\nmcB3k5wEBsNEtHORfXbQdUxFq/PvnKGwEiVZo6ruBj4J3AXsnWS1vjtykq1RVfdV1TbAjkk+BgbD\nBCwAtmqnkdE4Jcnw/VRJtk/ylEHXNJmmxDQXq4uqeqB9uR/wDOBxwMOTrFdVPx1cZVNDVd0PzZTs\nwPeAf0iyVlUdMRwM3vw4tiQbAH+qqqVJPgL8dbvez28Uw59PTyC8C9gDuCfJLcBRVXX1IGucDF4p\nrGRJngW8CXgRsC/NVB97ecWwfEnW7Hm9P82U7J+lmZb975J8HrxiGEvb/DabZiaBuUleAlxMM639\nHANhTDOg+xyfA+xSVc8HLgceCfxukMVNFkNh5VsbuKeq7q+qy4BTgJ2AdyZ59mBLW/Uk2RY4Nskm\n7aoCvlRVv2mvrnYB9knyOWiCYUClTgVrtmeybwZ+AfwL8ELgDzTBsJahumzt7+E5SYba37E7gXOT\nfBh4KrBve1Ky6yDrnAyGQh/1/oENn+22X2QLkrw2yfpVtRA4h2aaj6k6JXhftJ/fo4C1gLck2Ri4\nA9i/nU+LqrqBJlj3SLKJX2rLlmQf4NtJzgYe204zszvNBJSLaMJ1bUN1ua4E/hv4epIh4HpgV+Dp\nwMvbprhDgX9J8ojBlTlxTnPRJyM6o94CPAZYDzicptnob2hmiD0feDXw0qq6ckDlrnJGfH6vB54P\nXFFVxyT5EM0Dmt5I80e5A/CWqloysIJXYe0ooxOBd9H0Y70a+EpVfaVnny8Cv6+qowZT5aqvHfn2\nIZo+mJfQXGXtT3Mydx/N3/WBVXX5wIqcBHY091mSw4GXAgcAlwEbAW8H5rfrNwYOMhAerCcQ3gbs\nQ3M2u1OSY6pqbpLraf4ItwbeYyAsW9vscRRwVVX9HPh5khuALyb5RVVd2u76S2BbO5v/bORnUVX3\n0TTzfgr4NrAXTT/CHJpp/19WVb8ZSLGTyCuFSZbkBcDSqjq7HeXxcZo/yoOA5wIPAEPAflV1YztM\n9YHlH3H6SvJImse47l9Vt7U3/O1Pc+n+f6vqrnb00dKBFroKS7I+8B6aK9NjgPPbpo5PA9+rqjPb\nfY4A/r3t55r2Rlypvhl4BLBBVb27XfdpYFvglVU1sCex9YOhMMnazuLf0wTD4iTrAdsBx1XVzu0+\nt9O0g795eJil/uIPcW3gXuA84FNV9dV2/Vyam/++ARwLPOCZ7V9KsiNNf8ydVfXjJEfTnIwspLkq\n+BpN5+iF7f4z2zNh9WibfveleRzwOTShum+77URgU5qmpFpdTu5sPpokPWOYf94GwR+SHFBV32hD\nYEmSJwFPAL4KfNRA+LMRgXAYTZD+D/AZ4NlJbq+q79E80/tc4At+fsvW3sfxUeAHwM5JDqqqv09y\nJE1/wi+BQ6rqwiQz2pFwBgJ/8Xu4Cc39RPsAhwD/CWye5Kyq2r39TDdZ3X4PDYVJMOIX6d00ZxQv\nBk5Ocn9VnZ5kIfDPwPbAi6vqqoEVvArq+fz+AXg5zdXAfOAC4GTgw0n2oxnxsWc76kgjJFkDeC3w\nj1V1ervu/CTH0jRjbkAzmuvG4UAYXLWrlhF/x1tW1e/aK4Un0/QX7JjkMcDVSU6uqletjr+HDkmd\nBD2/SHvSfGndWFVnAK8Cvpxkt6qaC7wF2LWqfj2wYldhSR5Oc2Z2IPAymrH0f6DpRziGJhyeU1UL\nBlbkKqwdI/8y4Ebg7p5NrwM2bQPgWGCddr+1VnaNq7Kev+PDaU7oNqyq24A/Ape1fS87Ake3/1ZL\nXilMQJJHAUPVPGb0YGAusGj4KqCqzkhyAPDDJPu0Y8O1HFV1R9up9wRgn6p6Xnvfwc3ApcC37VRe\ntjR3Jx9DM0z318Dnkzy7qq4DNgNmJ3lEVd2aZnqGdavqngGWvEpqr0YPphkIcnu7+h6aIP0Czf0c\nz6uqRYOpsP8MhYnZEDguye9p7kM4FnhrkiOq6lPQBcMLgGsGWOeUUVV/SnI3MDPJ9sCWwFk04+oN\nhGVoz2BfRzNw4ULgwiSzgDOTnEkznv6dbSCsUVV30tyRO+2NaDJaD3gY8LmquirJulV1d3vS916a\n4eRH1mowv9FoDIUJqKr/SXIpzciEd1fVSUluAt7Q/q59ut3vrIEWOvVcQzPh3SdoRne8vKoM1eUr\nmpFF60P3RfeBJFfTzG30taq6uF2/WoyQmQzLGHa6Jk2T+sFJvlVVt7bbXkfTAvCzwVW78hgKE/d5\nmtEcb09yS1V9PcmNwGeT3FRVpwy4vimnvVr4BM2wyQfaJhAtR3u/xtdpbu67tqoWtENSDwT+Y7gz\n1KG7D9YTCG8AXkMzq8B17f0x/5rkfTT3d7yVZvDDtGAoTFDbtrgoyW00E7fdRjPp3VKakTN6CKrq\nXprhpxqf04E3ACck+U+azvkjVsfRMZMpyTo0s+2+H/hjkje2m55Jc9Pf+jRTV0ybwSHevDaJesaH\n30UzDnxKz4GiqaVtE38msAlw9fCNaRpdmons3gQsBq4ArgK2Aj4A3NueoEwbhsIka0ckVTkXjzQl\ntHfPbw/8tqpuSfIK4PXAi6p5UuK0YihIEg+68e+tNJNU/mrAJQ2EfQqS1FibZsLK/afzDZJeKUhS\nq3eY6nRlKEiSOs59JEnqGAqSpI6hIEnqGAqaFpIcl+StPctntk/OGl7+eJK3j/NYs5P8xXDFJLsm\n+d4k1XtOkjmTcSxpRRgKmi5+DuwE3Xj0WcCTerbvRPPoz1ElcRi3VmuGgqaL82gekAJNGPyK5pGp\nj0jyMOCJwCVJPprkV0kua5+FMXwFcG6SeTTTIHSSPDbJJUmeOWL9I5N8J8mlSS5I8pR2/Q7tk9Au\nSXJekse369dJcmqSBUm+TTN/P0lmJPlST01v699HJHnzmqaJqro+yX3t4xR3As6nefjMjsDtwGU0\nj1B9GvBUmiuJi5IMT5f8DODJ7Tz7swHaL/RTgYOr6pftk8+GfQC4pKr2SfK3wFfaY/+a5ulx9yXZ\nDfggzVPQ3gTcXVVPbAPkv9vjPA3YrKqe3L7nRpP80UgPYihoOjmPJhB2onlWw2bt69tpmpd2Bk5p\nH1t5Q5Kf0kwwdwfwXyOeqz0EfBfYt6oedPXQ2pnmy56q+kmSjdvHjW5I84jWbWieg7Bmu/9zgeEH\nM13aPqcD4ErgsUk+DXwf+OHEPwZp+Ww+0nQy3K+wPU3z0QU0Vwrj6U+4a8Ty7TQPA9p5BWv4J+Ds\n9sz/JTRTKyxX+6CXpwLn0Dxq88TR9pcmylDQdHIeTRPRLVV1f1XdQvOIxR3bbecCB7Tt+EM0Z+//\ntZxjLQVeCry6nVVzpHOBV0LTJwHcVFV30FwpDD806OCe/X8GvKLd/8nAcB/ELGCNqvoW8D6aZiyp\nb2w+0nRyGU1fwddGrFu/qm5qO3h3pHmSXgH/p6r+f5InLOtg7RPPXgycleROmmamYUfTPL3rUuBu\nmid7AXyEpvnofTTNQcM+B/xbkgXAAprHaELTxPVv7YgpaB78IvWNcx9Jkjo2H0mSOoaCJKljKEiS\nOoaCJKljKEiSOoaCJKljKEiSOoaCJKnzv4q9B4NM1JUYAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fccb04942d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "memory = extract_results('node-9', 'memory')\n",
    "memory.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "+-----------+---------------------+\n",
      "| Parameter | Info                |\n",
      "+-----------+---------------------+\n",
      "| product   | KVM                 |\n",
      "| disk      | 53.7GB (5.9% used)  |\n",
      "| os        | Ubuntu 14.04 trusty |\n",
      "| memory    | 799.5/3945.4MB      |\n",
      "+-----------+---------------------+\n"
     ]
    }
   ],
   "source": [
    "system_info = extract_results('node-9', 'system_info')\n",
    "table = PrettyTable(['Component', 'Value'])\n",
    "table.align = 'l'\n",
    "for key,value in system_info.iteritems():\n",
    "    table.add_row([key, value[0]])\n",
    "print table"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}