summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/drivers/net/enc28j60.c
blob: ec33764f5ecb93a791db1b63fa477cb29f056724 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

@media only all and (prefers-color-scheme: dark) {
.highlight .hll { background-color: #49483e }
.highlight .c { color: #75715e } /* Comment */
.highlight .err { color: #960050; background-color: #1e0010 } /* Error */
.highlight .k { color: #66d9ef } /* Keyword */
.highlight .l { color: #ae81ff } /* Literal */
.highlight .n { color: #f8f8f2 } /* Name */
.highlight .o { color: #f92672 } /* Operator */
.highlight .p { color: #f8f8f2 } /* Punctuation */
.highlight .ch { color: #75715e } /* Comment.Hashbang */
.highlight .cm { color: #75715e } /* Comment.Multiline */
.highlight .cp { color: #75715e } /* Comment.Preproc */
.highlight .cpf { color: #75715e } /* Comment.PreprocFile */
.highlight .c1 { color: #75715e } /* Comment.Single */
.highlight .cs { color: #75715e } /* Comment.Special */
.highlight .gd { color: #f92672 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gi { color: #a6e22e } /* Generic.Inserted */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #75715e } /* Generic.Subheading */
.highlight .kc { color: #66d9ef } /* Keyword.Constant */
.highlight .kd { color: #66d9ef } /* Keyword.Declaration */
.highlight .kn { color: #f92672 } /* Keyword.Namespace */
.highlight .kp { color: #66d9ef } /* Keyword.Pseudo */
.highlight .kr { color: #66d9ef } /* Keyword.Reserved */
.highlight .kt { color: #66d9ef } /* Keyword.Type */
.highlight .ld { color: #e6db74 } /* Literal.Date */
.highlight .m { color: #ae81ff } /* Literal.Number */
.highlight .s { color: #e6db74 } /* Literal.String */
.highlight .na { color: #a6e22e } /* Name.Attribute */
.highlight .nb { color: #f8f8f2 } /* Name.Builtin */
.highlight .nc { color: #a6e22e } /* Name.Class */
.highlight .no { color: #66d9ef } /* Name.Constant */
.highlight .nd { color: #a6e22e } /* Name.Decorator */
.highlight .ni { color: #f8f8f2 } /* Name.Entity */
.highlight .ne { color: #a6e22e } /* Name.Exception */
.highlight .nf { color: #a6e22e } /* Name.Function */
.highlight .nl { color: #f8f8f2 } /* Name.Label */
.highlight .nn { color: #f8f8f2 } /* Name.Namespace */
.highlight .nx { color: #a6e22e } /* Name.Other */
.highlight .py { color: #f8f8f2 } /* Name.Property */
.highlight .nt { color: #f92672 } /* Name.Tag */
.highlight .nv { color: #f8f8f2 } /* Name.Variable */
.highlight .ow { color: #f92672 } /* Operator.Word */
.highlight .w { color: #f8f8f2 } /* Text.Whitespace */
.highlight .mb { color: #ae81ff } /* Literal.Number.Bin */
.highlight .mf { color: #ae81ff } /* Literal.Number.Float */
.highlight .mh { color: #ae81ff } /* Literal.Number.Hex */
.highlight .mi { color: #ae81ff } /* Literal.Number.Integer */
.highlight .mo { color: #ae81ff } /* Literal.Number.Oct */
.highlight .sa { color: #e6db74 } /* Literal.String.Affix */
.highlight .sb { color: #e6db74 } /* Literal.String.Backtick */
.highlight .sc { color: #e6db74 } /* Literal.String.Char */
.highlight .dl { color: #e6db74 } /* Literal.String.Delimiter */
.highlight .sd { color: #e6db74 } /* Literal.String.Doc */
.highlight .s2 { color: #e6db74 } /* Literal.String.Double */
.highlight .se { color: #ae81ff } /* Literal.String.Escape */
.highlight .sh { color: #e6db74 } /* Literal.String.Heredoc */
.highlight .si { color: #e6db74 } /* Literal.String.Interpol */
.highlight .sx { color: #e6db74 } /* Literal.String.Other */
.highlight .sr { color: #e6db74 } /* Literal.String.Regex */
.highlight .s1 { color: #e6db74 } /* Literal.String.Single */
.highlight .ss { color: #e6db74 } /* Literal.String.Symbol */
.highlight .bp { color: #f8f8f2 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #a6e22e } /* Name.Function.Magic */
.highlight .vc { color: #f8f8f2 } /* Name.Variable.Class */
.highlight .vg { color: #f8f8f2 } /* Name.Variable.Global */
.highlight .vi { color: #f8f8f2 } /* Name.Variable.Instance */
.highlight .vm { color: #f8f8f2 } /* Name.Variable.Magic */
.highlight .il { color: #ae81ff } /* Literal.Number.Integer.Long */
}
@media (prefers-color-scheme: light) {
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
}
#
# Kconfig options for Bestcomm
#

config PPC_BESTCOMM
	tristate "Bestcomm DMA engine support"
	depends on PPC_MPC52xx
	default n
	select PPC_LIB_RHEAP
	help
	  BestComm is the name of the communication coprocessor found
	  on the Freescale MPC5200 family of processor.  Its usage is
	  optional for some drivers (like ATA), but required for
	  others (like FEC).

	  If you want to use drivers that require DMA operations,
	  answer Y or M. Otherwise say N.

config PPC_BESTCOMM_ATA
	tristate
	depends on PPC_BESTCOMM
	help
	  This option enables the support for the ATA task.

config PPC_BESTCOMM_FEC
	tristate
	depends on PPC_BESTCOMM
	help
	  This option enables the support for the FEC tasks.

config PPC_BESTCOMM_GEN_BD
	tristate
	depends on PPC_BESTCOMM
	help
	  This option enables the support for the GenBD tasks.
href='#n391'>391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/*
 * (C) Copyright 2010
 * Reinhard Meyer, EMK Elektronik, reinhard.meyer@emk-elektronik.de
 * Martin Krause, Martin.Krause@tqs.de
 * reworked original enc28j60.c
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <net.h>
#include <spi.h>
#include <malloc.h>
#include <netdev.h>
#include <miiphy.h>
#include "enc28j60.h"

/*
 * IMPORTANT: spi_claim_bus() and spi_release_bus()
 * are called at begin and end of each of the following functions:
 * enc_miiphy_read(), enc_miiphy_write(), enc_write_hwaddr(),
 * enc_init(), enc_recv(), enc_send(), enc_halt()
 * ALL other functions assume that the bus has already been claimed!
 * Since NetReceive() might call enc_send() in return, the bus must be
 * released, NetReceive() called and claimed again.
 */

/*
 * Controller memory layout.
 * We only allow 1 frame for transmission and reserve the rest
 * for reception to handle as many broadcast packets as possible.
 * Also use the memory from 0x0000 for receiver buffer. See errata pt. 5
 * 0x0000 - 0x19ff 6656 bytes receive buffer
 * 0x1a00 - 0x1fff 1536 bytes transmit buffer =
 * control(1)+frame(1518)+status(7)+reserve(10).
 */
#define ENC_RX_BUF_START	0x0000
#define ENC_RX_BUF_END		0x19ff
#define ENC_TX_BUF_START	0x1a00
#define ENC_TX_BUF_END		0x1fff
#define ENC_MAX_FRM_LEN		1518
#define RX_RESET_COUNTER	1000

/*
 * For non data transfer functions, like phy read/write, set hwaddr, init
 * we do not need a full, time consuming init including link ready wait.
 * This enum helps to bring the chip through the minimum necessary inits.
 */
enum enc_initstate {none=0, setupdone, linkready};
typedef struct enc_device {
	struct eth_device	*dev;	/* back pointer */
	struct spi_slave	*slave;
	int			rx_reset_counter;
	u16			next_pointer;
	u8			bank;	/* current bank in enc28j60 */
	enum enc_initstate	initstate;
} enc_dev_t;

/*
 * enc_bset:		set bits in a common register
 * enc_bclr:		clear bits in a common register
 *
 * making the reg parameter u8 will give a compile time warning if the
 * functions are called with a register not accessible in all Banks
 */
static void enc_bset(enc_dev_t *enc, const u8 reg, const u8 data)
{
	u8 dout[2];

	dout[0] = CMD_BFS(reg);
	dout[1] = data;
	spi_xfer(enc->slave, 2 * 8, dout, NULL,
		SPI_XFER_BEGIN | SPI_XFER_END);
}

static void enc_bclr(enc_dev_t *enc, const u8 reg, const u8 data)
{
	u8 dout[2];

	dout[0] = CMD_BFC(reg);
	dout[1] = data;
	spi_xfer(enc->slave, 2 * 8, dout, NULL,
		SPI_XFER_BEGIN | SPI_XFER_END);
}

/*
 * high byte of the register contains bank number:
 * 0: no bank switch necessary
 * 1: switch to bank 0
 * 2: switch to bank 1
 * 3: switch to bank 2
 * 4: switch to bank 3
 */
static void enc_set_bank(enc_dev_t *enc, const u16 reg)
{
	u8 newbank = reg >> 8;

	if (newbank == 0 || newbank == enc->bank)
		return;
	switch (newbank) {
	case 1:
		enc_bclr(enc, CTL_REG_ECON1,
			ENC_ECON1_BSEL0 | ENC_ECON1_BSEL1);
		break;
	case 2:
		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_BSEL0);
		enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_BSEL1);
		break;
	case 3:
		enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_BSEL0);
		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_BSEL1);
		break;
	case 4:
		enc_bset(enc, CTL_REG_ECON1,
			ENC_ECON1_BSEL0 | ENC_ECON1_BSEL1);
		break;
	}
	enc->bank = newbank;
}

/*
 * local functions to access SPI
 *
 * reg: register inside ENC28J60
 * data: 8/16 bits to write
 * c: number of retries
 *
 * enc_r8:		read 8 bits
 * enc_r16:		read 16 bits
 * enc_w8:		write 8 bits
 * enc_w16:		write 16 bits
 * enc_w8_retry:	write 8 bits, verify and retry
 * enc_rbuf:		read from ENC28J60 into buffer
 * enc_wbuf:		write from buffer into ENC28J60
 */

/*
 * MAC and MII registers need a 3 byte SPI transfer to read,
 * all other registers need a 2 byte SPI transfer.
 */
static int enc_reg2nbytes(const u16 reg)
{
	/* check if MAC or MII register */
	return ((reg >= CTL_REG_MACON1 && reg <= CTL_REG_MIRDH) ||
		(reg >= CTL_REG_MAADR1 && reg <= CTL_REG_MAADR4) ||
		(reg == CTL_REG_MISTAT)) ? 3 : 2;
}

/*
 * Read a byte register
 */
static u8 enc_r8(enc_dev_t *enc, const u16 reg)
{
	u8 dout[3];
	u8 din[3];
	int nbytes = enc_reg2nbytes(reg);

	enc_set_bank(enc, reg);
	dout[0] = CMD_RCR(reg);
	spi_xfer(enc->slave, nbytes * 8, dout, din,
		SPI_XFER_BEGIN | SPI_XFER_END);
	return din[nbytes-1];
}

/*
 * Read a L/H register pair and return a word.
 * Must be called with the L register's address.
 */
static u16 enc_r16(enc_dev_t *enc, const u16 reg)
{
	u8 dout[3];
	u8 din[3];
	u16 result;
	int nbytes = enc_reg2nbytes(reg);

	enc_set_bank(enc, reg);
	dout[0] = CMD_RCR(reg);
	spi_xfer(enc->slave, nbytes * 8, dout, din,
		SPI_XFER_BEGIN | SPI_XFER_END);
	result = din[nbytes-1];
	dout[0]++; /* next register */
	spi_xfer(enc->slave, nbytes * 8, dout, din,
		SPI_XFER_BEGIN | SPI_XFER_END);
	result |= din[nbytes-1] << 8;
	return result;
}

/*
 * Write a byte register
 */
static void enc_w8(enc_dev_t *enc, const u16 reg, const u8 data)
{
	u8 dout[2];

	enc_set_bank(enc, reg);
	dout[0] = CMD_WCR(reg);
	dout[1] = data;
	spi_xfer(enc->slave, 2 * 8, dout, NULL,
		SPI_XFER_BEGIN | SPI_XFER_END);
}

/*
 * Write a L/H register pair.
 * Must be called with the L register's address.
 */
static void enc_w16(enc_dev_t *enc, const u16 reg, const u16 data)
{
	u8 dout[2];

	enc_set_bank(enc, reg);
	dout[0] = CMD_WCR(reg);
	dout[1] = data;
	spi_xfer(enc->slave, 2 * 8, dout, NULL,
		SPI_XFER_BEGIN | SPI_XFER_END);
	dout[0]++; /* next register */
	dout[1] = data >> 8;
	spi_xfer(enc->slave, 2 * 8, dout, NULL,
		SPI_XFER_BEGIN | SPI_XFER_END);
}

/*
 * Write a byte register, verify and retry
 */
static void enc_w8_retry(enc_dev_t *enc, const u16 reg, const u8 data, const int c)
{
	u8 dout[2];
	u8 readback;
	int i;

	enc_set_bank(enc, reg);
	for (i = 0; i < c; i++) {
		dout[0] = CMD_WCR(reg);
		dout[1] = data;
		spi_xfer(enc->slave, 2 * 8, dout, NULL,
			SPI_XFER_BEGIN | SPI_XFER_END);
		readback = enc_r8(enc, reg);
		if (readback == data)
			break;
		/* wait 1ms */
		udelay(1000);
	}
	if (i == c) {
		printf("%s: write reg 0x%03x failed\n", enc->dev->name, reg);
	}
}

/*
 * Read ENC RAM into buffer
 */
static void enc_rbuf(enc_dev_t *enc, const u16 length, u8 *buf)
{
	u8 dout[1];

	dout[0] = CMD_RBM;
	spi_xfer(enc->slave, 8, dout, NULL, SPI_XFER_BEGIN);
	spi_xfer(enc->slave, length * 8, NULL, buf, SPI_XFER_END);
#ifdef DEBUG
	puts("Rx:\n");
	print_buffer(0, buf, 1, length, 0);
#endif
}

/*
 * Write buffer into ENC RAM
 */
static void enc_wbuf(enc_dev_t *enc, const u16 length, const u8 *buf, const u8 control)
{
	u8 dout[2];
	dout[0] = CMD_WBM;
	dout[1] = control;
	spi_xfer(enc->slave, 2 * 8, dout, NULL, SPI_XFER_BEGIN);
	spi_xfer(enc->slave, length * 8, buf, NULL, SPI_XFER_END);
#ifdef DEBUG
	puts("Tx:\n");
	print_buffer(0, buf, 1, length, 0);
#endif
}

/*
 * Try to claim the SPI bus.
 * Print error message on failure.
 */
static int enc_claim_bus(enc_dev_t *enc)
{
	int rc = spi_claim_bus(enc->slave);
	if (rc)
		printf("%s: failed to claim SPI bus\n", enc->dev->name);
	return rc;
}

/*
 * Release previously claimed SPI bus.
 * This function is mainly for symmetry to enc_claim_bus().
 * Let the toolchain decide to inline it...
 */
static void enc_release_bus(enc_dev_t *enc)
{
	spi_release_bus(enc->slave);
}

/*
 * Read PHY register
 */
static u16 enc_phy_read(enc_dev_t *enc, const u8 addr)
{
	uint64_t etime;
	u8 status;

	enc_w8(enc, CTL_REG_MIREGADR, addr);
	enc_w8(enc, CTL_REG_MICMD, ENC_MICMD_MIIRD);
	/* 1 second timeout - only happens on hardware problem */
	etime = get_ticks() + get_tbclk();
	/* poll MISTAT.BUSY bit until operation is complete */
	do
	{
		status = enc_r8(enc, CTL_REG_MISTAT);
	} while (get_ticks() <= etime && (status & ENC_MISTAT_BUSY));
	if (status & ENC_MISTAT_BUSY) {
		printf("%s: timeout reading phy\n", enc->dev->name);
		return 0;
	}
	enc_w8(enc, CTL_REG_MICMD, 0);
	return enc_r16(enc, CTL_REG_MIRDL);
}

/*
 * Write PHY register
 */
static void enc_phy_write(enc_dev_t *enc, const u8 addr, const u16 data)
{
	uint64_t etime;
	u8 status;

	enc_w8(enc, CTL_REG_MIREGADR, addr);
	enc_w16(enc, CTL_REG_MIWRL, data);
	/* 1 second timeout - only happens on hardware problem */
	etime = get_ticks() + get_tbclk();
	/* poll MISTAT.BUSY bit until operation is complete */
	do
	{
		status = enc_r8(enc, CTL_REG_MISTAT);
	} while (get_ticks() <= etime && (status & ENC_MISTAT_BUSY));
	if (status & ENC_MISTAT_BUSY) {
		printf("%s: timeout writing phy\n", enc->dev->name);
		return;
	}
}

/*
 * Verify link status, wait if necessary
 *
 * Note: with a 10 MBit/s only PHY there is no autonegotiation possible,
 * half/full duplex is a pure setup matter. For the time being, this driver
 * will setup in half duplex mode only.
 */
static int enc_phy_link_wait(enc_dev_t *enc)
{
	u16 status;
	int duplex;
	uint64_t etime;

#ifdef CONFIG_ENC_SILENTLINK
	/* check if we have a link, then just return */
	status = enc_phy_read(enc, PHY_REG_PHSTAT1);
	if (status & ENC_PHSTAT1_LLSTAT)
		return 0;
#endif

	/* wait for link with 1 second timeout */
	etime = get_ticks() + get_tbclk();
	while (get_ticks() <= etime) {
		status = enc_phy_read(enc, PHY_REG_PHSTAT1);
		if (status & ENC_PHSTAT1_LLSTAT) {
			/* now we have a link */
			status = enc_phy_read(enc, PHY_REG_PHSTAT2);
			duplex = (status & ENC_PHSTAT2_DPXSTAT) ? 1 : 0;
			printf("%s: link up, 10Mbps %s-duplex\n",
				enc->dev->name, duplex ? "full" : "half");
			return 0;
		}
		udelay(1000);
	}

	/* timeout occured */
	printf("%s: link down\n", enc->dev->name);
	return 1;
}

/*
 * This function resets the receiver only.
 */
static void enc_reset_rx(enc_dev_t *enc)
{
	u8 econ1;

	econ1 = enc_r8(enc, CTL_REG_ECON1);
	if ((econ1 & ENC_ECON1_RXRST) == 0) {
		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXRST);
		enc->rx_reset_counter = RX_RESET_COUNTER;
	}
}

/*
 * Reset receiver and reenable it.
 */
static void enc_reset_rx_call(enc_dev_t *enc)
{
	enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_RXRST);
	enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
}

/*
 * Copy a packet from the receive ring and forward it to
 * the protocol stack.
 */
static void enc_receive(enc_dev_t *enc)
{
	u8 *packet = (u8 *)NetRxPackets[0];
	u16 pkt_len;
	u16 copy_len;
	u16 status;
	u8 pkt_cnt = 0;
	u16 rxbuf_rdpt;
	u8 hbuf[6];

	enc_w16(enc, CTL_REG_ERDPTL, enc->next_pointer);
	do {
		enc_rbuf(enc, 6, hbuf);
		enc->next_pointer = hbuf[0] | (hbuf[1] << 8);
		pkt_len = hbuf[2] | (hbuf[3] << 8);
		status = hbuf[4] | (hbuf[5] << 8);
		debug("next_pointer=$%04x pkt_len=%u status=$%04x\n",
			enc->next_pointer, pkt_len, status);
		if (pkt_len <= ENC_MAX_FRM_LEN)
			copy_len = pkt_len;
		else
			copy_len = 0;
		if ((status & (1L << 7)) == 0) /* check Received Ok bit */
			copy_len = 0;
		/* check if next pointer is resonable */
		if (enc->next_pointer >= ENC_TX_BUF_START)
			copy_len = 0;
		if (copy_len > 0) {
			enc_rbuf(enc, copy_len, packet);
		}
		/* advance read pointer to next pointer */
		enc_w16(enc, CTL_REG_ERDPTL, enc->next_pointer);
		/* decrease packet counter */
		enc_bset(enc, CTL_REG_ECON2, ENC_ECON2_PKTDEC);
		/*
		 * Only odd values should be written to ERXRDPTL,
		 * see errata B4 pt.13
		 */
		rxbuf_rdpt = enc->next_pointer - 1;
		if ((rxbuf_rdpt < enc_r16(enc, CTL_REG_ERXSTL)) ||
			(rxbuf_rdpt > enc_r16(enc, CTL_REG_ERXNDL))) {
			enc_w16(enc, CTL_REG_ERXRDPTL,
				enc_r16(enc, CTL_REG_ERXNDL));
		} else {
			enc_w16(enc, CTL_REG_ERXRDPTL, rxbuf_rdpt);
		}
		/* read pktcnt */
		pkt_cnt = enc_r8(enc, CTL_REG_EPKTCNT);
		if (copy_len == 0) {
			(void)enc_r8(enc, CTL_REG_EIR);
			enc_reset_rx(enc);
			printf("%s: receive copy_len=0\n", enc->dev->name);
			continue;
		}
		/*
		 * Because NetReceive() might call enc_send(), we need to
		 * release the SPI bus, call NetReceive(), reclaim the bus
		 */
		enc_release_bus(enc);
		NetReceive(packet, pkt_len);
		if (enc_claim_bus(enc))
			return;
		(void)enc_r8(enc, CTL_REG_EIR);
	} while (pkt_cnt);
	/* Use EPKTCNT not EIR.PKTIF flag, see errata pt. 6 */
}

/*
 * Poll for completely received packets.
 */
static void enc_poll(enc_dev_t *enc)
{
	u8 eir_reg;
	u8 pkt_cnt;

#ifdef CONFIG_USE_IRQ
	/* clear global interrupt enable bit in enc28j60 */
	enc_bclr(enc, CTL_REG_EIE, ENC_EIE_INTIE);
#endif
	(void)enc_r8(enc, CTL_REG_ESTAT);
	eir_reg = enc_r8(enc, CTL_REG_EIR);
	if (eir_reg & ENC_EIR_TXIF) {
		/* clear TXIF bit in EIR */
		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_TXIF);
	}
	/* We have to use pktcnt and not pktif bit, see errata pt. 6 */
	pkt_cnt = enc_r8(enc, CTL_REG_EPKTCNT);
	if (pkt_cnt > 0) {
		if ((eir_reg & ENC_EIR_PKTIF) == 0) {
			debug("enc_poll: pkt cnt > 0, but pktif not set\n");
		}
		enc_receive(enc);
		/*
		 * clear PKTIF bit in EIR, this should not need to be done
		 * but it seems like we get problems if we do not
		 */
		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_PKTIF);
	}
	if (eir_reg & ENC_EIR_RXERIF) {
		printf("%s: rx error\n", enc->dev->name);
		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_RXERIF);
	}
	if (eir_reg & ENC_EIR_TXERIF) {
		printf("%s: tx error\n", enc->dev->name);
		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_TXERIF);
	}
#ifdef CONFIG_USE_IRQ
	/* set global interrupt enable bit in enc28j60 */
	enc_bset(enc, CTL_REG_EIE, ENC_EIE_INTIE);
#endif
}

/*
 * Completely Reset the ENC
 */
static void enc_reset(enc_dev_t *enc)
{
	u8 dout[1];

	dout[0] = CMD_SRC;
	spi_xfer(enc->slave, 8, dout, NULL,
		SPI_XFER_BEGIN | SPI_XFER_END);
	/* sleep 1 ms. See errata pt. 2 */
	udelay(1000);
}

/*
 * Initialisation data for most of the ENC registers
 */
static const u16 enc_initdata[] = {
	/*
	 * Setup the buffer space. The reset values are valid for the
	 * other pointers.
	 *
	 * We shall not write to ERXST, see errata pt. 5. Instead we
	 * have to make sure that ENC_RX_BUS_START is 0.
	 */
	CTL_REG_ERXSTL, ENC_RX_BUF_START,
	CTL_REG_ERXSTH, ENC_RX_BUF_START >> 8,
	CTL_REG_ERXNDL, ENC_RX_BUF_END,
	CTL_REG_ERXNDH, ENC_RX_BUF_END >> 8,
	CTL_REG_ERDPTL, ENC_RX_BUF_START,
	CTL_REG_ERDPTH, ENC_RX_BUF_START >> 8,
	/*
	 * Set the filter to receive only good-CRC, unicast and broadcast
	 * frames.
	 * Note: some DHCP servers return their answers as broadcasts!
	 * So its unwise to remove broadcast from this. This driver
	 * might incur receiver overruns with packet loss on a broadcast
	 * flooded network.
	 */
	CTL_REG_ERXFCON, ENC_RFR_BCEN | ENC_RFR_UCEN | ENC_RFR_CRCEN,

	/* enable MAC to receive frames */
	CTL_REG_MACON1,
		ENC_MACON1_MARXEN | ENC_MACON1_TXPAUS | ENC_MACON1_RXPAUS,

	/* configure pad, tx-crc and duplex */
	CTL_REG_MACON3,
		ENC_MACON3_PADCFG0 | ENC_MACON3_TXCRCEN |
		ENC_MACON3_FRMLNEN,

	/* Allow infinite deferals if the medium is continously busy */
	CTL_REG_MACON4, ENC_MACON4_DEFER,

	/* Late collisions occur beyond 63 bytes */
	CTL_REG_MACLCON2, 63,

	/*
	 * Set (low byte) Non-Back-to_Back Inter-Packet Gap.
	 * Recommended 0x12
	 */
	CTL_REG_MAIPGL, 0x12,

	/*
	 * Set (high byte) Non-Back-to_Back Inter-Packet Gap.
	 * Recommended 0x0c for half-duplex. Nothing for full-duplex
	 */
	CTL_REG_MAIPGH, 0x0C,

	/* set maximum frame length */
	CTL_REG_MAMXFLL, ENC_MAX_FRM_LEN,
	CTL_REG_MAMXFLH, ENC_MAX_FRM_LEN >> 8,

	/*
	 * Set MAC back-to-back inter-packet gap.
	 * Recommended 0x12 for half duplex
	 * and 0x15 for full duplex.
	 */
	CTL_REG_MABBIPG, 0x12,

	/* end of table */
	0xffff
};

/*
 * Wait for the XTAL oscillator to become ready
 */
static int enc_clock_wait(enc_dev_t *enc)
{
	uint64_t etime;

	/* one second timeout */
	etime = get_ticks() + get_tbclk();

	/*
	 * Wait for CLKRDY to become set (i.e., check that we can
	 * communicate with the ENC)
	 */
	do
	{
		if (enc_r8(enc, CTL_REG_ESTAT) & ENC_ESTAT_CLKRDY)
			return 0;
	} while (get_ticks() <= etime);

	printf("%s: timeout waiting for CLKRDY\n", enc->dev->name);
	return -1;
}

/*
 * Write the MAC address into the ENC
 */
static int enc_write_macaddr(enc_dev_t *enc)
{
	unsigned char *p = enc->dev->enetaddr;

	enc_w8_retry(enc, CTL_REG_MAADR5, *p++, 5);
	enc_w8_retry(enc, CTL_REG_MAADR4, *p++, 5);
	enc_w8_retry(enc, CTL_REG_MAADR3, *p++, 5);
	enc_w8_retry(enc, CTL_REG_MAADR2, *p++, 5);
	enc_w8_retry(enc, CTL_REG_MAADR1, *p++, 5);
	enc_w8_retry(enc, CTL_REG_MAADR0, *p, 5);
	return 0;
}

/*
 * Setup most of the ENC registers
 */
static int enc_setup(enc_dev_t *enc)
{
	u16 phid1 = 0;
	u16 phid2 = 0;
	const u16 *tp;

	/* reset enc struct values */
	enc->next_pointer = ENC_RX_BUF_START;
	enc->rx_reset_counter = RX_RESET_COUNTER;
	enc->bank = 0xff;	/* invalidate current bank in enc28j60 */

	/* verify PHY identification */
	phid1 = enc_phy_read(enc, PHY_REG_PHID1);
	phid2 = enc_phy_read(enc, PHY_REG_PHID2) & ENC_PHID2_MASK;
	if (phid1 != ENC_PHID1_VALUE || phid2 != ENC_PHID2_VALUE) {
		printf("%s: failed to identify PHY. Found %04x:%04x\n",
			enc->dev->name, phid1, phid2);
		return -1;
	}

	/* now program registers */
	for (tp = enc_initdata; *tp != 0xffff; tp += 2)
		enc_w8_retry(enc, tp[0], tp[1], 10);

	/*
	 * Prevent automatic loopback of data beeing transmitted by setting
	 * ENC_PHCON2_HDLDIS
	 */
	enc_phy_write(enc, PHY_REG_PHCON2, (1<<8));

	/*
	 * LEDs configuration
	 * LEDA: LACFG = 0100 -> display link status
	 * LEDB: LBCFG = 0111 -> display TX & RX activity
	 * STRCH = 1 -> LED pulses
	 */
	enc_phy_write(enc, PHY_REG_PHLCON, 0x0472);

	/* Reset PDPXMD-bit => half duplex */
	enc_phy_write(enc, PHY_REG_PHCON1, 0);

#ifdef CONFIG_USE_IRQ
	/* enable interrupts */
	enc_bset(enc, CTL_REG_EIE, ENC_EIE_PKTIE);
	enc_bset(enc, CTL_REG_EIE, ENC_EIE_TXIE);
	enc_bset(enc, CTL_REG_EIE, ENC_EIE_RXERIE);
	enc_bset(enc, CTL_REG_EIE, ENC_EIE_TXERIE);
	enc_bset(enc, CTL_REG_EIE, ENC_EIE_INTIE);
#endif

	return 0;
}

/*
 * Check if ENC has been initialized.
 * If not, try to initialize it.
 * Remember initialized state in struct.
 */
static int enc_initcheck(enc_dev_t *enc, const enum enc_initstate requiredstate)
{
	if (enc->initstate >= requiredstate)
		return 0;

	if (enc->initstate < setupdone) {
		/* Initialize the ENC only */
		enc_reset(enc);
		/* if any of functions fails, skip the rest and return an error */
		if (enc_clock_wait(enc) || enc_setup(enc) || enc_write_macaddr(enc)) {
			return -1;
		}
		enc->initstate = setupdone;
	}
	/* if that's all we need, return here */
	if (enc->initstate >= requiredstate)
		return 0;

	/* now wait for link ready condition */
	if (enc_phy_link_wait(enc)) {
		return -1;
	}
	enc->initstate = linkready;
	return 0;
}

#if defined(CONFIG_CMD_MII)
/*
 * Read a PHY register.
 *
 * This function is registered with miiphy_register().
 */
int enc_miiphy_read(const char *devname, u8 phy_adr, u8 reg, u16 *value)
{
	struct eth_device *dev = eth_get_dev_by_name(devname);
	enc_dev_t *enc;

	if (!dev || phy_adr != 0)
		return -1;

	enc = dev->priv;
	if (enc_claim_bus(enc))
		return -1;
	if (enc_initcheck(enc, setupdone)) {
		enc_release_bus(enc);
		return -1;
	}
	*value = enc_phy_read(enc, reg);
	enc_release_bus(enc);
	return 0;
}

/*
 * Write a PHY register.
 *
 * This function is registered with miiphy_register().
 */
int enc_miiphy_write(const char *devname, u8 phy_adr, u8 reg, u16 value)
{
	struct eth_device *dev = eth_get_dev_by_name(devname);
	enc_dev_t *enc;

	if (!dev || phy_adr != 0)
		return -1;

	enc = dev->priv;
	if (enc_claim_bus(enc))
		return -1;
	if (enc_initcheck(enc, setupdone)) {
		enc_release_bus(enc);
		return -1;
	}
	enc_phy_write(enc, reg, value);
	enc_release_bus(enc);
	return 0;
}
#endif

/*
 * Write hardware (MAC) address.
 *
 * This function entered into eth_device structure.
 */
static int enc_write_hwaddr(struct eth_device *dev)
{
	enc_dev_t *enc = dev->priv;

	if (enc_claim_bus(enc))
		return -1;
	if (enc_initcheck(enc, setupdone)) {
		enc_release_bus(enc);
		return -1;
	}
	enc_release_bus(enc);
	return 0;
}

/*
 * Initialize ENC28J60 for use.
 *
 * This function entered into eth_device structure.
 */
static int enc_init(struct eth_device *dev, bd_t *bis)
{
	enc_dev_t *enc = dev->priv;

	if (enc_claim_bus(enc))
		return -1;
	if (enc_initcheck(enc, linkready)) {
		enc_release_bus(enc);
		return -1;
	}
	/* enable receive */
	enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
	enc_release_bus(enc);
	return 0;
}

/*
 * Check for received packets.
 *
 * This function entered into eth_device structure.
 */
static int enc_recv(struct eth_device *dev)
{
	enc_dev_t *enc = dev->priv;

	if (enc_claim_bus(enc))
		return -1;
	if (enc_initcheck(enc, linkready)) {
		enc_release_bus(enc);
		return -1;
	}
	/* Check for dead receiver */
	if (enc->rx_reset_counter > 0)
		enc->rx_reset_counter--;
	else
		enc_reset_rx_call(enc);
	enc_poll(enc);
	enc_release_bus(enc);
	return 0;
}

/*
 * Send a packet.
 *
 * This function entered into eth_device structure.
 *
 * Should we wait here until we have a Link? Or shall we leave that to
 * protocol retries?
 */
static int enc_send(
	struct eth_device *dev,
	void *packet,
	int length)
{
	enc_dev_t *enc = dev->priv;

	if (enc_claim_bus(enc))
		return -1;
	if (enc_initcheck(enc, linkready)) {
		enc_release_bus(enc);
		return -1;
	}
	/* setup transmit pointers */
	enc_w16(enc, CTL_REG_EWRPTL, ENC_TX_BUF_START);
	enc_w16(enc, CTL_REG_ETXNDL, length + ENC_TX_BUF_START);
	enc_w16(enc, CTL_REG_ETXSTL, ENC_TX_BUF_START);
	/* write packet to ENC */
	enc_wbuf(enc, length, (u8 *) packet, 0x00);
	/*
	 * Check that the internal transmit logic has not been altered
	 * by excessive collisions. Reset transmitter if so.
	 * See Errata B4 12 and 14.
	 */
	if (enc_r8(enc, CTL_REG_EIR) & ENC_EIR_TXERIF) {
		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_TXRST);
		enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_TXRST);
	}
	enc_bclr(enc, CTL_REG_EIR, (ENC_EIR_TXERIF | ENC_EIR_TXIF));
	/* start transmitting */
	enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_TXRTS);
	enc_release_bus(enc);
	return 0;
}

/*
 * Finish use of ENC.
 *
 * This function entered into eth_device structure.
 */
static void enc_halt(struct eth_device *dev)
{
	enc_dev_t *enc = dev->priv;

	if (enc_claim_bus(enc))
		return;
	/* Just disable receiver */
	enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
	enc_release_bus(enc);
}

/*
 * This is the only exported function.
 *
 * It may be called several times with different bus:cs combinations.
 */
int enc28j60_initialize(unsigned int bus, unsigned int cs,
	unsigned int max_hz, unsigned int mode)
{
	struct eth_device *dev;
	enc_dev_t *enc;

	/* try to allocate, check and clear eth_device object */
	dev = malloc(sizeof(*dev));
	if (!dev) {
		return -1;
	}
	memset(dev, 0, sizeof(*dev));

	/* try to allocate, check and clear enc_dev_t object */
	enc = malloc(sizeof(*enc));
	if (!enc) {
		free(dev);
		return -1;
	}
	memset(enc, 0, sizeof(*enc));

	/* try to setup the SPI slave */
	enc->slave = spi_setup_slave(bus, cs, max_hz, mode);
	if (!enc->slave) {
		printf("enc28j60: invalid SPI device %i:%i\n", bus, cs);
		free(enc);
		free(dev);
		return -1;
	}

	enc->dev = dev;
	/* now fill the eth_device object */
	dev->priv = enc;
	dev->init = enc_init;
	dev->halt = enc_halt;
	dev->send = enc_send;
	dev->recv = enc_recv;
	dev->write_hwaddr = enc_write_hwaddr;
	sprintf(dev->name, "enc%i.%i", bus, cs);
	eth_register(dev);
#if defined(CONFIG_CMD_MII)
	miiphy_register(dev->name, enc_miiphy_read, enc_miiphy_write);
#endif
	return 0;
}