summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/usb/core/usb.c
blob: 8d5b2f4113cd563004acbabb459f4e4212361138 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
/*
 * drivers/usb/core/usb.c
 *
 * (C) Copyright Linus Torvalds 1999
 * (C) Copyright Johannes Erdfelt 1999-2001
 * (C) Copyright Andreas Gal 1999
 * (C) Copyright Gregory P. Smith 1999
 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
 * (C) Copyright Randy Dunlap 2000
 * (C) Copyright David Brownell 2000-2004
 * (C) Copyright Yggdrasil Computing, Inc. 2000
 *     (usb_device_id matching changes by Adam J. Richter)
 * (C) Copyright Greg Kroah-Hartman 2002-2003
 *
 * NOTE! This is not actually a driver at all, rather this is
 * just a collection of helper routines that implement the
 * generic USB things that the real drivers can use..
 *
 * Think of this as a "USB library" rather than anything else.
 * It should be considered a slave, with no callbacks. Callbacks
 * are evil.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>  /* for in_interrupt() */
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>

#include <asm/io.h>
#include <linux/scatterlist.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>

#include "usb.h"


const char *usbcore_name = "usbcore";

static bool nousb;	/* Disable USB when built into kernel image */

/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
#ifdef MODULE
module_param(nousb, bool, 0444);
#else
core_param(nousb, nousb, bool, 0444);
#endif

/*
 * for external read access to <nousb>
 */
int usb_disabled(void)
{
	return nousb;
}
EXPORT_SYMBOL_GPL(usb_disabled);

#ifdef	CONFIG_PM
static int usb_autosuspend_delay = 2;		/* Default delay value,
						 * in seconds */
module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
MODULE_PARM_DESC(autosuspend, "default autosuspend delay");

#else
#define usb_autosuspend_delay		0
#endif


/**
 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 * for the given interface.
 * @config: the configuration to search (not necessarily the current config).
 * @iface_num: interface number to search in
 * @alt_num: alternate interface setting number to search for.
 *
 * Search the configuration's interface cache for the given alt setting.
 *
 * Return: The alternate setting, if found. %NULL otherwise.
 */
struct usb_host_interface *usb_find_alt_setting(
		struct usb_host_config *config,
		unsigned int iface_num,
		unsigned int alt_num)
{
	struct usb_interface_cache *intf_cache = NULL;
	int i;

	for (i = 0; i < config->desc.bNumInterfaces; i++) {
		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
				== iface_num) {
			intf_cache = config->intf_cache[i];
			break;
		}
	}
	if (!intf_cache)
		return NULL;
	for (i = 0; i < intf_cache->num_altsetting; i++)
		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
			return &intf_cache->altsetting[i];

	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
			"config %u\n", alt_num, iface_num,
			config->desc.bConfigurationValue);
	return NULL;
}
EXPORT_SYMBOL_GPL(usb_find_alt_setting);

/**
 * usb_ifnum_to_if - get the interface object with a given interface number
 * @dev: the device whose current configuration is considered
 * @ifnum: the desired interface
 *
 * This walks the device descriptor for the currently active configuration
 * to find the interface object with the particular interface number.
 *
 * Note that configuration descriptors are not required to assign interface
 * numbers sequentially, so that it would be incorrect to assume that
 * the first interface in that descriptor corresponds to interface zero.
 * This routine helps device drivers avoid such mistakes.
 * However, you should make sure that you do the right thing with any
 * alternate settings available for this interfaces.
 *
 * Don't call this function unless you are bound to one of the interfaces
 * on this device or you have locked the device!
 *
 * Return: A pointer to the interface that has @ifnum as interface number,
 * if found. %NULL otherwise.
 */
struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
				      unsigned ifnum)
{
	struct usb_host_config *config = dev->actconfig;
	int i;

	if (!config)
		return NULL;
	for (i = 0; i < config->desc.bNumInterfaces; i++)
		if (config->interface[i]->altsetting[0]
				.desc.bInterfaceNumber == ifnum)
			return config->interface[i];

	return NULL;
}
EXPORT_SYMBOL_GPL(usb_ifnum_to_if);

/**
 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 * @intf: the interface containing the altsetting in question
 * @altnum: the desired alternate setting number
 *
 * This searches the altsetting array of the specified interface for
 * an entry with the correct bAlternateSetting value.
 *
 * Note that altsettings need not be stored sequentially by number, so
 * it would be incorrect to assume that the first altsetting entry in
 * the array corresponds to altsetting zero.  This routine helps device
 * drivers avoid such mistakes.
 *
 * Don't call this function unless you are bound to the intf interface
 * or you have locked the device!
 *
 * Return: A pointer to the entry of the altsetting array of @intf that
 * has @altnum as the alternate setting number. %NULL if not found.
 */
struct usb_host_interface *usb_altnum_to_altsetting(
					const struct usb_interface *intf,
					unsigned int altnum)
{
	int i;

	for (i = 0; i < intf->num_altsetting; i++) {
		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
			return &intf->altsetting[i];
	}
	return NULL;
}
EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);

struct find_interface_arg {
	int minor;
	struct device_driver *drv;
};

static int __find_interface(struct device *dev, void *data)
{
	struct find_interface_arg *arg = data;
	struct usb_interface *intf;

	if (!is_usb_interface(dev))
		return 0;

	if (dev->driver != arg->drv)
		return 0;
	intf = to_usb_interface(dev);
	return intf->minor == arg->minor;
}

/**
 * usb_find_interface - find usb_interface pointer for driver and device
 * @drv: the driver whose current configuration is considered
 * @minor: the minor number of the desired device
 *
 * This walks the bus device list and returns a pointer to the interface
 * with the matching minor and driver.  Note, this only works for devices
 * that share the USB major number.
 *
 * Return: A pointer to the interface with the matching major and @minor.
 */
struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
{
	struct find_interface_arg argb;
	struct device *dev;

	argb.minor = minor;
	argb.drv = &drv->drvwrap.driver;

	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);

	/* Drop reference count from bus_find_device */
	put_device(dev);

	return dev ? to_usb_interface(dev) : NULL;
}
EXPORT_SYMBOL_GPL(usb_find_interface);

struct each_dev_arg {
	void *data;
	int (*fn)(struct usb_device *, void *);
};

static int __each_dev(struct device *dev, void *data)
{
	struct each_dev_arg *arg = (struct each_dev_arg *)data;

	/* There are struct usb_interface on the same bus, filter them out */
	if (!is_usb_device(dev))
		return 0;

	return arg->fn(container_of(dev, struct usb_device, dev), arg->data);
}

/**
 * usb_for_each_dev - iterate over all USB devices in the system
 * @data: data pointer that will be handed to the callback function
 * @fn: callback function to be called for each USB device
 *
 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 * returns anything other than 0, we break the iteration prematurely and return
 * that value.
 */
int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
{
	struct each_dev_arg arg = {data, fn};

	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
}
EXPORT_SYMBOL_GPL(usb_for_each_dev);

/**
 * usb_release_dev - free a usb device structure when all users of it are finished.
 * @dev: device that's been disconnected
 *
 * Will be called only by the device core when all users of this usb device are
 * done.
 */
static void usb_release_dev(struct device *dev)
{
	struct usb_device *udev;
	struct usb_hcd *hcd;

	udev = to_usb_device(dev);
	hcd = bus_to_hcd(udev->bus);

	usb_destroy_configuration(udev);
	usb_release_bos_descriptor(udev);
	usb_put_hcd(hcd);
	kfree(udev->product);
	kfree(udev->manufacturer);
	kfree(udev->serial);
	kfree(udev);
}

static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	struct usb_device *usb_dev;

	usb_dev = to_usb_device(dev);

	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
		return -ENOMEM;

	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
		return -ENOMEM;

	return 0;
}

#ifdef	CONFIG_PM

/* USB device Power-Management thunks.
 * There's no need to distinguish here between quiescing a USB device
 * and powering it down; the generic_suspend() routine takes care of
 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 * USB interfaces there's no difference at all.
 */

static int usb_dev_prepare(struct device *dev)
{
	return 0;		/* Implement eventually? */
}

static void usb_dev_complete(struct device *dev)
{
	/* Currently used only for rebinding interfaces */
	usb_resume_complete(dev);
}

static int usb_dev_suspend(struct device *dev)
{
	return usb_suspend(dev, PMSG_SUSPEND);
}

static int usb_dev_resume(struct device *dev)
{
	return usb_resume(dev, PMSG_RESUME);
}

static int usb_dev_freeze(struct device *dev)
{
	return usb_suspend(dev, PMSG_FREEZE);
}

static int usb_dev_thaw(struct device *dev)
{
	return usb_resume(dev, PMSG_THAW);
}

static int usb_dev_poweroff(struct device *dev)
{
	return usb_suspend(dev, PMSG_HIBERNATE);
}

static int usb_dev_restore(struct device *dev)
{
	return usb_resume(dev, PMSG_RESTORE);
}

static const struct dev_pm_ops usb_device_pm_ops = {
	.prepare =	usb_dev_prepare,
	.complete =	usb_dev_complete,
	.suspend =	usb_dev_suspend,
	.resume =	usb_dev_resume,
	.freeze =	usb_dev_freeze,
	.thaw =		usb_dev_thaw,
	.poweroff =	usb_dev_poweroff,
	.restore =	usb_dev_restore,
	.runtime_suspend =	usb_runtime_suspend,
	.runtime_resume =	usb_runtime_resume,
	.runtime_idle =		usb_runtime_idle,
};

#endif	/* CONFIG_PM */


static char *usb_devnode(struct device *dev,
			 umode_t *mode, kuid_t *uid, kgid_t *gid)
{
	struct usb_device *usb_dev;

	usb_dev = to_usb_device(dev);
	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
			 usb_dev->bus->busnum, usb_dev->devnum);
}

struct device_type usb_device_type = {
	.name =		"usb_device",
	.release =	usb_release_dev,
	.uevent =	usb_dev_uevent,
	.devnode = 	usb_devnode,
#ifdef CONFIG_PM
	.pm =		&usb_device_pm_ops,
#endif
};


/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
static unsigned usb_bus_is_wusb(struct usb_bus *bus)
{
	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
	return hcd->wireless;
}


/**
 * usb_alloc_dev - usb device constructor (usbcore-internal)
 * @parent: hub to which device is connected; null to allocate a root hub
 * @bus: bus used to access the device
 * @port1: one-based index of port; ignored for root hubs
 * Context: !in_interrupt()
 *
 * Only hub drivers (including virtual root hub drivers for host
 * controllers) should ever call this.
 *
 * This call may not be used in a non-sleeping context.
 *
 * Return: On success, a pointer to the allocated usb device. %NULL on
 * failure.
 */
struct usb_device *usb_alloc_dev(struct usb_device *parent,
				 struct usb_bus *bus, unsigned port1)
{
	struct usb_device *dev;
	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
	unsigned root_hub = 0;

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	if (!usb_get_hcd(usb_hcd)) {
		kfree(dev);
		return NULL;
	}
	/* Root hubs aren't true devices, so don't allocate HCD resources */
	if (usb_hcd->driver->alloc_dev && parent &&
		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
		usb_put_hcd(bus_to_hcd(bus));
		kfree(dev);
		return NULL;
	}

	device_initialize(&dev->dev);
	dev->dev.bus = &usb_bus_type;
	dev->dev.type = &usb_device_type;
	dev->dev.groups = usb_device_groups;
	dev->dev.dma_mask = bus->controller->dma_mask;
	set_dev_node(&dev->dev, dev_to_node(bus->controller));
	dev->state = USB_STATE_ATTACHED;
	dev->lpm_disable_count = 1;
	atomic_set(&dev->urbnum, 0);

	INIT_LIST_HEAD(&dev->ep0.urb_list);
	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
	/* ep0 maxpacket comes later, from device descriptor */
	usb_enable_endpoint(dev, &dev->ep0, false);
	dev->can_submit = 1;

	/* Save readable and stable topology id, distinguishing devices
	 * by location for diagnostics, tools, driver model, etc.  The
	 * string is a path along hub ports, from the root.  Each device's
	 * dev->devpath will be stable until USB is re-cabled, and hubs
	 * are often labeled with these port numbers.  The name isn't
	 * as stable:  bus->busnum changes easily from modprobe order,
	 * cardbus or pci hotplugging, and so on.
	 */
	if (unlikely(!parent)) {
		dev->devpath[0] = '0';
		dev->route = 0;

		dev->dev.parent = bus->controller;
		dev_set_name(&dev->dev, "usb%d", bus->busnum);
		root_hub = 1;
	} else {
		/* match any labeling on the hubs; it's one-based */
		if (parent->devpath[0] == '0') {
			snprintf(dev->devpath, sizeof dev->devpath,
				"%d", port1);
			/* Root ports are not counted in route string */
			dev->route = 0;
		} else {
			snprintf(dev->devpath, sizeof dev->devpath,
				"%s.%d", parent->devpath, port1);
			/* Route string assumes hubs have less than 16 ports */
			if (port1 < 15)
				dev->route = parent->route +
					(port1 << ((parent->level - 1)*4));
			else
				dev->route = parent->route +
					(15 << ((parent->level - 1)*4));
		}

		dev->dev.parent = &parent->dev;
		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);

		/* hub driver sets up TT records */
	}

	dev->portnum = port1;
	dev->bus = bus;
	dev->parent = parent;
	INIT_LIST_HEAD(&dev->filelist);

#ifdef	CONFIG_PM
	pm_runtime_set_autosuspend_delay(&dev->dev,
			usb_autosuspend_delay * 1000);
	dev->connect_time = jiffies;
	dev->active_duration = -jiffies;
#endif
	if (root_hub)	/* Root hub always ok [and always wired] */
		dev->authorized = 1;
	else {
		dev->authorized = usb_hcd->authorized_default;
		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
	}
	return dev;
}
EXPORT_SYMBOL_GPL(usb_alloc_dev);

/**
 * usb_get_dev - increments the reference count of the usb device structure
 * @dev: the device being referenced
 *
 * Each live reference to a device should be refcounted.
 *
 * Drivers for USB interfaces should normally record such references in
 * their probe() methods, when they bind to an interface, and release
 * them by calling usb_put_dev(), in their disconnect() methods.
 *
 * Return: A pointer to the device with the incremented reference counter.
 */
struct usb_device *usb_get_dev(struct usb_device *dev)
{
	if (dev)
		get_device(&dev->dev);
	return dev;
}
EXPORT_SYMBOL_GPL(usb_get_dev);

/**
 * usb_put_dev - release a use of the usb device structure
 * @dev: device that's been disconnected
 *
 * Must be called when a user of a device is finished with it.  When the last
 * user of the device calls this function, the memory of the device is freed.
 */
void usb_put_dev(struct usb_device *dev)
{
	if (dev)
		put_device(&dev->dev);
}
EXPORT_SYMBOL_GPL(usb_put_dev);

/**
 * usb_get_intf - increments the reference count of the usb interface structure
 * @intf: the interface being referenced
 *
 * Each live reference to a interface must be refcounted.
 *
 * Drivers for USB interfaces should normally record such references in
 * their probe() methods, when they bind to an interface, and release
 * them by calling usb_put_intf(), in their disconnect() methods.
 *
 * Return: A pointer to the interface with the incremented reference counter.
 */
struct usb_interface *usb_get_intf(struct usb_interface *intf)
{
	if (intf)
		get_device(&intf->dev);
	return intf;
}
EXPORT_SYMBOL_GPL(usb_get_intf);

/**
 * usb_put_intf - release a use of the usb interface structure
 * @intf: interface that's been decremented
 *
 * Must be called when a user of an interface is finished with it.  When the
 * last user of the interface calls this function, the memory of the interface
 * is freed.
 */
void usb_put_intf(struct usb_interface *intf)
{
	if (intf)
		put_device(&intf->dev);
}
EXPORT_SYMBOL_GPL(usb_put_intf);

/*			USB device locking
 *
 * USB devices and interfaces are locked using the semaphore in their
 * embedded struct device.  The hub driver guarantees that whenever a
 * device is connected or disconnected, drivers are called with the
 * USB device locked as well as their particular interface.
 *
 * Complications arise when several devices are to be locked at the same
 * time.  Only hub-aware drivers that are part of usbcore ever have to
 * do this; nobody else needs to worry about it.  The rule for locking
 * is simple:
 *
 *	When locking both a device and its parent, always lock the
 *	the parent first.
 */

/**
 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 * @udev: device that's being locked
 * @iface: interface bound to the driver making the request (optional)
 *
 * Attempts to acquire the device lock, but fails if the device is
 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 * disconnect; in some drivers (such as usb-storage) the disconnect()
 * or suspend() method will block waiting for a device reset to complete.
 *
 * Return: A negative error code for failure, otherwise 0.
 */
int usb_lock_device_for_reset(struct usb_device *udev,
			      const struct usb_interface *iface)
{
	unsigned long jiffies_expire = jiffies + HZ;

	if (udev->state == USB_STATE_NOTATTACHED)
		return -ENODEV;
	if (udev->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;
	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
			iface->condition == USB_INTERFACE_UNBOUND))
		return -EINTR;

	while (!usb_trylock_device(udev)) {

		/* If we can't acquire the lock after waiting one second,
		 * we're probably deadlocked */
		if (time_after(jiffies, jiffies_expire))
			return -EBUSY;

		msleep(15);
		if (udev->state == USB_STATE_NOTATTACHED)
			return -ENODEV;
		if (udev->state == USB_STATE_SUSPENDED)
			return -EHOSTUNREACH;
		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
				iface->condition == USB_INTERFACE_UNBOUND))
			return -EINTR;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);

/**
 * usb_get_current_frame_number - return current bus frame number
 * @dev: the device whose bus is being queried
 *
 * Return: The current frame number for the USB host controller used
 * with the given USB device. This can be used when scheduling
 * isochronous requests.
 *
 * Note: Different kinds of host controller have different "scheduling
 * horizons". While one type might support scheduling only 32 frames
 * into the future, others could support scheduling up to 1024 frames
 * into the future.
 *
 */
int usb_get_current_frame_number(struct usb_device *dev)
{
	return usb_hcd_get_frame_number(dev);
}
EXPORT_SYMBOL_GPL(usb_get_current_frame_number);

/*-------------------------------------------------------------------*/
/*
 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 * extra field of the interface and endpoint descriptor structs.
 */

int __usb_get_extra_descriptor(char *buffer, unsigned size,
			       unsigned char type, void **ptr)
{
	struct usb_descriptor_header *header;

	while (size >= sizeof(struct usb_descriptor_header)) {
		header = (struct usb_descriptor_header *)buffer;

		if (header->bLength < 2) {
			printk(KERN_ERR
				"%s: bogus descriptor, type %d length %d\n",
				usbcore_name,
				header->bDescriptorType,
				header->bLength);
			return -1;
		}

		if (header->bDescriptorType == type) {
			*ptr = header;
			return 0;
		}

		buffer += header->bLength;
		size -= header->bLength;
	}
	return -1;
}
EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);

/**
 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 * @dev: device the buffer will be used with
 * @size: requested buffer size
 * @mem_flags: affect whether allocation may block
 * @dma: used to return DMA address of buffer
 *
 * Return: Either null (indicating no buffer could be allocated), or the
 * cpu-space pointer to a buffer that may be used to perform DMA to the
 * specified device.  Such cpu-space buffers are returned along with the DMA
 * address (through the pointer provided).
 *
 * Note:
 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 * hardware during URB completion/resubmit.  The implementation varies between
 * platforms, depending on details of how DMA will work to this device.
 * Using these buffers also eliminates cacheline sharing problems on
 * architectures where CPU caches are not DMA-coherent.  On systems without
 * bus-snooping caches, these buffers are uncached.
 *
 * When the buffer is no longer used, free it with usb_free_coherent().
 */
void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
			 dma_addr_t *dma)
{
	if (!dev || !dev->bus)
		return NULL;
	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
}
EXPORT_SYMBOL_GPL(usb_alloc_coherent);

/**
 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 * @dev: device the buffer was used with
 * @size: requested buffer size
 * @addr: CPU address of buffer
 * @dma: DMA address of buffer
 *
 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 * been allocated using usb_alloc_coherent(), and the parameters must match
 * those provided in that allocation request.
 */
void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
		       dma_addr_t dma)
{
	if (!dev || !dev->bus)
		return;
	if (!addr)
		return;
	hcd_buffer_free(dev->bus, size, addr, dma);
}
EXPORT_SYMBOL_GPL(usb_free_coherent);

/**
 * usb_buffer_map - create DMA mapping(s) for an urb
 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 *
 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
 * succeeds. If the device is connected to this system through a non-DMA
 * controller, this operation always succeeds.
 *
 * This call would normally be used for an urb which is reused, perhaps
 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 * calls to synchronize memory and dma state.
 *
 * Reverse the effect of this call with usb_buffer_unmap().
 *
 * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
 *
 */
#if 0
struct urb *usb_buffer_map(struct urb *urb)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!urb
			|| !urb->dev
			|| !(bus = urb->dev->bus)
			|| !(controller = bus->controller))
		return NULL;

	if (controller->dma_mask) {
		urb->transfer_dma = dma_map_single(controller,
			urb->transfer_buffer, urb->transfer_buffer_length,
			usb_pipein(urb->pipe)
				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
	/* FIXME generic api broken like pci, can't report errors */
	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
	} else
		urb->transfer_dma = ~0;
	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
	return urb;
}
EXPORT_SYMBOL_GPL(usb_buffer_map);
#endif  /*  0  */

/* XXX DISABLED, no users currently.  If you wish to re-enable this
 * XXX please determine whether the sync is to transfer ownership of
 * XXX the buffer from device to cpu or vice verse, and thusly use the
 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 */
#if 0

/**
 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 */
void usb_buffer_dmasync(struct urb *urb)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!urb
			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
			|| !urb->dev
			|| !(bus = urb->dev->bus)
			|| !(controller = bus->controller))
		return;

	if (controller->dma_mask) {
		dma_sync_single_for_cpu(controller,
			urb->transfer_dma, urb->transfer_buffer_length,
			usb_pipein(urb->pipe)
				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
		if (usb_pipecontrol(urb->pipe))
			dma_sync_single_for_cpu(controller,
					urb->setup_dma,
					sizeof(struct usb_ctrlrequest),
					DMA_TO_DEVICE);
	}
}
EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
#endif

/**
 * usb_buffer_unmap - free DMA mapping(s) for an urb
 * @urb: urb whose transfer_buffer will be unmapped
 *
 * Reverses the effect of usb_buffer_map().
 */
#if 0
void usb_buffer_unmap(struct urb *urb)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!urb
			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
			|| !urb->dev
			|| !(bus = urb->dev->bus)
			|| !(controller = bus->controller))
		return;

	if (controller->dma_mask) {
		dma_unmap_single(controller,
			urb->transfer_dma, urb->transfer_buffer_length,
			usb_pipein(urb->pipe)
				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
	}
	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
}
EXPORT_SYMBOL_GPL(usb_buffer_unmap);
#endif  /*  0  */

#if 0
/**
 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 * @dev: device to which the scatterlist will be mapped
 * @is_in: mapping transfer direction
 * @sg: the scatterlist to map
 * @nents: the number of entries in the scatterlist
 *
 * Return: Either < 0 (indicating no buffers could be mapped), or the
 * number of DMA mapping array entries in the scatterlist.
 *
 * Note:
 * The caller is responsible for placing the resulting DMA addresses from
 * the scatterlist into URB transfer buffer pointers, and for setting the
 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 *
 * Top I/O rates come from queuing URBs, instead of waiting for each one
 * to complete before starting the next I/O.   This is particularly easy
 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 * mapping entry returned, stopping on the first error or when all succeed.
 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 *
 * This call would normally be used when translating scatterlist requests,
 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 * may be able to coalesce mappings for improved I/O efficiency.
 *
 * Reverse the effect of this call with usb_buffer_unmap_sg().
 */
int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
		      struct scatterlist *sg, int nents)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!dev
			|| !(bus = dev->bus)
			|| !(controller = bus->controller)
			|| !controller->dma_mask)
		return -EINVAL;

	/* FIXME generic api broken like pci, can't report errors */
	return dma_map_sg(controller, sg, nents,
			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
}
EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
#endif

/* XXX DISABLED, no users currently.  If you wish to re-enable this
 * XXX please determine whether the sync is to transfer ownership of
 * XXX the buffer from device to cpu or vice verse, and thusly use the
 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 */
#if 0

/**
 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 * @dev: device to which the scatterlist will be mapped
 * @is_in: mapping transfer direction
 * @sg: the scatterlist to synchronize
 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 *
 * Use this when you are re-using a scatterlist's data buffers for
 * another USB request.
 */
void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
			   struct scatterlist *sg, int n_hw_ents)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!dev
			|| !(bus = dev->bus)
			|| !(controller = bus->controller)
			|| !controller->dma_mask)
		return;

	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
#endif

#if 0
/**
 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 * @dev: device to which the scatterlist will be mapped
 * @is_in: mapping transfer direction
 * @sg: the scatterlist to unmap
 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 *
 * Reverses the effect of usb_buffer_map_sg().
 */
void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
			 struct scatterlist *sg, int n_hw_ents)
{
	struct usb_bus		*bus;
	struct device		*controller;

	if (!dev
			|| !(bus = dev->bus)
			|| !(controller = bus->controller)
			|| !controller->dma_mask)
		return;

	dma_unmap_sg(controller, sg, n_hw_ents,
			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
#endif

/*
 * Notifications of device and interface registration
 */
static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
		void *data)
{
	struct device *dev = data;

	switch (action) {
	case BUS_NOTIFY_ADD_DEVICE:
		if (dev->type == &usb_device_type)
			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
		else if (dev->type == &usb_if_device_type)
			usb_create_sysfs_intf_files(to_usb_interface(dev));
		break;

	case BUS_NOTIFY_DEL_DEVICE:
		if (dev->type == &usb_device_type)
			usb_remove_sysfs_dev_files(to_usb_device(dev));
		else if (dev->type == &usb_if_device_type)
			usb_remove_sysfs_intf_files(to_usb_interface(dev));
		break;
	}
	return 0;
}

static struct notifier_block usb_bus_nb = {
	.notifier_call = usb_bus_notify,
};

struct dentry *usb_debug_root;
EXPORT_SYMBOL_GPL(usb_debug_root);

static struct dentry *usb_debug_devices;

static int usb_debugfs_init(void)
{
	usb_debug_root = debugfs_create_dir("usb", NULL);
	if (!usb_debug_root)
		return -ENOENT;

	usb_debug_devices = debugfs_create_file("devices", 0444,
						usb_debug_root, NULL,
						&usbfs_devices_fops);
	if (!usb_debug_devices) {
		debugfs_remove(usb_debug_root);
		usb_debug_root = NULL;
		return -ENOENT;
	}

	return 0;
}

static void usb_debugfs_cleanup(void)
{
	debugfs_remove(usb_debug_devices);
	debugfs_remove(usb_debug_root);
}

/*
 * Init
 */
static int __init usb_init(void)
{
	int retval;
	if (usb_disabled()) {
		pr_info("%s: USB support disabled\n", usbcore_name);
		return 0;
	}
	usb_init_pool_max();

	retval = usb_debugfs_init();
	if (retval)
		goto out;

	usb_acpi_register();
	retval = bus_register(&usb_bus_type);
	if (retval)
		goto bus_register_failed;
	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
	if (retval)
		goto bus_notifier_failed;
	retval = usb_major_init();
	if (retval)
		goto major_init_failed;
	retval = usb_register(&usbfs_driver);
	if (retval)
		goto driver_register_failed;
	retval = usb_devio_init();
	if (retval)
		goto usb_devio_init_failed;
	retval = usb_hub_init();
	if (retval)
		goto hub_init_failed;
	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
	if (!retval)
		goto out;

	usb_hub_cleanup();
hub_init_failed:
	usb_devio_cleanup();
usb_devio_init_failed:
	usb_deregister(&usbfs_driver);
driver_register_failed:
	usb_major_cleanup();
major_init_failed:
	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
bus_notifier_failed:
	bus_unregister(&usb_bus_type);
bus_register_failed:
	usb_acpi_unregister();
	usb_debugfs_cleanup();
out:
	return retval;
}

/*
 * Cleanup
 */
static void __exit usb_exit(void)
{
	/* This will matter if shutdown/reboot does exitcalls. */
	if (usb_disabled())
		return;

	usb_deregister_device_driver(&usb_generic_driver);
	usb_major_cleanup();
	usb_deregister(&usbfs_driver);
	usb_devio_cleanup();
	usb_hub_cleanup();
	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
	bus_unregister(&usb_bus_type);
	usb_acpi_unregister();
	usb_debugfs_cleanup();
}

subsys_initcall(usb_init);
module_exit(usb_exit);
MODULE_LICENSE("GPL");