diff options
author | Thomas Duval <thomas.duval@orange.com> | 2017-12-12 16:03:18 +0100 |
---|---|---|
committer | Thomas Duval <thomas.duval@orange.com> | 2017-12-12 16:03:18 +0100 |
commit | 4fa851471190f968289e04ae0f803b5b63744f6b (patch) | |
tree | 61a07b5ee8353d271dfbc43438d3c71d5b4e5fea /moonv4/moon_interface/tests/apitests/plot_json.py | |
parent | 21bccb742f6a819d582f1b15032f2a9ce8bab871 (diff) |
Add unit tests for Moon Interface
Change-Id: I28e6ee55c78f0f1109e0607e1b3d516f3f2e93ef
Diffstat (limited to 'moonv4/moon_interface/tests/apitests/plot_json.py')
-rw-r--r-- | moonv4/moon_interface/tests/apitests/plot_json.py | 852 |
1 files changed, 0 insertions, 852 deletions
diff --git a/moonv4/moon_interface/tests/apitests/plot_json.py b/moonv4/moon_interface/tests/apitests/plot_json.py deleted file mode 100644 index f67f1d27..00000000 --- a/moonv4/moon_interface/tests/apitests/plot_json.py +++ /dev/null @@ -1,852 +0,0 @@ -import os -import argparse -import logging -import json -import glob -import time -import datetime -import itertools -import plotly -from plotly.graph_objs import Scatter, Layout, Bar -import plotly.figure_factory as ff - - -logger = None - - -def init(): - global logger - commands = { - "graph": write_graph, - "digraph": write_distgraph, - "average": write_average_graph, - "latency": write_latency, - "request_average": write_request_average, - "throughput": write_throughput, - "global_throughput": write_global_throughput, - "parallel_throughput": write_parallel_throughput, - } - parser = argparse.ArgumentParser() - parser.add_argument("command", - help="Command to throw ({})".format(", ".join(commands.keys()))) - parser.add_argument("input", nargs="+", help="files to use with the form \"file1.json,file2.json,...\"") - parser.add_argument("--verbose", "-v", action='store_true', help="verbose mode") - parser.add_argument("--debug", "-d", action='store_true', help="debug mode") - parser.add_argument("--write", "-w", help="Write test data to a JSON file", default="/tmp/data.json") - parser.add_argument("--legend", "-l", help="Set the legend (by default get from the file names)") - parser.add_argument("--titles", "-t", - help="Set the general title, x title and y title (ex: Title 1,Title X,Title Y)") - # parser.add_argument("--request-per-second", help="Number of requests per seconds", - # type=int, dest="request_second", default=1) - # parser.add_argument("--limit", help="Limit request to LIMIT", type=int) - parser.add_argument("--write-image", help="Write the graph to file IMAGE", dest="write_image") - parser.add_argument("--write-html", help="Write the graph to HTML file HTML", dest="write_html", default="data.html") - parser.add_argument("--plot-result", - help="Use specific data like Grant or Deny responses " - "('*' for all or 'Grant,Deny' to separate granted and denied responses)", - dest="plot_result", - default="*") - args = parser.parse_args() - - FORMAT = '%(levelname)s %(message)s' - - if args.verbose: - logging.basicConfig( - format=FORMAT, - level=logging.INFO) - elif args.debug: - logging.basicConfig( - format=FORMAT, - level=logging.DEBUG) - else: - logging.basicConfig( - format=FORMAT, - level=logging.WARNING) - - logger = logging.getLogger(__name__) - - # args.input = args.input[0] - result_input = [] - for _input in args.input: - if "*" in _input: - filenames = glob.glob(_input) - filenames.sort() - result_input.append(",".join(filenames)) - else: - result_input.append(_input) - args.input = result_input - - if not args.legend: - _legends = [] - for data in args.input: - for filename in data.split(","): - _legends.append(os.path.basename(filename).replace(".json", "")) - args.legend = ",".join(_legends) - - return args, commands - - -def __get_legends(legend_str, default_length=10): - if "|" in legend_str: - secondary_legend = legend_str.split("|")[1].split(",") - else: - secondary_legend = ["average"] * default_length - _legends = legend_str.split("|")[0].split(",") - return _legends, secondary_legend - - -def get_delta_v1(time_data, result=None): - time_delta = list() - x_data = list() - time_delta_sum1 = 0 - cpt = 0 - for key in time_data: - if not result or 'result' not in time_data[key] or time_data[key]['result'].lower() == result.lower() or result == "*": - time_delta.append(time_data[key]['delta']) - time_delta_sum1 += time_data[key]['delta'] - if 'index' in time_data[key]: - print("in index {}".format(time_data[key]['index'])) - x_data.append(time_data[key]['index']) - else: - x_data.append(cpt) - cpt += 1 - time_delta_average1 = time_delta_sum1 / len(time_data.keys()) - return time_delta, time_delta_average1, x_data - - -def get_delta_v2(time_data, result=None): - time_delta = list() - x_data = list() - time_delta_sum1 = 0 - cpt = 0 - for item in time_data: - if not result or 'result' not in item or item['result'].lower() == result.lower() or result == "*": - time_delta.append(item['delta']) - time_delta_sum1 += item['delta'] - x_data.append(cpt) - cpt += 1 - time_delta_average1 = time_delta_sum1 / len(time_data) - return time_delta, time_delta_average1, x_data - - -def get_delta(time_data, result=None): - if type(time_data) is dict: - return get_delta_v1(time_data, result=result) - if type(time_data) is list: - return get_delta_v2(time_data, result=result) - raise Exception("Time data has not a correct profile") - - -def get_latency_v1(time_data, result=None): - time_delta = list() - time_delta_sum1 = 0 - for key in time_data: - if not result or 'result' not in time_data[key] or time_data[key]['result'].lower() == result.lower() or result == "*": - time_delta.append(1/time_data[key]['delta']) - time_delta_sum1 += time_data[key]['delta'] - logger.debug("Adding {} {}".format(1/time_data[key]['delta'], time_data[key]['delta'])) - time_delta_average1 = time_delta_sum1 / len(time_data.keys()) - return time_delta, 1/time_delta_average1 - - -def get_latency_v2(time_data, result=None): - time_delta = list() - time_delta_sum1 = 0 - time_list = list() - for item in time_data: - if not result or 'result' not in item or item['result'].lower() == result.lower() or result == "*": - time_delta.append(1/item['delta']) - time_delta_sum1 += item['delta'] - time_list.append(item['end']) - time_delta_average1 = time_delta_sum1 / len(time_data) - return time_delta, 1/time_delta_average1, time_list - - -def get_latency(time_data, result=None): - if type(time_data) is dict: - return get_latency_v1(time_data, result=result) - if type(time_data) is list: - return get_latency_v2(time_data, result=result) - raise Exception("Time data has not a correct profile") - - -def get_request_per_second_v1(time_data): - result = {} - _min = None - _max = 0 - for key in time_data: - start = str(time_data[key]['start']).split(".")[0] - end = str(time_data[key]['end']).split(".")[0] - middle = str(int((int(end) + int(start)) / 2)) - middle = end - if not _min: - _min = int(middle) - if int(middle) < _min: - _min = int(middle) - if int(middle) > _max: - _max = int(middle) - if middle not in result: - result[middle] = 1 - else: - result[middle] += 1 - for cpt in range(_min+1, _max): - if str(cpt) not in result: - result[str(cpt)] = 0 - # result[str(cpt)] = (result[str(cpt - 1)] + result[str(cpt)]) / 2 - # result[str(cpt - 1)] = result[str(cpt)] - return result - - -def get_request_per_second_v2(time_data): - result = {} - _min = None - _max = 0 - for item in time_data: - start = str(item['start']).split(".")[0] - end = str(item['end']).split(".")[0] - middle = str(int((int(end) + int(start)) / 2)) - middle = end - if not _min: - _min = int(middle) - if int(middle) < _min: - _min = int(middle) - if int(middle) > _max: - _max = int(middle) - if middle not in result: - result[middle] = 1 - else: - result[middle] += 1 - for cpt in range(_min+1, _max): - if str(cpt) not in result: - result[str(cpt)] = 0 - # result[str(cpt)] = (result[str(cpt - 1)] + result[str(cpt)]) / 2 - # result[str(cpt - 1)] = result[str(cpt)] - return result - - -def get_request_per_second(time_data): - if type(time_data) is dict: - return get_request_per_second_v1(time_data) - if type(time_data) is list: - return get_request_per_second_v2(time_data) - raise Exception("Time data has not a correct profile") - - -def write_graph(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - logger.info("Writing graph") - cpt_max = 0 - logger.debug("legend={}".format(legend)) - for data in input: - cpt_max += len(data.split(",")) - legends, secondary_legend = __get_legends(legend, cpt_max) - logger.debug("legends={}".format(legends)) - result_data = [] - cpt_input = 0 - for data in input: - for _input in data.split(","): - try: - current_legend = legends.pop(0) - except IndexError: - current_legend = "" - time_data = json.load(open(_input)) - time_delta, time_delta_average2, x_data = get_delta(time_data) - for item in time_data: - if type(time_data) is dict: - time_delta.append(time_data[item]['delta']) - else: - time_delta.append(item['delta']) - data = Scatter( - x=x_data, - y=time_delta, - name=current_legend, - line=dict( - color="rgb({},{},{})".format(0, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max), - # shape='spline' - ) - ) - result_data.append(data) - data_a = Scatter( - x=list(range(len(time_data))), - y=[time_delta_average2 for x in range(len(time_data))], - name=current_legend + " average", - line=dict( - color="rgb({},{},{})".format(255, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max), - # shape='spline' - ) - ) - result_data.append(data_a) - cpt_input += 1 - - if image_file: - plotly.offline.plot( - { - "data": result_data, - "layout": Layout( - title="Request times delta", - xaxis=dict(title='Requests'), - yaxis=dict(title='Request duration'), - ) - }, - filename=html_file, - image="svg", - image_filename=image_file, - image_height=1000, - image_width=1200 - ) - else: - plotly.offline.plot( - { - "data": result_data, - "layout": Layout( - title="Request times delta", - xaxis=dict(title='Requests'), - yaxis=dict(title='Request duration'), - ) - }, - filename=html_file, - ) - return 0 - - -def write_distgraph(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - - logger.info("Writing graph") - _legends, secondary_legend = __get_legends(legend, len(input)) - result_data = [] - legends = [] - - # FIXME: deals with multiple input - input = input[0] - for _input in input.split(","): - logger.info("Analysing input {}".format(_input)) - current_legend = _legends.pop(0) - for result in plot_result.split(","): - time_data2 = json.load(open(_input)) - time_delta2, time_delta_average2, x_data = get_delta(time_data2, result=result) - result_data.append(time_delta2) - if result == "*": - legends.append(current_legend) - else: - legends.append("{} ({})".format(current_legend, result)) - - # Create distplot with custom bin_size - if len(legends) < len(result_data): - for _cpt in range(len(result_data)-len(legends)): - legends.append("NC") - fig = ff.create_distplot(result_data, legends, show_hist=False) - - # Plot! - plotly.offline.plot( - fig, - # image="svg", - # image_filename=image_file, - # image_height=1000, - # image_width=1200, - filename=html_file - ) - return 0 - - -def write_average_graph(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - - logger.info("Writing average graph") - _legends, secondary_legend = __get_legends(legend, len(input)) - all_data = [] - legends = [] - legend_done = False - html_file = "latency_" + html_file - - cpt_input = 0 - cpt_max = len(input) - for data in input: - result_data = [] - for _input in data.split(","): - logger.info("Analysing input {}".format(_input)) - if not legend_done: - current_legend = _legends.pop(0) - for result in plot_result.split(","): - time_data2 = json.load(open(_input)) - time_delta2, time_delta_average2 = get_delta(time_data2, result=result) - result_data.append(time_delta_average2) - if not legend_done and result == "*": - legends.append(current_legend) - elif not legend_done: - legends.append("{} ({})".format(current_legend, result)) - - if not legend_done: - if len(legends) < len(result_data): - for _cpt in range(len(result_data)-len(legends)): - legends.append("NC") - - data = Scatter( - x=legends, - y=result_data, - name=secondary_legend.pop(0), - line=dict( - color="rgb({},{},{})".format(158, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max) - ) - ) - all_data.append(data) - legend_done = True - cpt_input += 1 - if image_file: - plotly.offline.plot( - { - "data": all_data, - "layout": Layout( - title="Latency", - xaxis=dict(title='Request per second'), - yaxis=dict(title='Request latency'), - ) - }, - filename=html_file, - image="svg", - image_filename=image_file, - image_height=1000, - image_width=1200 - ) - else: - plotly.offline.plot( - { - "data": all_data, - "layout": Layout( - title="Latency", - xaxis=dict(title='Requests'), - yaxis=dict(title='Request latency'), - ) - }, - filename=html_file, - ) - return 0 - - -def __get_titles(title): - if title: - titles = title.split(",") - try: - title_generic = titles[0] - except IndexError: - title_generic = "" - try: - title_x = titles[1] - except IndexError: - title_x = "" - try: - title_y = titles[2] - except IndexError: - title_y = "" - else: - title_generic = "" - title_x = "" - title_y = "" - return title_generic, title_x, title_y - - -def __get_time_axis(data): - result_data = [] - start_time = None - for item in data: - if not start_time: - start_time = item - item = item - start_time - millis = int(str(item).split('.')[-1][:6]) - t = time.gmtime(int(item)) - result_data.append( - datetime.datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, millis) - ) - return result_data - - -def write_latency(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - - logger.info("Writing latency graph") - _legends, secondary_legend = __get_legends(legend, len(input)) - all_data = [] - legends = [] - legend_done = False - html_file = "latency_" + html_file - title_generic, title_x, title_y = __get_titles(title) - cpt_input = 0 - cpt_max = len(input) - for data in input: - result_data = [] - for _input in data.split(","): - logger.info("Analysing input {}".format(_input)) - if not legend_done: - current_legend = _legends.pop(0) - for result in plot_result.split(","): - time_data2 = json.load(open(_input)) - time_delta2, time_delta_average2, x_data = get_latency(time_data2, result=result) - result_data.append(time_delta_average2) - if not legend_done and result == "*": - legends.append(current_legend) - elif not legend_done: - legends.append("{} ({})".format(current_legend, result)) - - if not legend_done: - if len(legends) < len(result_data): - for _cpt in range(len(result_data)-len(legends)): - legends.append("NC") - - data = Scatter( - x=legends, - y=result_data, - name=secondary_legend.pop(0), - line=dict( - color="rgb({},{},{})".format(158, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max) - ) - ) - all_data.append(data) - legend_done = True - cpt_input += 1 - if image_file: - plotly.offline.plot( - { - "data": all_data, - "layout": Layout( - title=title_generic, - xaxis=dict(title=title_x), - yaxis=dict(title=title_y), - ) - }, - filename=html_file, - image="svg", - image_filename=image_file, - image_height=1000, - image_width=1200 - ) - else: - plotly.offline.plot( - { - "data": all_data, - "layout": Layout( - title=title_generic, - xaxis=dict(title=title_x), - yaxis=dict(title=title_y), - font=dict( - size=25 - ) - ) - }, - filename=html_file, - ) - return 0 - - -def write_request_average(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - logger.info("Writing average graph") - _legends, secondary_legend = __get_legends(legend, len(input)) - result_data = [] - html_file = "request_average_" + html_file - - # FIXME: deals with multiple input - input = input[0] - for _input in input.split(","): - logger.info("Analysing input {}".format(_input)) - current_legend = _legends.pop(0) - time_data = json.load(open(_input)) - result = get_request_per_second(time_data) - time_keys = list(result.keys()) - time_keys.sort() - time_value = list(map(lambda x: result[x], time_keys)) - datetime_keys = list() - for _time in time_keys: - t = time.gmtime(int(_time)) - datetime_keys.append(datetime.datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec)) - data = Bar( - x=datetime_keys, - y=time_value, - name=current_legend, - ) - result_data.append(data) - plotly.offline.plot( - { - "data": result_data, - "layout": Layout( - title="Request per second", - xaxis=dict(title='Time'), - yaxis=dict(title='Request number'), - ) - }, - filename=html_file, - ) - - -def write_throughput(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - logger.info("Writing throughput graph") - _legends, secondary_legend = __get_legends(legend, len(input)) - result_data = [] - html_file = "request_throughput_" + html_file - title_generic, title_x, title_y = __get_titles(title) - - cpt_input = 0 - cpt_request = 0 - cpt_max = 0 - average_data_x = [] - average_data_y = [] - for _i in input: - cpt_max += len(_i.split(",")) - - for data in input: - for _input in data.split(","): - logger.info("Analysing input {}".format(_input)) - current_legend = _legends.pop(0) - time_data = json.load(open(_input)) - result = get_request_per_second(time_data) - time_keys = list(result.keys()) - time_keys.sort() - time_value = list(map(lambda x: result[x], time_keys)) - index_list = list(map(lambda x: cpt_request + x, range(len(time_keys)))) - cpt_request += len(index_list) - import itertools - average_data_y.extend( - [list(itertools.accumulate(result.values()))[-1]/len(result.values())]*len(result.values()) - ) - average_data_x.extend(index_list) - data = Scatter( - x=index_list, - y=time_value, - name=current_legend, - line=dict( - color="rgb({},{},{})".format(0, cpt_input*255/cpt_max, cpt_input*255/cpt_max) - ), - mode="lines+markers" - ) - result_data.append(data) - cpt_input += 1 - data = Scatter( - x=average_data_x, - y=average_data_y, - name="Average", - line=dict( - color="rgb({},{},{})".format(255, 0, 0) - ), - mode="lines" - ) - logger.debug(average_data_x) - logger.debug(average_data_y) - result_data.append(data) - plotly.offline.plot( - { - "data": result_data, - "layout": Layout( - title=title_generic, - xaxis=dict(title=title_x), - yaxis=dict(title=title_y), - font=dict( - size=15 - ) - ) - }, - filename=html_file, - ) - - -def write_global_throughput(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - logger.info("Writing global throughput graph") - _legends, secondary_legend = __get_legends(legend, len(input)) - result_data = [] - # html_file = "request_throughput_" + html_file - title_generic, title_x, title_y = __get_titles(title) - - cpt_input = 0 - cpt_global = 0 - cpt_max = 0 - average_data_x = [] - final_time_data = None - average_data_y = [] - continuous_data_x = [] - continuous_data_y = [] - for _i in input: - cpt_max += len(_i.split(",")) - - for data in input: - for _input in data.split(","): - logger.info("Analysing input {}".format(_input)) - # current_legend = _legends.pop(0) - _time_data = json.load(open(_input)) - result, average, time_data = get_latency(_time_data, plot_result) - if not final_time_data: - final_time_data = time_data - continuous_data_y.extend(result) - cpt_global += len(result) - _cpt = 0 - for item in result: - if len(average_data_y) <= _cpt: - average_data_y.append([item, ]) - average_data_x.append(_cpt) - else: - _list = average_data_y[_cpt] - _list.append(item) - average_data_y[_cpt] = _list - _cpt += 1 - # time_keys = list(map(lambda x: x['url'], result)) - # time_keys.sort() - # time_value = list(map(lambda x: result[x], time_keys)) - # index_list = list(map(lambda x: cpt_request + x, range(len(time_keys)))) - # cpt_request += len(index_list) - # average_data_y.extend( - # [list(itertools.accumulate(result.values()))[-1]/len(result.values())]*len(result.values()) - # ) - # average_data_x.extend(index_list) - cpt_input += 1 - data_continuous = Scatter( - x=list(range(len(continuous_data_y))), - y=continuous_data_y, - name="continuous_data_y", - line=dict( - color="rgb({},{},{})".format(0, 0, 255) - ), - mode="lines" - ) - for index, item in enumerate(average_data_y): - av = list(itertools.accumulate(item))[-1]/len(item) - average_data_y[index] = av - - average_data = [] - for cpt in range(len(time_data)): - average_data.append([average_data_y[cpt], time_data[cpt]]) - - sorted(average_data, key=lambda x: x[1]) - - average_data_x = [] - start_time = None - for item in map(lambda x: x[1], average_data): - if not start_time: - start_time = item - item = item - start_time - millis = int(str(item).split('.')[-1][:6]) - t = time.gmtime(int(item)) - average_data_x.append( - datetime.datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, millis) - ) - - data_average = Scatter( - x=average_data_x, - y=list(map(lambda x: x[0], average_data)), - name="Average", - line=dict( - color="rgb({},{},{})".format(0, 0, 255) - ), - mode="lines" - ) - plotly.offline.plot( - { - "data": [data_average, ], - "layout": Layout( - title=title_generic, - xaxis=dict(title=title_x), - yaxis=dict(title=title_y), - font=dict( - size=15 - ) - ) - }, - filename="average_throughput_" + html_file, - ) - plotly.offline.plot( - { - "data": [data_continuous, ], - "layout": Layout( - title=title_generic, - xaxis=dict(title=title_x), - yaxis=dict(title=title_y), - font=dict( - size=15 - ) - ) - }, - filename="continuous_throughput_" + html_file, - ) - - -def write_parallel_throughput(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None): - logger.info("Writing global throughput graph") - _legends, secondary_legend = __get_legends(legend, len(input)) - result_data = [] - title_generic, title_x, title_y = __get_titles(title) - - cpt_input = 0 - cpt_global = 0 - cpt_max = 0 - overhead_data = [] - MAX = 60 - for _i in input: - cpt_max += len(_i.split(",")) - for data in input: - for _input in data.split(","): - logger.info("Analysing input {}".format(_input)) - current_legend = _legends.pop(0) - _time_data = json.load(open(_input)) - result, average, time_data = get_latency(_time_data, plot_result) - result = result[:MAX] - cpt_global += len(result) - if not overhead_data: - for _data in result: - overhead_data.append(list()) - for _index, _data in enumerate(result): - _item = overhead_data[_index] - _item.append(_data) - overhead_data[_index] = _item - - data_continuous = Scatter( - x=__get_time_axis(time_data), - # x=list(range(len(result))), - y=result, - name=current_legend, - line=dict( - color="rgb({},{},{})".format(0, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max) - ), - mode="lines" - ) - cpt_input += 1 - result_data.append(data_continuous) - - for _index, _data in enumerate(overhead_data): - if len(_data) == 2: - _item = overhead_data[_index] - overhead_data[_index] = 1-_item[1]/_item[0] - data_overhead = Scatter( - x=__get_time_axis(time_data), - # x=list(range(len(result))), - y=overhead_data, - name="Overhead", - line=dict( - color="rgb({},{},{})".format(255, 0, 0) - ), - mode="lines" - ) - # result_data.append(data_overhead) - plotly.offline.plot( - { - "data": result_data, - "layout": Layout( - title=title_generic, - xaxis=dict(title=title_x), - yaxis=dict(title=title_y), - font=dict( - size=20 - ) - ) - }, - filename="parallel_throughput_" + html_file, - ) - - -def main(): - args, commands = init() - if args.command in commands: - commands[args.command]( - legend=args.legend, - input=args.input, - image_file=args.write_image, - html_file=args.write_html, - plot_result=args.plot_result, - title=args.titles - ) - else: - logger.error("Unkwnon command: {}".format(args.command)) - - -if __name__ == "__main__": - main() |