1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include <stdio.h>
#include <cpu.h>
#include <pci.h>
#include "device.h"
#include "rtas.h"
#include "debug.h"
#include "device.h"
#include <stdint.h>
#include <x86emu/x86emu.h>
#include <time.h>
#include "io.h"
//defined in net-snk/kernel/timer.c
extern uint64_t get_time(void);
uint32_t pci_cfg_read(X86EMU_pioAddr addr, uint8_t size);
void pci_cfg_write(X86EMU_pioAddr addr, uint32_t val, uint8_t size);
uint8_t handle_port_61h(void);
uint8_t
my_inb(X86EMU_pioAddr addr)
{
uint8_t rval = 0xFF;
uint64_t translated_addr = addr;
uint8_t translated = dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successful, access Device I/O (BAR or Legacy...)
DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __FUNCTION__,
addr);
//DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
rval = read_io((void *)translated_addr, 1);
DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %02x\n", __FUNCTION__,
addr, rval);
return rval;
} else {
switch (addr) {
case 0x61:
//8254 KB Controller / Timer Port
rval = handle_port_61h();
//DEBUG_PRINTF_IO("%s(%04x) KB / Timer Port B --> %02x\n", __FUNCTION__, addr, rval);
return rval;
break;
case 0xCFC:
case 0xCFD:
case 0xCFE:
case 0xCFF:
// PCI Config Mechanism 1 Ports
return (uint8_t) pci_cfg_read(addr, 1);
break;
case 0x0a:
CHECK_DBG(DEBUG_INTR) {
X86EMU_trace_on();
}
M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
//HALT_SYS();
// no break, intentional fall-through to default!!
default:
DEBUG_PRINTF_IO
("%s(%04x) reading from bios_device.io_buffer\n",
__FUNCTION__, addr);
rval = *((uint8_t *) (bios_device.io_buffer + addr));
DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %02x\n",
__FUNCTION__, addr, rval);
return rval;
break;
}
}
}
uint16_t
my_inw(X86EMU_pioAddr addr)
{
uint64_t translated_addr = addr;
uint8_t translated = dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successful, access Device I/O (BAR or Legacy...)
DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __FUNCTION__,
addr);
//DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
uint16_t rval;
if ((translated_addr & (uint64_t) 0x1) == 0) {
// 16 bit aligned access...
uint16_t tempval = read_io((void *)translated_addr, 2);
//little endian conversion
rval = in16le((void *) &tempval);
} else {
// unaligned access, read single bytes, little-endian
rval = (read_io((void *)translated_addr, 1) << 8)
| (read_io((void *)(translated_addr + 1), 1));
}
DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %04x\n", __FUNCTION__,
addr, rval);
return rval;
} else {
switch (addr) {
case 0xCFC:
case 0xCFE:
//PCI Config Mechanism 1
return (uint16_t) pci_cfg_read(addr, 2);
break;
default:
DEBUG_PRINTF_IO
("%s(%04x) reading from bios_device.io_buffer\n",
__FUNCTION__, addr);
uint16_t rval =
in16le((void *) bios_device.io_buffer + addr);
DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %04x\n",
__FUNCTION__, addr, rval);
return rval;
break;
}
}
}
uint32_t
my_inl(X86EMU_pioAddr addr)
{
uint64_t translated_addr = addr;
uint8_t translated = dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successful, access Device I/O (BAR or Legacy...)
DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __FUNCTION__,
addr);
//DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
uint32_t rval;
if ((translated_addr & (uint64_t) 0x3) == 0) {
// 32 bit aligned access...
uint32_t tempval = read_io((void *) translated_addr, 4);
//little endian conversion
rval = in32le((void *) &tempval);
} else {
// unaligned access, read single bytes, little-endian
rval = (read_io((void *)(translated_addr), 1) << 24)
| (read_io((void *)(translated_addr + 1), 1) << 16)
| (read_io((void *)(translated_addr + 2), 1) << 8)
| (read_io((void *)(translated_addr + 3), 1));
}
DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %08x\n", __FUNCTION__,
addr, rval);
return rval;
} else {
switch (addr) {
case 0xCFC:
//PCI Config Mechanism 1
return pci_cfg_read(addr, 4);
break;
default:
DEBUG_PRINTF_IO
("%s(%04x) reading from bios_device.io_buffer\n",
__FUNCTION__, addr);
uint32_t rval =
in32le((void *) bios_device.io_buffer + addr);
DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %08x\n",
__FUNCTION__, addr, rval);
return rval;
break;
}
}
}
void
my_outb(X86EMU_pioAddr addr, uint8_t val)
{
uint64_t translated_addr = addr;
uint8_t translated = dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successful, access Device I/O (BAR or Legacy...)
DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n",
__FUNCTION__, addr, val);
//DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
write_io((void *) translated_addr, val, 1);
DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %02x\n", __FUNCTION__,
addr, val);
} else {
switch (addr) {
case 0xCFC:
case 0xCFD:
case 0xCFE:
case 0xCFF:
// PCI Config Mechanism 1 Ports
pci_cfg_write(addr, val, 1);
break;
default:
DEBUG_PRINTF_IO
("%s(%04x,%02x) writing to bios_device.io_buffer\n",
__FUNCTION__, addr, val);
*((uint8_t *) (bios_device.io_buffer + addr)) = val;
break;
}
}
}
void
my_outw(X86EMU_pioAddr addr, uint16_t val)
{
uint64_t translated_addr = addr;
uint8_t translated = dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successful, access Device I/O (BAR or Legacy...)
DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n",
__FUNCTION__, addr, val);
//DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
if ((translated_addr & (uint64_t) 0x1) == 0) {
// little-endian conversion
uint16_t tempval = in16le((void *) &val);
// 16 bit aligned access...
write_io((void *) translated_addr, tempval, 2);
} else {
// unaligned access, write single bytes, little-endian
write_io(((void *) (translated_addr + 1)),
(uint8_t) ((val & 0xFF00) >> 8), 1);
write_io(((void *) translated_addr),
(uint8_t) (val & 0x00FF), 1);
}
DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %04x\n", __FUNCTION__,
addr, val);
} else {
switch (addr) {
case 0xCFC:
case 0xCFE:
// PCI Config Mechanism 1 Ports
pci_cfg_write(addr, val, 2);
break;
default:
DEBUG_PRINTF_IO
("%s(%04x,%04x) writing to bios_device.io_buffer\n",
__FUNCTION__, addr, val);
out16le((void *) bios_device.io_buffer + addr, val);
break;
}
}
}
void
my_outl(X86EMU_pioAddr addr, uint32_t val)
{
uint64_t translated_addr = addr;
uint8_t translated = dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successful, access Device I/O (BAR or Legacy...)
DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n",
__FUNCTION__, addr, val);
//DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
if ((translated_addr & (uint64_t) 0x3) == 0) {
// little-endian conversion
uint32_t tempval = in32le((void *) &val);
// 32 bit aligned access...
write_io((void *) translated_addr, tempval, 4);
} else {
// unaligned access, write single bytes, little-endian
write_io(((void *) translated_addr + 3),
(uint8_t) ((val & 0xFF000000) >> 24), 1);
write_io(((void *) translated_addr + 2),
(uint8_t) ((val & 0x00FF0000) >> 16), 1);
write_io(((void *) translated_addr + 1),
(uint8_t) ((val & 0x0000FF00) >> 8), 1);
write_io(((void *) translated_addr),
(uint8_t) (val & 0x000000FF), 1);
}
DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %08x\n", __FUNCTION__,
addr, val);
} else {
switch (addr) {
case 0xCFC:
// PCI Config Mechanism 1 Ports
pci_cfg_write(addr, val, 4);
break;
default:
DEBUG_PRINTF_IO
("%s(%04x,%08x) writing to bios_device.io_buffer\n",
__FUNCTION__, addr, val);
out32le((void *) bios_device.io_buffer + addr, val);
break;
}
}
}
uint32_t
pci_cfg_read(X86EMU_pioAddr addr, uint8_t size)
{
uint32_t rval = 0xFFFFFFFF;
if ((addr >= 0xCFC) && ((addr + size) <= 0xCFF)) {
// PCI Configuration Mechanism 1 step 1
// write to 0xCF8, sets bus, device, function and Config Space offset
// later read from 0xCFC-0xCFF returns the value...
uint8_t bus, devfn, offs;
uint32_t port_cf8_val = my_inl(0xCF8);
if ((port_cf8_val & 0x80000000) != 0) {
//highest bit enables config space mapping
bus = (port_cf8_val & 0x00FF0000) >> 16;
devfn = (port_cf8_val & 0x0000FF00) >> 8;
offs = (port_cf8_val & 0x000000FF);
offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly
if ((bus != bios_device.bus)
|| (devfn != bios_device.devfn)) {
// fail accesses to any device but ours...
printf
("Config access invalid! bus: %x, devfn: %x, offs: %x\n",
bus, devfn, offs);
HALT_SYS();
} else {
rval =
(uint32_t) rtas_pci_config_read(bios_device.
puid, size,
bus, devfn,
offs);
DEBUG_PRINTF_IO
("%s(%04x) PCI Config Read @%02x, size: %d --> 0x%08x\n",
__FUNCTION__, addr, offs, size, rval);
}
}
}
return rval;
}
void
pci_cfg_write(X86EMU_pioAddr addr, uint32_t val, uint8_t size)
{
if ((addr >= 0xCFC) && ((addr + size) <= 0xCFF)) {
// PCI Configuration Mechanism 1 step 1
// write to 0xCF8, sets bus, device, function and Config Space offset
// later write to 0xCFC-0xCFF sets the value...
uint8_t bus, devfn, offs;
uint32_t port_cf8_val = my_inl(0xCF8);
if ((port_cf8_val & 0x80000000) != 0) {
//highest bit enables config space mapping
bus = (port_cf8_val & 0x00FF0000) >> 16;
devfn = (port_cf8_val & 0x0000FF00) >> 8;
offs = (port_cf8_val & 0x000000FF);
offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly
if ((bus != bios_device.bus)
|| (devfn != bios_device.devfn)) {
// fail accesses to any device but ours...
printf
("Config access invalid! bus: %x, devfn: %x, offs: %x\n",
bus, devfn, offs);
HALT_SYS();
} else {
rtas_pci_config_write(bios_device.puid,
size, bus, devfn, offs,
val);
DEBUG_PRINTF_IO
("%s(%04x) PCI Config Write @%02x, size: %d <-- 0x%08x\n",
__FUNCTION__, addr, offs, size, val);
}
}
}
}
uint8_t
handle_port_61h(void)
{
static uint64_t last_time = 0;
uint64_t curr_time = get_time();
uint64_t time_diff; // time since last call
uint32_t period_ticks; // length of a period in ticks
uint32_t nr_periods; //number of periods passed since last call
// bit 4 should toggle with every (DRAM) refresh cycle... (66kHz??)
time_diff = curr_time - last_time;
// at 66kHz a period is ~ 15 ns long, converted to ticks: (tb_freq is ticks/second)
// TODO: as long as the frequency does not change, we should not calculate this every time
period_ticks = (15 * tb_freq) / 1000000;
nr_periods = time_diff / period_ticks;
// if the number if ticks passed since last call is odd, we toggle bit 4
if ((nr_periods % 2) != 0) {
*((uint8_t *) (bios_device.io_buffer + 0x61)) ^= 0x10;
}
//finally read the value from the io_buffer
return *((uint8_t *) (bios_device.io_buffer + 0x61));
}
|