summaryrefslogtreecommitdiffstats
path: root/tosca2heat/heat-translator/translator/hot/tosca/tosca_compute.py
blob: 40dc7993699f2ff3d2cb0d02653a9d98925bad28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

import logging

from toscaparser.utils.gettextutils import _
from translator.common import flavors as nova_flavors
from translator.common import images as glance_images
import translator.common.utils
from translator.hot.syntax.hot_resource import HotResource


log = logging.getLogger('heat-translator')


# Name used to dynamically load appropriate map class.
TARGET_CLASS_NAME = 'ToscaCompute'


class ToscaCompute(HotResource):
    """Translate TOSCA node type tosca.nodes.Compute."""

    COMPUTE_HOST_PROP = (DISK_SIZE, MEM_SIZE, NUM_CPUS) = \
                        ('disk_size', 'mem_size', 'num_cpus')

    COMPUTE_OS_PROP = (ARCHITECTURE, DISTRIBUTION, TYPE, VERSION) = \
                      ('architecture', 'distribution', 'type', 'version')

    IMAGE_OS_PROP = (OS_DISTRO, OS_TYPE, OS_VERSION) = \
                    ('os_distro', 'os_type', 'os_version')
    toscatype = 'tosca.nodes.Compute'

    ALLOWED_NOVA_SERVER_PROPS = \
        ('admin_pass', 'availability_zone', 'block_device_mapping',
         'block_device_mapping_v2', 'config_drive', 'diskConfig', 'flavor',
         'flavor_update_policy', 'image', 'image_update_policy', 'key_name',
         'metadata', 'name', 'networks', 'personality', 'reservation_id',
         'scheduler_hints', 'security_groups', 'software_config_transport',
         'user_data', 'user_data_format', 'user_data_update_policy')

    def __init__(self, nodetemplate, csar_dir=None):
        super(ToscaCompute, self).__init__(nodetemplate,
                                           type='OS::Nova::Server',
                                           csar_dir=csar_dir)
        # List with associated hot port resources with this server
        self.assoc_port_resources = []
        pass

    def handle_properties(self):
        self.properties = self.translate_compute_flavor_and_image(
            self.nodetemplate.get_capability('host'),
            self.nodetemplate.get_capability('os'))
        self.properties['user_data_format'] = 'SOFTWARE_CONFIG'
        self.properties['software_config_transport'] = 'POLL_SERVER_HEAT'
        tosca_props = self.get_tosca_props()
        for key, value in tosca_props.items():
            if key in self.ALLOWED_NOVA_SERVER_PROPS:
                self.properties[key] = value

    # To be reorganized later based on new development in Glance and Graffiti
    def translate_compute_flavor_and_image(self,
                                           host_capability,
                                           os_capability):
        hot_properties = {}
        host_cap_props = {}
        os_cap_props = {}
        image = None
        flavor = None
        if host_capability:
            for prop in host_capability.get_properties_objects():
                host_cap_props[prop.name] = prop.value
            # if HOST properties are not specified, we should not attempt to
            # find best match of flavor
            if host_cap_props:
                flavor = self._best_flavor(host_cap_props)
        if os_capability:
            for prop in os_capability.get_properties_objects():
                os_cap_props[prop.name] = prop.value
            # if OS properties are not specified, we should not attempt to
            # find best match of image
            if os_cap_props:
                image = self._best_image(os_cap_props)
        hot_properties['flavor'] = flavor
        if image:
            hot_properties['image'] = image
        else:
            hot_properties.pop('image', None)
        return hot_properties

    def _best_flavor(self, properties):
        log.info(_('Choosing the best flavor for given attributes.'))
        # Check whether user exported all required environment variables.
        flavors = nova_flavors.get_flavors()

        # start with all flavors
        match_all = flavors.keys()

        # TODO(anyone): Handle the case where the value contains something like
        # get_input instead of a value.
        # flavors that fit the CPU count
        cpu = properties.get(self.NUM_CPUS)
        if cpu is None:
            self._log_compute_msg(self.NUM_CPUS, 'flavor')
        match_cpu = self._match_flavors(match_all, flavors, self.NUM_CPUS, cpu)

        # flavors that fit the mem size
        mem = properties.get(self.MEM_SIZE)
        if mem:
            mem = translator.common.utils.MemoryUnit.convert_unit_size_to_num(
                mem, 'MB')
        else:
            self._log_compute_msg(self.MEM_SIZE, 'flavor')
        match_cpu_mem = self._match_flavors(match_cpu, flavors,
                                            self.MEM_SIZE, mem)
        # flavors that fit the disk size
        disk = properties.get(self.DISK_SIZE)
        if disk:
            disk = translator.common.utils.MemoryUnit.\
                convert_unit_size_to_num(disk, 'GB')
        else:
            self._log_compute_msg(self.DISK_SIZE, 'flavor')
        match_cpu_mem_disk = self._match_flavors(match_cpu_mem, flavors,
                                                 self.DISK_SIZE, disk)
        # if multiple match, pick the flavor with the least memory
        # the selection can be based on other heuristic, e.g. pick one with the
        # least total resource
        if len(match_cpu_mem_disk) > 1:
            return self._least_flavor(match_cpu_mem_disk, flavors, 'mem_size')
        elif len(match_cpu_mem_disk) == 1:
            return match_cpu_mem_disk[0]
        else:
            return None

    def _best_image(self, properties):
        # Check whether user exported all required environment variables.
        images = glance_images.get_images()
        match_all = images.keys()
        architecture = properties.get(self.ARCHITECTURE)
        if architecture is None:
            self._log_compute_msg(self.ARCHITECTURE, 'image')
        match_arch = self._match_images(match_all, images,
                                        [self.ARCHITECTURE], architecture)

        image_type = properties.get(self.TYPE)
        if image_type is None:
            self._log_compute_msg(self.TYPE, 'image')
        match_type = self._match_images(match_arch, images, [self.TYPE,
                                                             self.OS_TYPE],
                                        image_type)

        distribution = properties.get(self.DISTRIBUTION)
        if distribution is None:
            self._log_compute_msg(self.DISTRIBUTION, 'image')
        match_distribution = self._match_images(match_type, images,
                                                [self.DISTRIBUTION,
                                                 self.OS_DISTRO],
                                                distribution)
        version = properties.get(self.VERSION)
        if version is None:
            self._log_compute_msg(self.VERSION, 'image')
        match_version = self._match_images(match_distribution, images,
                                           [self.VERSION, self.OS_VERSION],
                                           version)

        if len(match_version):
            return list(match_version)[0]

    @staticmethod
    def _match_flavors(this_list, this_dict, attr, size):
        """Return from this list all flavors matching the attribute size."""
        if not size:
            return list(this_list)
        matching_flavors = []
        for flavor in this_list:
            if isinstance(size, int):
                if this_dict[flavor][attr] >= size:
                    matching_flavors.append(flavor)
        log.debug(_('Returning list of flavors matching the attribute size.'))
        return matching_flavors

    @staticmethod
    def _least_flavor(this_list, this_dict, attr):
        """Return from this list the flavor with the smallest attr."""
        least_flavor = this_list[0]
        for flavor in this_list:
            if this_dict[flavor][attr] < this_dict[least_flavor][attr]:
                least_flavor = flavor
        return least_flavor

    @staticmethod
    def _match_images(this_list, this_dict, attr_list, prop):
        if not prop:
            return this_list
        matching_images = []
        for image in this_list:
            for attr in attr_list:
                if attr in this_dict[image]:
                    if this_dict[image][attr].lower() == str(prop).lower():
                        matching_images.insert(0, image)
                else:
                    matching_images.append(image)
        return matching_images

    def get_hot_attribute(self, attribute, args):
        attr = {}
        # Convert from a TOSCA attribute for a nodetemplate to a HOT
        # attribute for the matching resource.  Unless there is additional
        # runtime support, this should be a one to one mapping.

        # Note: We treat private and public IP  addresses equally, but
        # this will change in the future when TOSCA starts to support
        # multiple private/public IP addresses.
        log.debug(_('Converting TOSCA attribute for a nodetemplate to a HOT \
                  attriute.'))
        if attribute == 'private_address' or \
           attribute == 'public_address':
                attr['get_attr'] = [self.name, 'first_address']

        return attr

    @staticmethod
    def _log_compute_msg(prop, what):
        msg = _('No value is provided for Compute capability '
                'property "%(prop)s". This may set an undesired "%(what)s" '
                'in the template.') % {'prop': prop, 'what': what}
        log.warning(msg)