1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import json
import logging
import requests
from toscaparser.utils.gettextutils import _
import translator.common.utils
from translator.hot.syntax.hot_resource import HotResource
log = logging.getLogger('heat-translator')
# Name used to dynamically load appropriate map class.
TARGET_CLASS_NAME = 'ToscaCompute'
# A design issue to be resolved is how to translate the generic TOSCA server
# properties to OpenStack flavors and images. At the Atlanta design summit,
# there was discussion on using Glance to store metadata and Graffiti to
# describe artifacts. We will follow these projects to see if they can be
# leveraged for this TOSCA translation.
# For development purpose at this time, we temporarily hardcode a list of
# flavors and images here
FLAVORS = {'m1.xlarge': {'mem_size': 16384, 'disk_size': 160, 'num_cpus': 8},
'm1.large': {'mem_size': 8192, 'disk_size': 80, 'num_cpus': 4},
'm1.medium': {'mem_size': 4096, 'disk_size': 40, 'num_cpus': 2},
'm1.small': {'mem_size': 2048, 'disk_size': 20, 'num_cpus': 1},
'm1.tiny': {'mem_size': 512, 'disk_size': 1, 'num_cpus': 1},
'm1.micro': {'mem_size': 128, 'disk_size': 0, 'num_cpus': 1},
'm1.nano': {'mem_size': 64, 'disk_size': 0, 'num_cpus': 1}}
IMAGES = {'ubuntu-software-config-os-init': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Ubuntu',
'version': '14.04'},
'ubuntu-12.04-software-config-os-init': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Ubuntu',
'version': '12.04'},
'fedora-amd64-heat-config': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Fedora',
'version': '18.0'},
'F18-x86_64-cfntools': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Fedora',
'version': '19'},
'Fedora-x86_64-20-20131211.1-sda': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Fedora',
'version': '20'},
'cirros-0.3.1-x86_64-uec': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'CirrOS',
'version': '0.3.1'},
'cirros-0.3.2-x86_64-uec': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'CirrOS',
'version': '0.3.2'},
'rhel-6.5-test-image': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'RHEL',
'version': '6.5'}}
class ToscaCompute(HotResource):
'''Translate TOSCA node type tosca.nodes.Compute.'''
COMPUTE_HOST_PROP = (DISK_SIZE, MEM_SIZE, NUM_CPUS) = \
('disk_size', 'mem_size', 'num_cpus')
COMPUTE_OS_PROP = (ARCHITECTURE, DISTRIBUTION, TYPE, VERSION) = \
('architecture', 'distribution', 'type', 'version')
toscatype = 'tosca.nodes.Compute'
def __init__(self, nodetemplate):
super(ToscaCompute, self).__init__(nodetemplate,
type='OS::Nova::Server')
# List with associated hot port resources with this server
self.assoc_port_resources = []
pass
def handle_properties(self):
self.properties = self.translate_compute_flavor_and_image(
self.nodetemplate.get_capability('host'),
self.nodetemplate.get_capability('os'))
self.properties['user_data_format'] = 'SOFTWARE_CONFIG'
self.properties['software_config_transport'] = 'POLL_SERVER_HEAT'
tosca_props = self.get_tosca_props()
for key, value in tosca_props.items():
self.properties[key] = value
# To be reorganized later based on new development in Glance and Graffiti
def translate_compute_flavor_and_image(self,
host_capability,
os_capability):
hot_properties = {}
host_cap_props = {}
os_cap_props = {}
image = None
flavor = None
if host_capability:
for prop in host_capability.get_properties_objects():
host_cap_props[prop.name] = prop.value
# if HOST properties are not specified, we should not attempt to
# find best match of flavor
if host_cap_props:
flavor = self._best_flavor(host_cap_props)
if os_capability:
for prop in os_capability.get_properties_objects():
os_cap_props[prop.name] = prop.value
# if OS properties are not specified, we should not attempt to
# find best match of image
if os_cap_props:
image = self._best_image(os_cap_props)
hot_properties['flavor'] = flavor
hot_properties['image'] = image
return hot_properties
def _create_nova_flavor_dict(self):
'''Populates and returns the flavors dict using Nova ReST API'''
try:
access_dict = translator.common.utils.get_ks_access_dict()
access_token = translator.common.utils.get_token_id(access_dict)
if access_token is None:
return None
nova_url = translator.common.utils.get_url_for(access_dict,
'compute')
if not nova_url:
return None
nova_response = requests.get(nova_url + '/flavors/detail',
headers={'X-Auth-Token':
access_token})
if nova_response.status_code != 200:
return None
flavors = json.loads(nova_response.content)['flavors']
flavor_dict = dict()
for flavor in flavors:
flavor_name = str(flavor['name'])
flavor_dict[flavor_name] = {
'mem_size': flavor['ram'],
'disk_size': flavor['disk'],
'num_cpus': flavor['vcpus'],
}
except Exception as e:
# Handles any exception coming from openstack
log.warn(_('Choosing predefined flavors since received '
'Openstack Exception: %s') % str(e))
return None
return flavor_dict
def _populate_image_dict(self):
'''Populates and returns the images dict using Glance ReST API'''
images_dict = {}
try:
access_dict = translator.common.utils.get_ks_access_dict()
access_token = translator.common.utils.get_token_id(access_dict)
if access_token is None:
return None
glance_url = translator.common.utils.get_url_for(access_dict,
'image')
if not glance_url:
return None
glance_response = requests.get(glance_url + '/v2/images',
headers={'X-Auth-Token':
access_token})
if glance_response.status_code != 200:
return None
images = json.loads(glance_response.content)["images"]
for image in images:
image_resp = requests.get(glance_url + '/v2/images/' +
image["id"],
headers={'X-Auth-Token':
access_token})
if image_resp.status_code != 200:
continue
metadata = ["architecture", "type", "distribution", "version"]
image_data = json.loads(image_resp.content)
if any(key in image_data.keys() for key in metadata):
images_dict[image_data["name"]] = dict()
for key in metadata:
if key in image_data.keys():
images_dict[image_data["name"]][key] = \
image_data[key]
else:
continue
except Exception as e:
# Handles any exception coming from openstack
log.warn(_('Choosing predefined flavors since received '
'Openstack Exception: %s') % str(e))
return images_dict
def _best_flavor(self, properties):
log.info(_('Choosing the best flavor for given attributes.'))
# Check whether user exported all required environment variables.
flavors = FLAVORS
if translator.common.utils.check_for_env_variables():
resp = self._create_nova_flavor_dict()
if resp:
flavors = resp
# start with all flavors
match_all = flavors.keys()
# TODO(anyone): Handle the case where the value contains something like
# get_input instead of a value.
# flavors that fit the CPU count
cpu = properties.get(self.NUM_CPUS)
if cpu is None:
self._log_compute_msg(self.NUM_CPUS, 'flavor')
match_cpu = self._match_flavors(match_all, flavors, self.NUM_CPUS, cpu)
# flavors that fit the mem size
mem = properties.get(self.MEM_SIZE)
if mem:
mem = translator.common.utils.MemoryUnit.convert_unit_size_to_num(
mem, 'MB')
else:
self._log_compute_msg(self.MEM_SIZE, 'flavor')
match_cpu_mem = self._match_flavors(match_cpu, flavors,
self.MEM_SIZE, mem)
# flavors that fit the disk size
disk = properties.get(self.DISK_SIZE)
if disk:
disk = translator.common.utils.MemoryUnit.\
convert_unit_size_to_num(disk, 'GB')
else:
self._log_compute_msg(self.DISK_SIZE, 'flavor')
match_cpu_mem_disk = self._match_flavors(match_cpu_mem, flavors,
self.DISK_SIZE, disk)
# if multiple match, pick the flavor with the least memory
# the selection can be based on other heuristic, e.g. pick one with the
# least total resource
if len(match_cpu_mem_disk) > 1:
return self._least_flavor(match_cpu_mem_disk, flavors, 'mem_size')
elif len(match_cpu_mem_disk) == 1:
return match_cpu_mem_disk[0]
else:
return None
def _best_image(self, properties):
# Check whether user exported all required environment variables.
images = IMAGES
if translator.common.utils.check_for_env_variables():
resp = self._populate_image_dict()
if len(resp.keys()) > 0:
images = resp
match_all = images.keys()
architecture = properties.get(self.ARCHITECTURE)
if architecture is None:
self._log_compute_msg(self.ARCHITECTURE, 'image')
match_arch = self._match_images(match_all, images,
self.ARCHITECTURE, architecture)
type = properties.get(self.TYPE)
if type is None:
self._log_compute_msg(self.TYPE, 'image')
match_type = self._match_images(match_arch, images, self.TYPE, type)
distribution = properties.get(self.DISTRIBUTION)
if distribution is None:
self._log_compute_msg(self.DISTRIBUTION, 'image')
match_distribution = self._match_images(match_type, images,
self.DISTRIBUTION,
distribution)
version = properties.get(self.VERSION)
if version is None:
self._log_compute_msg(self.VERSION, 'image')
match_version = self._match_images(match_distribution, images,
self.VERSION, version)
if len(match_version):
return list(match_version)[0]
def _match_flavors(self, this_list, this_dict, attr, size):
'''Return from this list all flavors matching the attribute size.'''
if not size:
return list(this_list)
matching_flavors = []
for flavor in this_list:
if isinstance(size, int):
if this_dict[flavor][attr] >= size:
matching_flavors.append(flavor)
log.debug(_('Returning list of flavors matching the attribute size.'))
return matching_flavors
def _least_flavor(self, this_list, this_dict, attr):
'''Return from this list the flavor with the smallest attr.'''
least_flavor = this_list[0]
for flavor in this_list:
if this_dict[flavor][attr] < this_dict[least_flavor][attr]:
least_flavor = flavor
return least_flavor
def _match_images(self, this_list, this_dict, attr, prop):
if not prop:
return this_list
matching_images = []
for image in this_list:
if this_dict[image][attr].lower() == str(prop).lower():
matching_images.append(image)
return matching_images
def get_hot_attribute(self, attribute, args):
attr = {}
# Convert from a TOSCA attribute for a nodetemplate to a HOT
# attribute for the matching resource. Unless there is additional
# runtime support, this should be a one to one mapping.
# Note: We treat private and public IP addresses equally, but
# this will change in the future when TOSCA starts to support
# multiple private/public IP addresses.
log.debug(_('Converting TOSCA attribute for a nodetemplate to a HOT \
attriute.'))
if attribute == 'private_address' or \
attribute == 'public_address':
attr['get_attr'] = [self.name, 'networks']
return attr
def _log_compute_msg(self, prop, what):
msg = _('No value is provided for Compute capability '
'property "%(prop)s". This may set an undesired "%(what)s" '
'in the template.') % {'prop': prop, 'what': what}
log.warn(msg)
|