summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/media/platform/coda/coda-bit.c
blob: d0430071d2eea38bb32299b78092b31447b6329c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
<
/*
 * Copyright (C) 2013 - 2014 Texas Instruments, Inc.
 *
 * Benoit Parrot <bparrot@ti.com>
 * Lad, Prabhakar <prabhakar.csengg@gmail.com>
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifndef AM437X_VPFE_H
#define AM437X_VPFE_H

#include <linux/am437x-vpfe.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/i2c.h>
#include <linux/videodev2.h>

#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>

#include "am437x-vpfe_regs.h"

enum vpfe_pin_pol {
	VPFE_PINPOL_POSITIVE = 0,
	VPFE_PINPOL_NEGATIVE,
};

enum vpfe_hw_if_type {
	/* Raw Bayer */
	VPFE_RAW_BAYER = 0,
	/* BT656 - 8 bit */
	VPFE_BT656,
	/* BT656 - 10 bit */
	VPFE_BT656_10BIT,
	/* YCbCr - 8 bit with external sync */
	VPFE_YCBCR_SYNC_8,
	/* YCbCr - 16 bit with external sync */
	VPFE_YCBCR_SYNC_16,
};

/* interface description */
struct vpfe_hw_if_param {
	enum vpfe_hw_if_type if_type;
	enum vpfe_pin_pol hdpol;
	enum vpfe_pin_pol vdpol;
	unsigned int bus_width;
};

#define VPFE_MAX_SUBDEV		1
#define VPFE_MAX_INPUTS		1

struct vpfe_pixel_format {
	struct v4l2_fmtdesc fmtdesc;
	/* bytes per pixel */
	int bpp;
};

struct vpfe_std_info {
	int active_pixels;
	int active_lines;
	/* current frame format */
	int frame_format;
};

struct vpfe_route {
	u32 input;
	u32 output;
};

struct vpfe_subdev_info {
	/* Sub device group id */
	int grp_id;
	/* inputs available at the sub device */
	struct v4l2_input inputs[VPFE_MAX_INPUTS];
	/* Sub dev routing information for each input */
	struct vpfe_route *routes;
	/* check if sub dev supports routing */
	int can_route;
	/* ccdc bus/interface configuration */
	struct vpfe_hw_if_param vpfe_param;
	struct v4l2_subdev *sd;
};

struct vpfe_config {
	/* information about each subdev */
	struct vpfe_subdev_info sub_devs[VPFE_MAX_SUBDEV];
	/* Flat array, arranged in groups */
	struct v4l2_async_subdev *asd[VPFE_MAX_SUBDEV];
};

struct vpfe_cap_buffer {
	struct vb2_v4l2_buffer vb;
	struct list_head list;
};

enum ccdc_pixfmt {
	CCDC_PIXFMT_RAW = 0,
	CCDC_PIXFMT_YCBCR_16BIT,
	CCDC_PIXFMT_YCBCR_8BIT,
};

enum ccdc_frmfmt {
	CCDC_FRMFMT_PROGRESSIVE = 0,
	CCDC_FRMFMT_INTERLACED,
};

/* PIXEL ORDER IN MEMORY from LSB to MSB */
/* only applicable for 8-bit input mode  */
enum ccdc_pixorder {
	CCDC_PIXORDER_YCBYCR,
	CCDC_PIXORDER_CBYCRY,
};

enum ccdc_buftype {
	CCDC_BUFTYPE_FLD_INTERLEAVED,
	CCDC_BUFTYPE_FLD_SEPARATED
};


/* returns the highest bit used for the gamma */
static inline u8 ccdc_gamma_width_max_bit(enum vpfe_ccdc_gamma_width width)
{
	return 15 - width;
}

/* returns the highest bit used for this data size */
static inline u8 ccdc_data_size_max_bit(enum vpfe_ccdc_data_size sz)
{
	return sz == VPFE_CCDC_DATA_8BITS ? 7 : 15 - sz;
}

/* Structure for CCDC configuration parameters for raw capture mode */
struct ccdc_params_raw {
	/* pixel format */
	enum ccdc_pixfmt pix_fmt;
	/* progressive or interlaced frame */
	enum ccdc_frmfmt frm_fmt;
	struct v4l2_rect win;
	/* Current Format Bytes Per Pixels */
	unsigned int bytesperpixel;
	/* Current Format Bytes per Lines
	 * (Aligned to 32 bytes) used for HORZ_INFO
	 */
	unsigned int bytesperline;
	/* field id polarity */
	enum vpfe_pin_pol fid_pol;
	/* vertical sync polarity */
	enum vpfe_pin_pol vd_pol;
	/* horizontal sync polarity */
	enum vpfe_pin_pol hd_pol;
	/* interleaved or separated fields */
	enum ccdc_buftype buf_type;
	/*
	 * enable to store the image in inverse
	 * order in memory(bottom to top)
	 */
	unsigned char image_invert_enable;
	/* configurable parameters */
	struct vpfe_ccdc_config_params_raw config_params;
};

struct ccdc_params_ycbcr {
	/* pixel format */
	enum ccdc_pixfmt pix_fmt;
	/* progressive or interlaced frame */
	enum ccdc_frmfmt frm_fmt;
	struct v4l2_rect win;
	/* Current Format Bytes Per Pixels */
	unsigned int bytesperpixel;
	/* Current Format Bytes per Lines
	 * (Aligned to 32 bytes) used for HORZ_INFO
	 */
	unsigned int bytesperline;
	/* field id polarity */
	enum vpfe_pin_pol fid_pol;
	/* vertical sync polarity */
	enum vpfe_pin_pol vd_pol;
	/* horizontal sync polarity */
	enum vpfe_pin_pol hd_pol;
	/* enable BT.656 embedded sync mode */
	int bt656_enable;
	/* cb:y:cr:y or y:cb:y:cr in memory */
	enum ccdc_pixorder pix_order;
	/* interleaved or separated fields  */
	enum ccdc_buftype buf_type;
};

/*
 * CCDC operational configuration
 */
struct ccdc_config {
	/* CCDC interface type */
	enum vpfe_hw_if_type if_type;
	/* Raw Bayer configuration */
	struct ccdc_params_raw bayer;
	/* YCbCr configuration */
	struct ccdc_params_ycbcr ycbcr;
	/* ccdc base address */
	void __iomem *base_addr;
};

struct vpfe_ccdc {
	struct ccdc_config ccdc_cfg;
	u32 ccdc_ctx[VPFE_REG_END / sizeof(u32)];
};

struct vpfe_device {
	/* V4l2 specific parameters */
	/* Identifies video device for this channel */
	struct video_device video_dev;
	/* sub devices */
	struct v4l2_subdev **sd;
	/* vpfe cfg */
	struct vpfe_config *cfg;
	/* V4l2 device */
	struct v4l2_device v4l2_dev;
	/* parent device */
	struct device *pdev;
	/* subdevice async Notifier */
	struct v4l2_async_notifier notifier;
	/* Indicates id of the field which is being displayed */
	unsigned field;
	unsigned sequence;
	/* current interface type */
	struct vpfe_hw_if_param vpfe_if_params;
	/* ptr to currently selected sub device */
	struct vpfe_subdev_info *current_subdev;
	/* current input at the sub device */
	int current_input;
	/* Keeps track of the information about the standard */
	struct vpfe_std_info std_info;
	/* std index into std table */
	int std_index;
	/* IRQs used when CCDC output to SDRAM */
	unsigned int irq;
	/* Pointer pointing to current v4l2_buffer */
	struct vpfe_cap_buffer *cur_frm;
	/* Pointer pointing to next v4l2_buffer */
	struct vpfe_cap_buffer *next_frm;
	/* Used to store pixel format */
	struct v4l2_format fmt;
	/* Used to store current bytes per pixel based on current format */
	unsigned int bpp;
	/*
	 * used when IMP is chained to store the crop window which
	 * is different from the image window
	 */
	struct v4l2_rect crop;
	/* Buffer queue used in video-buf */
	struct vb2_queue buffer_queue;
	/* Allocator-specific contexts for each plane */
	struct vb2_alloc_ctx *alloc_ctx;
	/* Queue of filled frames */
	struct list_head dma_queue;
	/* IRQ lock for DMA queue */
	spinlock_t dma_queue_lock;
	/* lock used to access this structure */
	struct mutex lock;
	/*
	 * offset where second field starts from the starting of the
	 * buffer for field separated YCbCr formats
	 */
	u32 field_off;
	struct vpfe_ccdc ccdc;
};

#endif	/* AM437X_VPFE_H */
'>1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/*
 * Coda multi-standard codec IP - BIT processor functions
 *
 * Copyright (C) 2012 Vista Silicon S.L.
 *    Javier Martin, <javier.martin@vista-silicon.com>
 *    Xavier Duret
 * Copyright (C) 2012-2014 Philipp Zabel, Pengutronix
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/irqreturn.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/videodev2.h>

#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-core.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-vmalloc.h>

#include "coda.h"
#define CREATE_TRACE_POINTS
#include "trace.h"

#define CODA_PARA_BUF_SIZE	(10 * 1024)
#define CODA7_PS_BUF_SIZE	0x28000
#define CODA9_PS_SAVE_SIZE	(512 * 1024)

#define CODA_DEFAULT_GAMMA	4096
#define CODA9_DEFAULT_GAMMA	24576	/* 0.75 * 32768 */

static void coda_free_bitstream_buffer(struct coda_ctx *ctx);

static inline int coda_is_initialized(struct coda_dev *dev)
{
	return coda_read(dev, CODA_REG_BIT_CUR_PC) != 0;
}

static inline unsigned long coda_isbusy(struct coda_dev *dev)
{
	return coda_read(dev, CODA_REG_BIT_BUSY);
}

static int coda_wait_timeout(struct coda_dev *dev)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(1000);

	while (coda_isbusy(dev)) {
		if (time_after(jiffies, timeout))
			return -ETIMEDOUT;
	}
	return 0;
}

static void coda_command_async(struct coda_ctx *ctx, int cmd)
{
	struct coda_dev *dev = ctx->dev;

	if (dev->devtype->product == CODA_960 ||
	    dev->devtype->product == CODA_7541) {
		/* Restore context related registers to CODA */
		coda_write(dev, ctx->bit_stream_param,
				CODA_REG_BIT_BIT_STREAM_PARAM);
		coda_write(dev, ctx->frm_dis_flg,
				CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));
		coda_write(dev, ctx->frame_mem_ctrl,
				CODA_REG_BIT_FRAME_MEM_CTRL);
		coda_write(dev, ctx->workbuf.paddr, CODA_REG_BIT_WORK_BUF_ADDR);
	}

	if (dev->devtype->product == CODA_960) {
		coda_write(dev, 1, CODA9_GDI_WPROT_ERR_CLR);
		coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN);
	}

	coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY);

	coda_write(dev, ctx->idx, CODA_REG_BIT_RUN_INDEX);
	coda_write(dev, ctx->params.codec_mode, CODA_REG_BIT_RUN_COD_STD);
	coda_write(dev, ctx->params.codec_mode_aux, CODA7_REG_BIT_RUN_AUX_STD);

	trace_coda_bit_run(ctx, cmd);

	coda_write(dev, cmd, CODA_REG_BIT_RUN_COMMAND);
}

static int coda_command_sync(struct coda_ctx *ctx, int cmd)
{
	struct coda_dev *dev = ctx->dev;
	int ret;

	coda_command_async(ctx, cmd);
	ret = coda_wait_timeout(dev);
	trace_coda_bit_done(ctx);

	return ret;
}

int coda_hw_reset(struct coda_ctx *ctx)
{
	struct coda_dev *dev = ctx->dev;
	unsigned long timeout;
	unsigned int idx;
	int ret;

	if (!dev->rstc)
		return -ENOENT;

	idx = coda_read(dev, CODA_REG_BIT_RUN_INDEX);

	if (dev->devtype->product == CODA_960) {
		timeout = jiffies + msecs_to_jiffies(100);
		coda_write(dev, 0x11, CODA9_GDI_BUS_CTRL);
		while (coda_read(dev, CODA9_GDI_BUS_STATUS) != 0x77) {
			if (time_after(jiffies, timeout))
				return -ETIME;
			cpu_relax();
		}
	}

	ret = reset_control_reset(dev->rstc);
	if (ret < 0)
		return ret;

	if (dev->devtype->product == CODA_960)
		coda_write(dev, 0x00, CODA9_GDI_BUS_CTRL);
	coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY);
	coda_write(dev, CODA_REG_RUN_ENABLE, CODA_REG_BIT_CODE_RUN);
	ret = coda_wait_timeout(dev);
	coda_write(dev, idx, CODA_REG_BIT_RUN_INDEX);

	return ret;
}

static void coda_kfifo_sync_from_device(struct coda_ctx *ctx)
{
	struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo;
	struct coda_dev *dev = ctx->dev;
	u32 rd_ptr;

	rd_ptr = coda_read(dev, CODA_REG_BIT_RD_PTR(ctx->reg_idx));
	kfifo->out = (kfifo->in & ~kfifo->mask) |
		      (rd_ptr - ctx->bitstream.paddr);
	if (kfifo->out > kfifo->in)
		kfifo->out -= kfifo->mask + 1;
}

static void coda_kfifo_sync_to_device_full(struct coda_ctx *ctx)
{
	struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo;
	struct coda_dev *dev = ctx->dev;
	u32 rd_ptr, wr_ptr;

	rd_ptr = ctx->bitstream.paddr + (kfifo->out & kfifo->mask);
	coda_write(dev, rd_ptr, CODA_REG_BIT_RD_PTR(ctx->reg_idx));
	wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask);
	coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx));
}

static void coda_kfifo_sync_to_device_write(struct coda_ctx *ctx)
{
	struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo;
	struct coda_dev *dev = ctx->dev;
	u32 wr_ptr;

	wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask);
	coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx));
}

static int coda_bitstream_queue(struct coda_ctx *ctx,
				struct vb2_buffer *src_buf)
{
	u32 src_size = vb2_get_plane_payload(src_buf, 0);
	u32 n;

	n = kfifo_in(&ctx->bitstream_fifo, vb2_plane_vaddr(src_buf, 0),
		     src_size);
	if (n < src_size)
		return -ENOSPC;

	src_buf->v4l2_buf.sequence = ctx->qsequence++;

	return 0;
}

static bool coda_bitstream_try_queue(struct coda_ctx *ctx,
				     struct vb2_buffer *src_buf)
{
	int ret;

	if (coda_get_bitstream_payload(ctx) +
	    vb2_get_plane_payload(src_buf, 0) + 512 >= ctx->bitstream.size)
		return false;

	if (vb2_plane_vaddr(src_buf, 0) == NULL) {
		v4l2_err(&ctx->dev->v4l2_dev, "trying to queue empty buffer\n");
		return true;
	}

	ret = coda_bitstream_queue(ctx, src_buf);
	if (ret < 0) {
		v4l2_err(&ctx->dev->v4l2_dev, "bitstream buffer overflow\n");
		return false;
	}
	/* Sync read pointer to device */
	if (ctx == v4l2_m2m_get_curr_priv(ctx->dev->m2m_dev))
		coda_kfifo_sync_to_device_write(ctx);

	ctx->hold = false;

	return true;
}

void coda_fill_bitstream(struct coda_ctx *ctx, bool streaming)
{
	struct vb2_buffer *src_buf;
	struct coda_buffer_meta *meta;
	u32 start;

	while (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) > 0) {
		/*
		 * Only queue a single JPEG into the bitstream buffer, except
		 * to increase payload over 512 bytes or if in hold state.
		 */
		if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG &&
		    (coda_get_bitstream_payload(ctx) >= 512) && !ctx->hold)
			break;

		src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);

		/* Drop frames that do not start/end with a SOI/EOI markers */
		if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG &&
		    !coda_jpeg_check_buffer(ctx, src_buf)) {
			v4l2_err(&ctx->dev->v4l2_dev,
				 "dropping invalid JPEG frame %d\n",
				 ctx->qsequence);
			src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
			v4l2_m2m_buf_done(src_buf, streaming ?
					  VB2_BUF_STATE_ERROR :
					  VB2_BUF_STATE_QUEUED);
			continue;
		}

		/* Buffer start position */
		start = ctx->bitstream_fifo.kfifo.in &
			ctx->bitstream_fifo.kfifo.mask;

		if (coda_bitstream_try_queue(ctx, src_buf)) {
			/*
			 * Source buffer is queued in the bitstream ringbuffer;
			 * queue the timestamp and mark source buffer as done
			 */
			src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);

			meta = kmalloc(sizeof(*meta), GFP_KERNEL);
			if (meta) {
				meta->sequence = src_buf->v4l2_buf.sequence;
				meta->timecode = src_buf->v4l2_buf.timecode;
				meta->timestamp = src_buf->v4l2_buf.timestamp;
				meta->start = start;
				meta->end = ctx->bitstream_fifo.kfifo.in &
					    ctx->bitstream_fifo.kfifo.mask;
				list_add_tail(&meta->list,
					      &ctx->buffer_meta_list);

				trace_coda_bit_queue(ctx, src_buf, meta);
			}

			v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE);
		} else {
			break;
		}
	}
}

void coda_bit_stream_end_flag(struct coda_ctx *ctx)
{
	struct coda_dev *dev = ctx->dev;

	ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG;

	/* If this context is currently running, update the hardware flag */
	if ((dev->devtype->product == CODA_960) &&
	    coda_isbusy(dev) &&
	    (ctx->idx == coda_read(dev, CODA_REG_BIT_RUN_INDEX))) {
		coda_write(dev, ctx->bit_stream_param,
			   CODA_REG_BIT_BIT_STREAM_PARAM);
	}
}

static void coda_parabuf_write(struct coda_ctx *ctx, int index, u32 value)
{
	struct coda_dev *dev = ctx->dev;
	u32 *p = ctx->parabuf.vaddr;

	if (dev->devtype->product == CODA_DX6)
		p[index] = value;
	else
		p[index ^ 1] = value;
}

static inline int coda_alloc_context_buf(struct coda_ctx *ctx,
					 struct coda_aux_buf *buf, size_t size,
					 const char *name)
{
	return coda_alloc_aux_buf(ctx->dev, buf, size, name, ctx->debugfs_entry);
}


static void coda_free_framebuffers(struct coda_ctx *ctx)
{
	int i;

	for (i = 0; i < CODA_MAX_FRAMEBUFFERS; i++)
		coda_free_aux_buf(ctx->dev, &ctx->internal_frames[i]);
}

static int coda_alloc_framebuffers(struct coda_ctx *ctx,
				   struct coda_q_data *q_data, u32 fourcc)
{
	struct coda_dev *dev = ctx->dev;
	int width, height;
	dma_addr_t paddr;
	int ysize;
	int ret;
	int i;

	if (ctx->codec && (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 ||
	     ctx->codec->dst_fourcc == V4L2_PIX_FMT_H264)) {
		width = round_up(q_data->width, 16);
		height = round_up(q_data->height, 16);
	} else {
		width = round_up(q_data->width, 8);
		height = q_data->height;
	}
	ysize = width * height;

	/* Allocate frame buffers */
	for (i = 0; i < ctx->num_internal_frames; i++) {
		size_t size;
		char *name;

		size = ysize + ysize / 2;
		if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 &&
		    dev->devtype->product != CODA_DX6)
			size += ysize / 4;
		name = kasprintf(GFP_KERNEL, "fb%d", i);
		ret = coda_alloc_context_buf(ctx, &ctx->internal_frames[i],
					     size, name);
		kfree(name);
		if (ret < 0) {
			coda_free_framebuffers(ctx);
			return ret;
		}
	}

	/* Register frame buffers in the parameter buffer */
	for (i = 0; i < ctx->num_internal_frames; i++) {
		paddr = ctx->internal_frames[i].paddr;
		/* Start addresses of Y, Cb, Cr planes */
		coda_parabuf_write(ctx, i * 3 + 0, paddr);
		coda_parabuf_write(ctx, i * 3 + 1, paddr + ysize);
		coda_parabuf_write(ctx, i * 3 + 2, paddr + ysize + ysize / 4);

		/* mvcol buffer for h.264 */
		if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 &&
		    dev->devtype->product != CODA_DX6)
			coda_parabuf_write(ctx, 96 + i,
					   ctx->internal_frames[i].paddr +
					   ysize + ysize/4 + ysize/4);
	}

	/* mvcol buffer for mpeg4 */
	if ((dev->devtype->product != CODA_DX6) &&
	    (ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4))
		coda_parabuf_write(ctx, 97, ctx->internal_frames[i].paddr +
					    ysize + ysize/4 + ysize/4);

	return 0;
}

static void coda_free_context_buffers(struct coda_ctx *ctx)
{
	struct coda_dev *dev = ctx->dev;

	coda_free_aux_buf(dev, &ctx->slicebuf);
	coda_free_aux_buf(dev, &ctx->psbuf);
	if (dev->devtype->product != CODA_DX6)
		coda_free_aux_buf(dev, &ctx->workbuf);
	coda_free_aux_buf(dev, &ctx->parabuf);
}

static int coda_alloc_context_buffers(struct coda_ctx *ctx,
				      struct coda_q_data *q_data)
{
	struct coda_dev *dev = ctx->dev;
	size_t size;
	int ret;

	if (!ctx->parabuf.vaddr) {
		ret = coda_alloc_context_buf(ctx, &ctx->parabuf,
					     CODA_PARA_BUF_SIZE, "parabuf");
		if (ret < 0)
			return ret;
	}

	if (dev->devtype->product == CODA_DX6)
		return 0;

	if (!ctx->slicebuf.vaddr && q_data->fourcc == V4L2_PIX_FMT_H264) {
		/* worst case slice size */
		size = (DIV_ROUND_UP(q_data->width, 16) *
			DIV_ROUND_UP(q_data->height, 16)) * 3200 / 8 + 512;
		ret = coda_alloc_context_buf(ctx, &ctx->slicebuf, size,
					     "slicebuf");
		if (ret < 0)
			goto err;
	}

	if (!ctx->psbuf.vaddr && dev->devtype->product == CODA_7541) {
		ret = coda_alloc_context_buf(ctx, &ctx->psbuf,
					     CODA7_PS_BUF_SIZE, "psbuf");
		if (ret < 0)
			goto err;
	}

	if (!ctx->workbuf.vaddr) {
		size = dev->devtype->workbuf_size;
		if (dev->devtype->product == CODA_960 &&
		    q_data->fourcc == V4L2_PIX_FMT_H264)
			size += CODA9_PS_SAVE_SIZE;
		ret = coda_alloc_context_buf(ctx, &ctx->workbuf, size,
					     "workbuf");
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	coda_free_context_buffers(ctx);
	return ret;
}

static int coda_encode_header(struct coda_ctx *ctx, struct vb2_buffer *buf,
			      int header_code, u8 *header, int *size)
{
	struct coda_dev *dev = ctx->dev;
	size_t bufsize;
	int ret;
	int i;

	if (dev->devtype->product == CODA_960)
		memset(vb2_plane_vaddr(buf, 0), 0, 64);

	coda_write(dev, vb2_dma_contig_plane_dma_addr(buf, 0),
		   CODA_CMD_ENC_HEADER_BB_START);
	bufsize = vb2_plane_size(buf, 0);
	if (dev->devtype->product == CODA_960)
		bufsize /= 1024;
	coda_write(dev, bufsize, CODA_CMD_ENC_HEADER_BB_SIZE);
	coda_write(dev, header_code, CODA_CMD_ENC_HEADER_CODE);
	ret = coda_command_sync(ctx, CODA_COMMAND_ENCODE_HEADER);
	if (ret < 0) {
		v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_ENCODE_HEADER timeout\n");
		return ret;
	}

	if (dev->devtype->product == CODA_960) {
		for (i = 63; i > 0; i--)
			if (((char *)vb2_plane_vaddr(buf, 0))[i] != 0)
				break;
		*size = i + 1;
	} else {
		*size = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx)) -
			coda_read(dev, CODA_CMD_ENC_HEADER_BB_START);
	}
	memcpy(header, vb2_plane_vaddr(buf, 0), *size);

	return 0;
}

static phys_addr_t coda_iram_alloc(struct coda_iram_info *iram, size_t size)
{
	phys_addr_t ret;

	size = round_up(size, 1024);
	if (size > iram->remaining)
		return 0;
	iram->remaining -= size;

	ret = iram->next_paddr;
	iram->next_paddr += size;

	return ret;
}

static void coda_setup_iram(struct coda_ctx *ctx)
{
	struct coda_iram_info *iram_info = &ctx->iram_info;
	struct coda_dev *dev = ctx->dev;
	int w64, w128;
	int mb_width;
	int dbk_bits;
	int bit_bits;
	int ip_bits;

	memset(iram_info, 0, sizeof(*iram_info));
	iram_info->next_paddr = dev->iram.paddr;
	iram_info->remaining = dev->iram.size;

	if (!dev->iram.vaddr)
		return;

	switch (dev->devtype->product) {
	case CODA_7541:
		dbk_bits = CODA7_USE_HOST_DBK_ENABLE | CODA7_USE_DBK_ENABLE;
		bit_bits = CODA7_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE;
		ip_bits = CODA7_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE;
		break;
	case CODA_960:
		dbk_bits = CODA9_USE_HOST_DBK_ENABLE | CODA9_USE_DBK_ENABLE;
		bit_bits = CODA9_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE;
		ip_bits = CODA9_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE;
		break;
	default: /* CODA_DX6 */
		return;
	}

	if (ctx->inst_type == CODA_INST_ENCODER) {
		struct coda_q_data *q_data_src;

		q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
		mb_width = DIV_ROUND_UP(q_data_src->width, 16);
		w128 = mb_width * 128;
		w64 = mb_width * 64;

		/* Prioritize in case IRAM is too small for everything */
		if (dev->devtype->product == CODA_7541) {
			iram_info->search_ram_size = round_up(mb_width * 16 *
							      36 + 2048, 1024);
			iram_info->search_ram_paddr = coda_iram_alloc(iram_info,
						iram_info->search_ram_size);
			if (!iram_info->search_ram_paddr) {
				pr_err("IRAM is smaller than the search ram size\n");
				goto out;
			}
			iram_info->axi_sram_use |= CODA7_USE_HOST_ME_ENABLE |
						   CODA7_USE_ME_ENABLE;
		}

		/* Only H.264BP and H.263P3 are considered */
		iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, w64);
		iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, w64);
		if (!iram_info->buf_dbk_c_use)
			goto out;
		iram_info->axi_sram_use |= dbk_bits;

		iram_info->buf_bit_use = coda_iram_alloc(iram_info, w128);
		if (!iram_info->buf_bit_use)
			goto out;
		iram_info->axi_sram_use |= bit_bits;

		iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, w128);
		if (!iram_info->buf_ip_ac_dc_use)
			goto out;
		iram_info->axi_sram_use |= ip_bits;

		/* OVL and BTP disabled for encoder */
	} else if (ctx->inst_type == CODA_INST_DECODER) {
		struct coda_q_data *q_data_dst;

		q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
		mb_width = DIV_ROUND_UP(q_data_dst->width, 16);
		w128 = mb_width * 128;

		iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, w128);
		iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, w128);
		if (!iram_info->buf_dbk_c_use)
			goto out;
		iram_info->axi_sram_use |= dbk_bits;

		iram_info->buf_bit_use = coda_iram_alloc(iram_info, w128);
		if (!iram_info->buf_bit_use)
			goto out;
		iram_info->axi_sram_use |= bit_bits;

		iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, w128);
		if (!iram_info->buf_ip_ac_dc_use)
			goto out;
		iram_info->axi_sram_use |= ip_bits;

		/* OVL and BTP unused as there is no VC1 support yet */
	}

out:
	if (!(iram_info->axi_sram_use & CODA7_USE_HOST_IP_ENABLE))
		v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
			 "IRAM smaller than needed\n");

	if (dev->devtype->product == CODA_7541) {
		/* TODO - Enabling these causes picture errors on CODA7541 */
		if (ctx->inst_type == CODA_INST_DECODER) {
			/* fw 1.4.50 */
			iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE |
						     CODA7_USE_IP_ENABLE);
		} else {
			/* fw 13.4.29 */
			iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE |
						     CODA7_USE_HOST_DBK_ENABLE |
						     CODA7_USE_IP_ENABLE |
						     CODA7_USE_DBK_ENABLE);
		}
	}
}

static u32 coda_supported_firmwares[] = {
	CODA_FIRMWARE_VERNUM(CODA_DX6, 2, 2, 5),
	CODA_FIRMWARE_VERNUM(CODA_7541, 1, 4, 50),
	CODA_FIRMWARE_VERNUM(CODA_960, 2, 1, 5),
};

static bool coda_firmware_supported(u32 vernum)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(coda_supported_firmwares); i++)
		if (vernum == coda_supported_firmwares[i])
			return true;
	return false;
}

int coda_check_firmware(struct coda_dev *dev)
{
	u16 product, major, minor, release;
	u32 data;
	int ret;

	ret = clk_prepare_enable(dev->clk_per);
	if (ret)
		goto err_clk_per;

	ret = clk_prepare_enable(dev->clk_ahb);
	if (ret)
		goto err_clk_ahb;

	coda_write(dev, 0, CODA_CMD_FIRMWARE_VERNUM);
	coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY);
	coda_write(dev, 0, CODA_REG_BIT_RUN_INDEX);
	coda_write(dev, 0, CODA_REG_BIT_RUN_COD_STD);
	coda_write(dev, CODA_COMMAND_FIRMWARE_GET, CODA_REG_BIT_RUN_COMMAND);
	if (coda_wait_timeout(dev)) {
		v4l2_err(&dev->v4l2_dev, "firmware get command error\n");
		ret = -EIO;
		goto err_run_cmd;
	}

	if (dev->devtype->product == CODA_960) {
		data = coda_read(dev, CODA9_CMD_FIRMWARE_CODE_REV);
		v4l2_info(&dev->v4l2_dev, "Firmware code revision: %d\n",
			  data);
	}

	/* Check we are compatible with the loaded firmware */
	data = coda_read(dev, CODA_CMD_FIRMWARE_VERNUM);
	product = CODA_FIRMWARE_PRODUCT(data);
	major = CODA_FIRMWARE_MAJOR(data);
	minor = CODA_FIRMWARE_MINOR(data);
	release = CODA_FIRMWARE_RELEASE(data);

	clk_disable_unprepare(dev->clk_per);
	clk_disable_unprepare(dev->clk_ahb);

	if (product != dev->devtype->product) {
		v4l2_err(&dev->v4l2_dev,
			 "Wrong firmware. Hw: %s, Fw: %s, Version: %u.%u.%u\n",
			 coda_product_name(dev->devtype->product),
			 coda_product_name(product), major, minor, release);
		return -EINVAL;
	}

	v4l2_info(&dev->v4l2_dev, "Initialized %s.\n",
		  coda_product_name(product));

	if (coda_firmware_supported(data)) {
		v4l2_info(&dev->v4l2_dev, "Firmware version: %u.%u.%u\n",
			  major, minor, release);
	} else {
		v4l2_warn(&dev->v4l2_dev,
			  "Unsupported firmware version: %u.%u.%u\n",
			  major, minor, release);
	}

	return 0;

err_run_cmd:
	clk_disable_unprepare(dev->clk_ahb);
err_clk_ahb:
	clk_disable_unprepare(dev->clk_per);
err_clk_per:
	return ret;
}

/*
 * Encoder context operations
 */

static int coda_encoder_reqbufs(struct coda_ctx *ctx,
				struct v4l2_requestbuffers *rb)
{
	struct coda_q_data *q_data_src;
	int ret;

	if (rb->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
		return 0;

	if (rb->count) {
		q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
		ret = coda_alloc_context_buffers(ctx, q_data_src);
		if (ret < 0)
			return ret;
	} else {
		coda_free_context_buffers(ctx);
	}

	return 0;
}

static int coda_start_encoding(struct coda_ctx *ctx)
{
	struct coda_dev *dev = ctx->dev;
	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
	struct coda_q_data *q_data_src, *q_data_dst;
	u32 bitstream_buf, bitstream_size;
	struct vb2_buffer *buf;
	int gamma, ret, value;
	u32 dst_fourcc;
	int num_fb;
	u32 stride;

	q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
	q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
	dst_fourcc = q_data_dst->fourcc;

	buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
	bitstream_buf = vb2_dma_contig_plane_dma_addr(buf, 0);
	bitstream_size = q_data_dst->sizeimage;

	if (!coda_is_initialized(dev)) {
		v4l2_err(v4l2_dev, "coda is not initialized.\n");
		return -EFAULT;
	}

	if (dst_fourcc == V4L2_PIX_FMT_JPEG) {
		if (!ctx->params.jpeg_qmat_tab[0])
			ctx->params.jpeg_qmat_tab[0] = kmalloc(64, GFP_KERNEL);
		if (!ctx->params.jpeg_qmat_tab[1])
			ctx->params.jpeg_qmat_tab[1] = kmalloc(64, GFP_KERNEL);
		coda_set_jpeg_compression_quality(ctx, ctx->params.jpeg_quality);
	}

	mutex_lock(&dev->coda_mutex);

	coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR);
	coda_write(dev, bitstream_buf, CODA_REG_BIT_RD_PTR(ctx->reg_idx));
	coda_write(dev, bitstream_buf, CODA_REG_BIT_WR_PTR(ctx->reg_idx));
	switch (dev->devtype->product) {
	case CODA_DX6:
		coda_write(dev, CODADX6_STREAM_BUF_DYNALLOC_EN |
			CODADX6_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL);
		break;
	case CODA_960:
		coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN);
		/* fallthrough */
	case CODA_7541:
		coda_write(dev, CODA7_STREAM_BUF_DYNALLOC_EN |
			CODA7_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL);
		break;
	}

	ctx->frame_mem_ctrl &= ~CODA_FRAME_CHROMA_INTERLEAVE;
	if (q_data_src->fourcc == V4L2_PIX_FMT_NV12)
		ctx->frame_mem_ctrl |= CODA_FRAME_CHROMA_INTERLEAVE;
	coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL);

	if (dev->devtype->product == CODA_DX6) {
		/* Configure the coda */
		coda_write(dev, dev->iram.paddr,
			   CODADX6_REG_BIT_SEARCH_RAM_BASE_ADDR);
	}

	/* Could set rotation here if needed */
	value = 0;
	switch (dev->devtype->product) {
	case CODA_DX6:
		value = (q_data_src->width & CODADX6_PICWIDTH_MASK)
			<< CODADX6_PICWIDTH_OFFSET;
		value |= (q_data_src->height & CODADX6_PICHEIGHT_MASK)
			 << CODA_PICHEIGHT_OFFSET;
		break;
	case CODA_7541:
		if (dst_fourcc == V4L2_PIX_FMT_H264) {
			value = (round_up(q_data_src->width, 16) &
				 CODA7_PICWIDTH_MASK) << CODA7_PICWIDTH_OFFSET;
			value |= (round_up(q_data_src->height, 16) &
				 CODA7_PICHEIGHT_MASK) << CODA_PICHEIGHT_OFFSET;
			break;
		}
		/* fallthrough */
	case CODA_960:
		value = (q_data_src->width & CODA7_PICWIDTH_MASK)
			<< CODA7_PICWIDTH_OFFSET;
		value |= (q_data_src->height & CODA7_PICHEIGHT_MASK)
			 << CODA_PICHEIGHT_OFFSET;
	}
	coda_write(dev, value, CODA_CMD_ENC_SEQ_SRC_SIZE);
	if (dst_fourcc == V4L2_PIX_FMT_JPEG)
		ctx->params.framerate = 0;
	coda_write(dev, ctx->params.framerate,
		   CODA_CMD_ENC_SEQ_SRC_F_RATE);

	ctx->params.codec_mode = ctx->codec->mode;
	switch (dst_fourcc) {
	case V4L2_PIX_FMT_MPEG4:
		if (dev->devtype->product == CODA_960)
			coda_write(dev, CODA9_STD_MPEG4,
				   CODA_CMD_ENC_SEQ_COD_STD);
		else
			coda_write(dev, CODA_STD_MPEG4,
				   CODA_CMD_ENC_SEQ_COD_STD);
		coda_write(dev, 0, CODA_CMD_ENC_SEQ_MP4_PARA);
		break;
	case V4L2_PIX_FMT_H264:
		if (dev->devtype->product == CODA_960)
			coda_write(dev, CODA9_STD_H264,
				   CODA_CMD_ENC_SEQ_COD_STD);
		else
			coda_write(dev, CODA_STD_H264,
				   CODA_CMD_ENC_SEQ_COD_STD);
		if (ctx->params.h264_deblk_enabled) {
			value = ((ctx->params.h264_deblk_alpha &
				  CODA_264PARAM_DEBLKFILTEROFFSETALPHA_MASK) <<
				 CODA_264PARAM_DEBLKFILTEROFFSETALPHA_OFFSET) |
				((ctx->params.h264_deblk_beta &
				  CODA_264PARAM_DEBLKFILTEROFFSETBETA_MASK) <<
				 CODA_264PARAM_DEBLKFILTEROFFSETBETA_OFFSET);
		} else {
			value = 1 << CODA_264PARAM_DISABLEDEBLK_OFFSET;
		}
		coda_write(dev, value, CODA_CMD_ENC_SEQ_264_PARA);
		break;
	case V4L2_PIX_FMT_JPEG:
		coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_PARA);
		coda_write(dev, ctx->params.jpeg_restart_interval,
				CODA_CMD_ENC_SEQ_JPG_RST_INTERVAL);
		coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_EN);
		coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_SIZE);
		coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_OFFSET);

		coda_jpeg_write_tables(ctx);
		break;
	default:
		v4l2_err(v4l2_dev,
			 "dst format (0x%08x) invalid.\n", dst_fourcc);
		ret = -EINVAL;
		goto out;
	}

	/*
	 * slice mode and GOP size registers are used for thumb size/offset
	 * in JPEG mode
	 */
	if (dst_fourcc != V4L2_PIX_FMT_JPEG) {
		switch (ctx->params.slice_mode) {
		case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE:
			value = 0;
			break;
		case V4L2_MPEG_VIDEO_MULTI_SICE_MODE_MAX_MB:
			value  = (ctx->params.slice_max_mb &
				  CODA_SLICING_SIZE_MASK)
				 << CODA_SLICING_SIZE_OFFSET;
			value |= (1 & CODA_SLICING_UNIT_MASK)
				 << CODA_SLICING_UNIT_OFFSET;
			value |=  1 & CODA_SLICING_MODE_MASK;
			break;
		case V4L2_MPEG_VIDEO_MULTI_SICE_MODE_MAX_BYTES:
			value  = (ctx->params.slice_max_bits &
				  CODA_SLICING_SIZE_MASK)
				 << CODA_SLICING_SIZE_OFFSET;
			value |= (0 & CODA_SLICING_UNIT_MASK)
				 << CODA_SLICING_UNIT_OFFSET;
			value |=  1 & CODA_SLICING_MODE_MASK;
			break;
		}
		coda_write(dev, value, CODA_CMD_ENC_SEQ_SLICE_MODE);
		value = ctx->params.gop_size & CODA_GOP_SIZE_MASK;
		coda_write(dev, value, CODA_CMD_ENC_SEQ_GOP_SIZE);
	}

	if (ctx->params.bitrate) {
		/* Rate control enabled */
		value = (ctx->params.bitrate & CODA_RATECONTROL_BITRATE_MASK)
			<< CODA_RATECONTROL_BITRATE_OFFSET;
		value |=  1 & CODA_RATECONTROL_ENABLE_MASK;
		if (dev->devtype->product == CODA_960)
			value |= BIT(31); /* disable autoskip */
	} else {
		value = 0;
	}
	coda_write(dev, value, CODA_CMD_ENC_SEQ_RC_PARA);

	coda_write(dev, 0, CODA_CMD_ENC_SEQ_RC_BUF_SIZE);
	coda_write(dev, ctx->params.intra_refresh,
		   CODA_CMD_ENC_SEQ_INTRA_REFRESH);

	coda_write(dev, bitstream_buf, CODA_CMD_ENC_SEQ_BB_START);
	coda_write(dev, bitstream_size / 1024, CODA_CMD_ENC_SEQ_BB_SIZE);


	value = 0;
	if (dev->devtype->product == CODA_960)
		gamma = CODA9_DEFAULT_GAMMA;
	else
		gamma = CODA_DEFAULT_GAMMA;
	if (gamma > 0) {
		coda_write(dev, (gamma & CODA_GAMMA_MASK) << CODA_GAMMA_OFFSET,
			   CODA_CMD_ENC_SEQ_RC_GAMMA);
	}

	if (ctx->params.h264_min_qp || ctx->params.h264_max_qp) {
		coda_write(dev,
			   ctx->params.h264_min_qp << CODA_QPMIN_OFFSET |
			   ctx->params.h264_max_qp << CODA_QPMAX_OFFSET,
			   CODA_CMD_ENC_SEQ_RC_QP_MIN_MAX);
	}
	if (dev->devtype->product == CODA_960) {
		if (ctx->params.h264_max_qp)
			value |= 1 << CODA9_OPTION_RCQPMAX_OFFSET;
		if (CODA_DEFAULT_GAMMA > 0)
			value |= 1 << CODA9_OPTION_GAMMA_OFFSET;
	} else {
		if (CODA_DEFAULT_GAMMA > 0) {
			if (dev->devtype->product == CODA_DX6)
				value |= 1 << CODADX6_OPTION_GAMMA_OFFSET;
			else
				value |= 1 << CODA7_OPTION_GAMMA_OFFSET;
		}
		if (ctx->params.h264_min_qp)
			value |= 1 << CODA7_OPTION_RCQPMIN_OFFSET;
		if (ctx->params.h264_max_qp)
			value |= 1 << CODA7_OPTION_RCQPMAX_OFFSET;
	}
	coda_write(dev, value, CODA_CMD_ENC_SEQ_OPTION);

	coda_write(dev, 0, CODA_CMD_ENC_SEQ_RC_INTERVAL_MODE);

	coda_setup_iram(ctx);

	if (dst_fourcc == V4L2_PIX_FMT_H264) {
		switch (dev->devtype->product) {
		case CODA_DX6:
			value = FMO_SLICE_SAVE_BUF_SIZE << 7;
			coda_write(dev, value, CODADX6_CMD_ENC_SEQ_FMO);
			break;
		case CODA_7541:
			coda_write(dev, ctx->iram_info.search_ram_paddr,
					CODA7_CMD_ENC_SEQ_SEARCH_BASE);
			coda_write(dev, ctx->iram_info.search_ram_size,
					CODA7_CMD_ENC_SEQ_SEARCH_SIZE);
			break;
		case CODA_960:
			coda_write(dev, 0, CODA9_CMD_ENC_SEQ_ME_OPTION);
			coda_write(dev, 0, CODA9_CMD_ENC_SEQ_INTRA_WEIGHT);
		}
	}

	ret = coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT);
	if (ret < 0) {
		v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n");
		goto out;
	}

	if (coda_read(dev, CODA_RET_ENC_SEQ_SUCCESS) == 0) {
		v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT failed\n");
		ret = -EFAULT;
		goto out;
	}

	if (dst_fourcc != V4L2_PIX_FMT_JPEG) {
		if (dev->devtype->product == CODA_960)
			ctx->num_internal_frames = 4;
		else
			ctx->num_internal_frames = 2;
		ret = coda_alloc_framebuffers(ctx, q_data_src, dst_fourcc);
		if (ret < 0) {
			v4l2_err(v4l2_dev, "failed to allocate framebuffers\n");
			goto out;
		}
		num_fb = 2;
		stride = q_data_src->bytesperline;
	} else {
		ctx->num_internal_frames = 0;
		num_fb = 0;
		stride = 0;
	}
	coda_write(dev, num_fb, CODA_CMD_SET_FRAME_BUF_NUM);
	coda_write(dev, stride, CODA_CMD_SET_FRAME_BUF_STRIDE);

	if (dev->devtype->product == CODA_7541) {
		coda_write(dev, q_data_src->bytesperline,
				CODA7_CMD_SET_FRAME_SOURCE_BUF_STRIDE);
	}
	if (dev->devtype->product != CODA_DX6) {
		coda_write(dev, ctx->iram_info.buf_bit_use,
				CODA7_CMD_SET_FRAME_AXI_BIT_ADDR);
		coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use,
				CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR);
		coda_write(dev, ctx->iram_info.buf_dbk_y_use,
				CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR);
		coda_write(dev, ctx->iram_info.buf_dbk_c_use,
				CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR);
		coda_write(dev, ctx->iram_info.buf_ovl_use,
				CODA7_CMD_SET_FRAME_AXI_OVL_ADDR);
		if (dev->devtype->product == CODA_960) {
			coda_write(dev, ctx->iram_info.buf_btp_use,
					CODA9_CMD_SET_FRAME_AXI_BTP_ADDR);

			/* FIXME */
			coda_write(dev, ctx->internal_frames[2].paddr,
				   CODA9_CMD_SET_FRAME_SUBSAMP_A);
			coda_write(dev, ctx->internal_frames[3].paddr,
				   CODA9_CMD_SET_FRAME_SUBSAMP_B);
		}
	}

	ret = coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF);
	if (ret < 0) {
		v4l2_err(v4l2_dev, "CODA_COMMAND_SET_FRAME_BUF timeout\n");
		goto out;
	}

	/* Save stream headers */
	buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
	switch (dst_fourcc) {
	case V4L2_PIX_FMT_H264:
		/*
		 * Get SPS in the first frame and copy it to an
		 * intermediate buffer.
		 */
		ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_SPS,
					 &ctx->vpu_header[0][0],
					 &ctx->vpu_header_size[0]);
		if (ret < 0)
			goto out;

		/*
		 * Get PPS in the first frame and copy it to an
		 * intermediate buffer.
		 */
		ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_PPS,
					 &ctx->vpu_header[1][0],
					 &ctx->vpu_header_size[1]);
		if (ret < 0)
			goto out;

		/*
		 * Length of H.264 headers is variable and thus it might not be
		 * aligned for the coda to append the encoded frame. In that is
		 * the case a filler NAL must be added to header 2.
		 */
		ctx->vpu_header_size[2] = coda_h264_padding(
					(ctx->vpu_header_size[0] +
					 ctx->vpu_header_size[1]),
					 ctx->vpu_header[2]);
		break;
	case V4L2_PIX_FMT_MPEG4:
		/*
		 * Get VOS in the first frame and copy it to an
		 * intermediate buffer
		 */
		ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOS,
					 &ctx->vpu_header[0][0],
					 &ctx->vpu_header_size[0]);
		if (ret < 0)
			goto out;

		ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VIS,
					 &ctx->vpu_header[1][0],
					 &ctx->vpu_header_size[1]);
		if (ret < 0)
			goto out;

		ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOL,
					 &ctx->vpu_header[2][0],
					 &ctx->vpu_header_size[2]);
		if (ret < 0)
			goto out;
		break;
	default:
		/* No more formats need to save headers at the moment */
		break;
	}

out:
	mutex_unlock(&dev->coda_mutex);
	return ret;
}

static int coda_prepare_encode(struct coda_ctx *ctx)
{
	struct coda_q_data *q_data_src, *q_data_dst;
	struct vb2_buffer *src_buf, *dst_buf;
	struct coda_dev *dev = ctx->dev;
	int force_ipicture;
	int quant_param = 0;
	u32 pic_stream_buffer_addr, pic_stream_buffer_size;
	u32 rot_mode = 0;
	u32 dst_fourcc;
	u32 reg;

	src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
	dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
	q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
	q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
	dst_fourcc = q_data_dst->fourcc;

	src_buf->v4l2_buf.sequence = ctx->osequence;
	dst_buf->v4l2_buf.sequence = ctx->osequence;
	ctx->osequence++;

	/*
	 * Workaround coda firmware BUG that only marks the first
	 * frame as IDR. This is a problem for some decoders that can't
	 * recover when a frame is lost.
	 */
	if (src_buf->v4l2_buf.sequence % ctx->params.gop_size) {
		src_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_PFRAME;
		src_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_KEYFRAME;
	} else {
		src_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_KEYFRAME;
		src_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_PFRAME;
	}

	if (dev->devtype->product == CODA_960)
		coda_set_gdi_regs(ctx);

	/*
	 * Copy headers at the beginning of the first frame for H.264 only.
	 * In MPEG4 they are already copied by the coda.
	 */
	if (src_buf->v4l2_buf.sequence == 0) {
		pic_stream_buffer_addr =
			vb2_dma_contig_plane_dma_addr(dst_buf, 0) +
			ctx->vpu_header_size[0] +
			ctx->vpu_header_size[1] +
			ctx->vpu_header_size[2];
		pic_stream_buffer_size = q_data_dst->sizeimage -
			ctx->vpu_header_size[0] -
			ctx->vpu_header_size[1] -
			ctx->vpu_header_size[2];
		memcpy(vb2_plane_vaddr(dst_buf, 0),
		       &ctx->vpu_header[0][0], ctx->vpu_header_size[0]);
		memcpy(vb2_plane_vaddr(dst_buf, 0) + ctx->vpu_header_size[0],
		       &ctx->vpu_header[1][0], ctx->vpu_header_size[1]);
		memcpy(vb2_plane_vaddr(dst_buf, 0) + ctx->vpu_header_size[0] +
			ctx->vpu_header_size[1], &ctx->vpu_header[2][0],
			ctx->vpu_header_size[2]);
	} else {
		pic_stream_buffer_addr =
			vb2_dma_contig_plane_dma_addr(dst_buf, 0);
		pic_stream_buffer_size = q_data_dst->sizeimage;
	}

	if (src_buf->v4l2_buf.flags & V4L2_BUF_FLAG_KEYFRAME) {
		force_ipicture = 1;
		switch (dst_fourcc) {
		case V4L2_PIX_FMT_H264:
			quant_param = ctx->params.h264_intra_qp;
			break;
		case V4L2_PIX_FMT_MPEG4:
			quant_param = ctx->params.mpeg4_intra_qp;
			break;
		case V4L2_PIX_FMT_JPEG:
			quant_param = 30;
			break;
		default:
			v4l2_warn(&ctx->dev->v4l2_dev,
				"cannot set intra qp, fmt not supported\n");
			break;
		}
	} else {
		force_ipicture = 0;
		switch (dst_fourcc) {
		case V4L2_PIX_FMT_H264:
			quant_param = ctx->params.h264_inter_qp;
			break;
		case V4L2_PIX_FMT_MPEG4:
			quant_param = ctx->params.mpeg4_inter_qp;
			break;
		default:
			v4l2_warn(&ctx->dev->v4l2_dev,
				"cannot set inter qp, fmt not supported\n");
			break;
		}
	}

	/* submit */
	if (ctx->params.rot_mode)
		rot_mode = CODA_ROT_MIR_ENABLE | ctx->params.rot_mode;
	coda_write(dev, rot_mode, CODA_CMD_ENC_PIC_ROT_MODE);
	coda_write(dev, quant_param, CODA_CMD_ENC_PIC_QS);

	if (dev->devtype->product == CODA_960) {
		coda_write(dev, 4/*FIXME: 0*/, CODA9_CMD_ENC_PIC_SRC_INDEX);
		coda_write(dev, q_data_src->width, CODA9_CMD_ENC_PIC_SRC_STRIDE);
		coda_write(dev, 0, CODA9_CMD_ENC_PIC_SUB_FRAME_SYNC);

		reg = CODA9_CMD_ENC_PIC_SRC_ADDR_Y;
	} else {
		reg = CODA_CMD_ENC_PIC_SRC_ADDR_Y;
	}
	coda_write_base(ctx, q_data_src, src_buf, reg);

	coda_write(dev, force_ipicture << 1 & 0x2,
		   CODA_CMD_ENC_PIC_OPTION);

	coda_write(dev, pic_stream_buffer_addr, CODA_CMD_ENC_PIC_BB_START);
	coda_write(dev, pic_stream_buffer_size / 1024,
		   CODA_CMD_ENC_PIC_BB_SIZE);

	if (!ctx->streamon_out) {
		/* After streamoff on the output side, set stream end flag */
		ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG;
		coda_write(dev, ctx->bit_stream_param,
			   CODA_REG_BIT_BIT_STREAM_PARAM);
	}

	if (dev->devtype->product != CODA_DX6)
		coda_write(dev, ctx->iram_info.axi_sram_use,
				CODA7_REG_BIT_AXI_SRAM_USE);

	trace_coda_enc_pic_run(ctx, src_buf);

	coda_command_async(ctx, CODA_COMMAND_PIC_RUN);

	return 0;
}

static void coda_finish_encode(struct coda_ctx *ctx)
{
	struct vb2_buffer *src_buf, *dst_buf;
	struct coda_dev *dev = ctx->dev;
	u32 wr_ptr, start_ptr;

	src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
	dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);

	trace_coda_enc_pic_done(ctx, dst_buf);

	/* Get results from the coda */
	start_ptr = coda_read(dev, CODA_CMD_ENC_PIC_BB_START);
	wr_ptr = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx));

	/* Calculate bytesused field */
	if (dst_buf->v4l2_buf.sequence == 0) {
		vb2_set_plane_payload(dst_buf, 0, wr_ptr - start_ptr +
					ctx->vpu_header_size[0] +
					ctx->vpu_header_size[1] +
					ctx->vpu_header_size[2]);
	} else {
		vb2_set_plane_payload(dst_buf, 0, wr_ptr - start_ptr);
	}

	v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "frame size = %u\n",
		 wr_ptr - start_ptr);

	coda_read(dev, CODA_RET_ENC_PIC_SLICE_NUM);
	coda_read(dev, CODA_RET_ENC_PIC_FLAG);

	if (coda_read(dev, CODA_RET_ENC_PIC_TYPE) == 0) {
		dst_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_KEYFRAME;
		dst_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_PFRAME;
	} else {
		dst_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_PFRAME;
		dst_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_KEYFRAME;
	}

	dst_buf->v4l2_buf.timestamp = src_buf->v4l2_buf.timestamp;
	dst_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
	dst_buf->v4l2_buf.flags |=
		src_buf->v4l2_buf.flags & V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
	dst_buf->v4l2_buf.timecode = src_buf->v4l2_buf.timecode;

	v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE);

	dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
	v4l2_m2m_buf_done(dst_buf, VB2_BUF_STATE_DONE);

	ctx->gopcounter--;
	if (ctx->gopcounter < 0)
		ctx->gopcounter = ctx->params.gop_size - 1;

	v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
		"job finished: encoding frame (%d) (%s)\n",
		dst_buf->v4l2_buf.sequence,
		(dst_buf->v4l2_buf.flags & V4L2_BUF_FLAG_KEYFRAME) ?
		"KEYFRAME" : "PFRAME");
}

static void coda_seq_end_work(struct work_struct *work)
{
	struct coda_ctx *ctx = container_of(work, struct coda_ctx, seq_end_work);
	struct coda_dev *dev = ctx->dev;

	mutex_lock(&ctx->buffer_mutex);
	mutex_lock(&dev->coda_mutex);

	v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
		 "%d: %s: sent command 'SEQ_END' to coda\n", ctx->idx,
		 __func__);
	if (coda_command_sync(ctx, CODA_COMMAND_SEQ_END)) {
		v4l2_err(&dev->v4l2_dev,
			 "CODA_COMMAND_SEQ_END failed\n");
	}

	kfifo_init(&ctx->bitstream_fifo,
		ctx->bitstream.vaddr, ctx->bitstream.size);

	coda_free_framebuffers(ctx);

	mutex_unlock(&dev->coda_mutex);
	mutex_unlock(&ctx->buffer_mutex);
}

static void coda_bit_release(struct coda_ctx *ctx)
{
	mutex_lock(&ctx->buffer_mutex);
	coda_free_framebuffers(ctx);
	coda_free_context_buffers(ctx);
	coda_free_bitstream_buffer(ctx);
	mutex_unlock(&ctx->buffer_mutex);
}

const struct coda_context_ops coda_bit_encode_ops = {
	.queue_init = coda_encoder_queue_init,
	.reqbufs = coda_encoder_reqbufs,
	.start_streaming = coda_start_encoding,
	.prepare_run = coda_prepare_encode,
	.finish_run = coda_finish_encode,
	.seq_end_work = coda_seq_end_work,
	.release = coda_bit_release,
};

/*
 * Decoder context operations
 */

static int coda_alloc_bitstream_buffer(struct coda_ctx *ctx,
				       struct coda_q_data *q_data)
{
	if (ctx->bitstream.vaddr)
		return 0;

	ctx->bitstream.size = roundup_pow_of_two(q_data->sizeimage * 2);
	ctx->bitstream.vaddr = dma_alloc_writecombine(
			&ctx->dev->plat_dev->dev, ctx->bitstream.size,
			&ctx->bitstream.paddr, GFP_KERNEL);
	if (!ctx->bitstream.vaddr) {
		v4l2_err(&ctx->dev->v4l2_dev,
			 "failed to allocate bitstream ringbuffer");
		return -ENOMEM;
	}
	kfifo_init(&ctx->bitstream_fifo,
		   ctx->bitstream.vaddr, ctx->bitstream.size);

	return 0;
}

static void coda_free_bitstream_buffer(struct coda_ctx *ctx)
{
	if (ctx->bitstream.vaddr == NULL)
		return;

	dma_free_writecombine(&ctx->dev->plat_dev->dev, ctx->bitstream.size,
			      ctx->bitstream.vaddr, ctx->bitstream.paddr);
	ctx->bitstream.vaddr = NULL;
	kfifo_init(&ctx->bitstream_fifo, NULL, 0);
}

static int coda_decoder_reqbufs(struct coda_ctx *ctx,
				struct v4l2_requestbuffers *rb)
{
	struct coda_q_data *q_data_src;
	int ret;

	if (rb->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
		return 0;

	if (rb->count) {
		q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
		ret = coda_alloc_context_buffers(ctx, q_data_src);
		if (ret < 0)
			return ret;
		ret = coda_alloc_bitstream_buffer(ctx, q_data_src);
		if (ret < 0) {
			coda_free_context_buffers(ctx);
			return ret;
		}
	} else {
		coda_free_bitstream_buffer(ctx);
		coda_free_context_buffers(ctx);
	}

	return 0;
}

static int __coda_start_decoding(struct coda_ctx *ctx)
{
	struct coda_q_data *q_data_src, *q_data_dst;
	u32 bitstream_buf, bitstream_size;
	struct coda_dev *dev = ctx->dev;
	int width, height;
	u32 src_fourcc, dst_fourcc;
	u32 val;
	int ret;

	/* Start decoding */
	q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
	q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
	bitstream_buf = ctx->bitstream.paddr;
	bitstream_size = ctx->bitstream.size;
	src_fourcc = q_data_src->fourcc;
	dst_fourcc = q_data_dst->fourcc;

	coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR);

	/* Update coda bitstream read and write pointers from kfifo */
	coda_kfifo_sync_to_device_full(ctx);

	ctx->frame_mem_ctrl &= ~CODA_FRAME_CHROMA_INTERLEAVE;
	if (dst_fourcc == V4L2_PIX_FMT_NV12)
		ctx->frame_mem_ctrl |= CODA_FRAME_CHROMA_INTERLEAVE;
	coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL);

	ctx->display_idx = -1;
	ctx->frm_dis_flg = 0;
	coda_write(dev, 0, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));

	coda_write(dev, CODA_BIT_DEC_SEQ_INIT_ESCAPE,
			CODA_REG_BIT_BIT_STREAM_PARAM);

	coda_write(dev, bitstream_buf, CODA_CMD_DEC_SEQ_BB_START);
	coda_write(dev, bitstream_size / 1024, CODA_CMD_DEC_SEQ_BB_SIZE);
	val = 0;
	if ((dev->devtype->product == CODA_7541) ||
	    (dev->devtype->product == CODA_960))
		val |= CODA_REORDER_ENABLE;
	if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG)
		val |= CODA_NO_INT_ENABLE;
	coda_write(dev, val, CODA_CMD_DEC_SEQ_OPTION);

	ctx->params.codec_mode = ctx->codec->mode;
	if (dev->devtype->product == CODA_960 &&
	    src_fourcc == V4L2_PIX_FMT_MPEG4)
		ctx->params.codec_mode_aux = CODA_MP4_AUX_MPEG4;
	else
		ctx->params.codec_mode_aux = 0;
	if (src_fourcc == V4L2_PIX_FMT_H264) {
		if (dev->devtype->product == CODA_7541) {
			coda_write(dev, ctx->psbuf.paddr,
					CODA_CMD_DEC_SEQ_PS_BB_START);
			coda_write(dev, (CODA7_PS_BUF_SIZE / 1024),
					CODA_CMD_DEC_SEQ_PS_BB_SIZE);
		}
		if (dev->devtype->product == CODA_960) {
			coda_write(dev, 0, CODA_CMD_DEC_SEQ_X264_MV_EN);
			coda_write(dev, 512, CODA_CMD_DEC_SEQ_SPP_CHUNK_SIZE);
		}
	}
	if (dev->devtype->product != CODA_960)
		coda_write(dev, 0, CODA_CMD_DEC_SEQ_SRC_SIZE);

	if (coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT)) {
		v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n");
		coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM);
		return -ETIMEDOUT;
	}

	/* Update kfifo out pointer from coda bitstream read pointer */
	coda_kfifo_sync_from_device(ctx);

	coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM);

	if (coda_read(dev, CODA_RET_DEC_SEQ_SUCCESS) == 0) {
		v4l2_err(&dev->v4l2_dev,
			"CODA_COMMAND_SEQ_INIT failed, error code = %d\n",
			coda_read(dev, CODA_RET_DEC_SEQ_ERR_REASON));
		return -EAGAIN;
	}

	val = coda_read(dev, CODA_RET_DEC_SEQ_SRC_SIZE);
	if (dev->devtype->product == CODA_DX6) {
		width = (val >> CODADX6_PICWIDTH_OFFSET) & CODADX6_PICWIDTH_MASK;
		height = val & CODADX6_PICHEIGHT_MASK;
	} else {
		width = (val >> CODA7_PICWIDTH_OFFSET) & CODA7_PICWIDTH_MASK;
		height = val & CODA7_PICHEIGHT_MASK;
	}

	if (width > q_data_dst->bytesperline || height > q_data_dst->height) {
		v4l2_err(&dev->v4l2_dev, "stream is %dx%d, not %dx%d\n",
			 width, height, q_data_dst->bytesperline,
			 q_data_dst->height);
		return -EINVAL;
	}

	width = round_up(width, 16);
	height = round_up(height, 16);

	v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "%s instance %d now: %dx%d\n",
		 __func__, ctx->idx, width, height);

	ctx->num_internal_frames = coda_read(dev, CODA_RET_DEC_SEQ_FRAME_NEED);
	if (ctx->num_internal_frames > CODA_MAX_FRAMEBUFFERS) {
		v4l2_err(&dev->v4l2_dev,
			 "not enough framebuffers to decode (%d < %d)\n",
			 CODA_MAX_FRAMEBUFFERS, ctx->num_internal_frames);
		return -EINVAL;
	}

	if (src_fourcc == V4L2_PIX_FMT_H264) {
		u32 left_right;
		u32 top_bottom;

		left_right = coda_read(dev, CODA_RET_DEC_SEQ_CROP_LEFT_RIGHT);
		top_bottom = coda_read(dev, CODA_RET_DEC_SEQ_CROP_TOP_BOTTOM);

		q_data_dst->rect.left = (left_right >> 10) & 0x3ff;
		q_data_dst->rect.top = (top_bottom >> 10) & 0x3ff;
		q_data_dst->rect.width = width - q_data_dst->rect.left -
					 (left_right & 0x3ff);
		q_data_dst->rect.height = height - q_data_dst->rect.top -
					  (top_bottom & 0x3ff);
	}

	ret = coda_alloc_framebuffers(ctx, q_data_dst, src_fourcc);
	if (ret < 0) {
		v4l2_err(&dev->v4l2_dev, "failed to allocate framebuffers\n");
		return ret;
	}

	/* Tell the decoder how many frame buffers we allocated. */
	coda_write(dev, ctx->num_internal_frames, CODA_CMD_SET_FRAME_BUF_NUM);
	coda_write(dev, width, CODA_CMD_SET_FRAME_BUF_STRIDE);

	if (dev->devtype->product != CODA_DX6) {
		/* Set secondary AXI IRAM */
		coda_setup_iram(ctx);

		coda_write(dev, ctx->iram_info.buf_bit_use,
				CODA7_CMD_SET_FRAME_AXI_BIT_ADDR);
		coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use,
				CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR);
		coda_write(dev, ctx->iram_info.buf_dbk_y_use,
				CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR);
		coda_write(dev, ctx->iram_info.buf_dbk_c_use,
				CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR);
		coda_write(dev, ctx->iram_info.buf_ovl_use,
				CODA7_CMD_SET_FRAME_AXI_OVL_ADDR);
		if (dev->devtype->product == CODA_960)
			coda_write(dev, ctx->iram_info.buf_btp_use,
					CODA9_CMD_SET_FRAME_AXI_BTP_ADDR);
	}

	if (dev->devtype->product == CODA_960) {
		int cbb_size, crb_size;

		coda_write(dev, -1, CODA9_CMD_SET_FRAME_DELAY);
		/* Luma 2x0 page, 2x6 cache, chroma 2x0 page, 2x4 cache size */
		coda_write(dev, 0x20262024, CODA9_CMD_SET_FRAME_CACHE_SIZE);

		if (dst_fourcc == V4L2_PIX_FMT_NV12) {
			cbb_size = 0;
			crb_size = 16;
		} else {
			cbb_size = 8;
			crb_size = 8;
		}
		coda_write(dev, 2 << CODA9_CACHE_PAGEMERGE_OFFSET |
				32 << CODA9_CACHE_LUMA_BUFFER_SIZE_OFFSET |
				cbb_size << CODA9_CACHE_CB_BUFFER_SIZE_OFFSET |
				crb_size << CODA9_CACHE_CR_BUFFER_SIZE_OFFSET,
				CODA9_CMD_SET_FRAME_CACHE_CONFIG);
	}

	if (src_fourcc == V4L2_PIX_FMT_H264) {
		coda_write(dev, ctx->slicebuf.paddr,
				CODA_CMD_SET_FRAME_SLICE_BB_START);
		coda_write(dev, ctx->slicebuf.size / 1024,
				CODA_CMD_SET_FRAME_SLICE_BB_SIZE);
	}

	if (dev->devtype->product == CODA_7541) {
		int max_mb_x = 1920 / 16;
		int max_mb_y = 1088 / 16;
		int max_mb_num = max_mb_x * max_mb_y;

		coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y,
				CODA7_CMD_SET_FRAME_MAX_DEC_SIZE);
	} else if (dev->devtype->product == CODA_960) {
		int max_mb_x = 1920 / 16;
		int max_mb_y = 1088 / 16;
		int max_mb_num = max_mb_x * max_mb_y;

		coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y,
				CODA9_CMD_SET_FRAME_MAX_DEC_SIZE);
	}

	if (coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF)) {
		v4l2_err(&ctx->dev->v4l2_dev,
			 "CODA_COMMAND_SET_FRAME_BUF timeout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int coda_start_decoding(struct coda_ctx *ctx)
{
	struct coda_dev *dev = ctx->dev;
	int ret;

	mutex_lock(&dev->coda_mutex);
	ret = __coda_start_decoding(ctx);
	mutex_unlock(&dev->coda_mutex);

	return ret;
}

static int coda_prepare_decode(struct coda_ctx *ctx)
{
	struct vb2_buffer *dst_buf;
	struct coda_dev *dev = ctx->dev;
	struct coda_q_data *q_data_dst;
	struct coda_buffer_meta *meta;
	u32 reg_addr, reg_stride;

	dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
	q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);

	/* Try to copy source buffer contents into the bitstream ringbuffer */
	mutex_lock(&ctx->bitstream_mutex);
	coda_fill_bitstream(ctx, true);
	mutex_unlock(&ctx->bitstream_mutex);

	if (coda_get_bitstream_payload(ctx) < 512 &&
	    (!(ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG))) {
		v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
			 "bitstream payload: %d, skipping\n",
			 coda_get_bitstream_payload(ctx));
		v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx);
		return -EAGAIN;
	}

	/* Run coda_start_decoding (again) if not yet initialized */
	if (!ctx->initialized) {
		int ret = __coda_start_decoding(ctx);

		if (ret < 0) {
			v4l2_err(&dev->v4l2_dev, "failed to start decoding\n");
			v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx);
			return -EAGAIN;
		} else {
			ctx->initialized = 1;
		}
	}

	if (dev->devtype->product == CODA_960)
		coda_set_gdi_regs(ctx);

	if (dev->devtype->product == CODA_960) {
		/*
		 * The CODA960 seems to have an internal list of buffers with
		 * 64 entries that includes the registered frame buffers as
		 * well as the rotator buffer output.
		 * ROT_INDEX needs to be < 0x40, but > ctx->num_internal_frames.
		 */
		coda_write(dev, CODA_MAX_FRAMEBUFFERS + dst_buf->v4l2_buf.index,
				CODA9_CMD_DEC_PIC_ROT_INDEX);

		reg_addr = CODA9_CMD_DEC_PIC_ROT_ADDR_Y;
		reg_stride = CODA9_CMD_DEC_PIC_ROT_STRIDE;
	} else {
		reg_addr = CODA_CMD_DEC_PIC_ROT_ADDR_Y;
		reg_stride = CODA_CMD_DEC_PIC_ROT_STRIDE;
	}
	coda_write_base(ctx, q_data_dst, dst_buf, reg_addr);
	coda_write(dev, q_data_dst->bytesperline, reg_stride);

	coda_write(dev, CODA_ROT_MIR_ENABLE | ctx->params.rot_mode,
			CODA_CMD_DEC_PIC_ROT_MODE);

	switch (dev->devtype->product) {
	case CODA_DX6:
		/* TBD */
	case CODA_7541:
		coda_write(dev, CODA_PRE_SCAN_EN, CODA_CMD_DEC_PIC_OPTION);
		break;
	case CODA_960:
		/* 'hardcode to use interrupt disable mode'? */
		coda_write(dev, (1 << 10), CODA_CMD_DEC_PIC_OPTION);
		break;
	}

	coda_write(dev, 0, CODA_CMD_DEC_PIC_SKIP_NUM);

	coda_write(dev, 0, CODA_CMD_DEC_PIC_BB_START);
	coda_write(dev, 0, CODA_CMD_DEC_PIC_START_BYTE);

	if (dev->devtype->product != CODA_DX6)
		coda_write(dev, ctx->iram_info.axi_sram_use,
				CODA7_REG_BIT_AXI_SRAM_USE);

	meta = list_first_entry_or_null(&ctx->buffer_meta_list,
					struct coda_buffer_meta, list);

	if (meta && ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG) {

		/* If this is the last buffer in the bitstream, add padding */
		if (meta->end == (ctx->bitstream_fifo.kfifo.in &
				  ctx->bitstream_fifo.kfifo.mask)) {
			static unsigned char buf[512];
			unsigned int pad;

			/* Pad to multiple of 256 and then add 256 more */
			pad = ((0 - meta->end) & 0xff) + 256;

			memset(buf, 0xff, sizeof(buf));

			kfifo_in(&ctx->bitstream_fifo, buf, pad);
		}
	}

	coda_kfifo_sync_to_device_full(ctx);

	/* Clear decode success flag */
	coda_write(dev, 0, CODA_RET_DEC_PIC_SUCCESS);

	trace_coda_dec_pic_run(ctx, meta);

	coda_command_async(ctx, CODA_COMMAND_PIC_RUN);

	return 0;
}

static void coda_finish_decode(struct coda_ctx *ctx)
{
	struct coda_dev *dev = ctx->dev;
	struct coda_q_data *q_data_src;
	struct coda_q_data *q_data_dst;
	struct vb2_buffer *dst_buf;
	struct coda_buffer_meta *meta;
	unsigned long payload;
	int width, height;
	int decoded_idx;
	int display_idx;
	u32 src_fourcc;
	int success;
	u32 err_mb;
	u32 val;

	/* Update kfifo out pointer from coda bitstream read pointer */
	coda_kfifo_sync_from_device(ctx);

	/*
	 * in stream-end mode, the read pointer can overshoot the write pointer
	 * by up to 512 bytes
	 */
	if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) {
		if (coda_get_bitstream_payload(ctx) >= ctx->bitstream.size - 512)
			kfifo_init(&ctx->bitstream_fifo,
				ctx->bitstream.vaddr, ctx->bitstream.size);
	}

	q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
	src_fourcc = q_data_src->fourcc;

	val = coda_read(dev, CODA_RET_DEC_PIC_SUCCESS);
	if (val != 1)
		pr_err("DEC_PIC_SUCCESS = %d\n", val);

	success = val & 0x1;
	if (!success)
		v4l2_err(&dev->v4l2_dev, "decode failed\n");

	if (src_fourcc == V4L2_PIX_FMT_H264) {
		if (val & (1 << 3))
			v4l2_err(&dev->v4l2_dev,
				 "insufficient PS buffer space (%d bytes)\n",
				 ctx->psbuf.size);
		if (val & (1 << 2))
			v4l2_err(&dev->v4l2_dev,
				 "insufficient slice buffer space (%d bytes)\n",
				 ctx->slicebuf.size);
	}

	val = coda_read(dev, CODA_RET_DEC_PIC_SIZE);
	width = (val >> 16) & 0xffff;
	height = val & 0xffff;

	q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);

	/* frame crop information */
	if (src_fourcc == V4L2_PIX_FMT_H264) {
		u32 left_right;
		u32 top_bottom;

		left_right = coda_read(dev, CODA_RET_DEC_PIC_CROP_LEFT_RIGHT);
		top_bottom = coda_read(dev, CODA_RET_DEC_PIC_CROP_TOP_BOTTOM);

		if (left_right == 0xffffffff && top_bottom == 0xffffffff) {
			/* Keep current crop information */
		} else {
			struct v4l2_rect *rect = &q_data_dst->rect;

			rect->left = left_right >> 16 & 0xffff;
			rect->top = top_bottom >> 16 & 0xffff;
			rect->width = width - rect->left -
				      (left_right & 0xffff);
			rect->height = height - rect->top -
				       (top_bottom & 0xffff);
		}
	} else {
		/* no cropping */
	}

	err_mb = coda_read(dev, CODA_RET_DEC_PIC_ERR_MB);
	if (err_mb > 0)
		v4l2_err(&dev->v4l2_dev,
			 "errors in %d macroblocks\n", err_mb);

	if (dev->devtype->product == CODA_7541) {
		val = coda_read(dev, CODA_RET_DEC_PIC_OPTION);
		if (val == 0) {
			/* not enough bitstream data */
			v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
				 "prescan failed: %d\n", val);
			ctx->hold = true;
			return;
		}
	}

	ctx->frm_dis_flg = coda_read(dev,
				     CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));

	/*
	 * The previous display frame was copied out by the rotator,
	 * now it can be overwritten again
	 */
	if (ctx->display_idx >= 0 &&
	    ctx->display_idx < ctx->num_internal_frames) {
		ctx->frm_dis_flg &= ~(1 << ctx->display_idx);
		coda_write(dev, ctx->frm_dis_flg,
				CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));
	}

	/*
	 * The index of the last decoded frame, not necessarily in
	 * display order, and the index of the next display frame.
	 * The latter could have been decoded in a previous run.
	 */
	decoded_idx = coda_read(dev, CODA_RET_DEC_PIC_CUR_IDX);
	display_idx = coda_read(dev, CODA_RET_DEC_PIC_FRAME_IDX);

	if (decoded_idx == -1) {
		/* no frame was decoded, but we might have a display frame */
		if (display_idx >= 0 && display_idx < ctx->num_internal_frames)
			ctx->sequence_offset++;
		else if (ctx->display_idx < 0)
			ctx->hold = true;
	} else if (decoded_idx == -2) {
		/* no frame was decoded, we still return remaining buffers */
	} else if (decoded_idx < 0 || decoded_idx >= ctx->num_internal_frames) {
		v4l2_err(&dev->v4l2_dev,
			 "decoded frame index out of range: %d\n", decoded_idx);
	} else {
		val = coda_read(dev, CODA_RET_DEC_PIC_FRAME_NUM) - 1;
		val -= ctx->sequence_offset;
		mutex_lock(&ctx->bitstream_mutex);
		if (!list_empty(&ctx->buffer_meta_list)) {
			meta = list_first_entry(&ctx->buffer_meta_list,
					      struct coda_buffer_meta, list);
			list_del(&meta->list);
			if (val != (meta->sequence & 0xffff)) {
				v4l2_err(&dev->v4l2_dev,
					 "sequence number mismatch (%d(%d) != %d)\n",
					 val, ctx->sequence_offset,
					 meta->sequence);
			}
			ctx->frame_metas[decoded_idx] = *meta;
			kfree(meta);
		} else {
			v4l2_err(&dev->v4l2_dev, "empty timestamp list!\n");
			memset(&ctx->frame_metas[decoded_idx], 0,
			       sizeof(struct coda_buffer_meta));
			ctx->frame_metas[decoded_idx].sequence = val;
			ctx->sequence_offset++;
		}
		mutex_unlock(&ctx->bitstream_mutex);

		trace_coda_dec_pic_done(ctx, &ctx->frame_metas[decoded_idx]);

		val = coda_read(dev, CODA_RET_DEC_PIC_TYPE) & 0x7;
		if (val == 0)
			ctx->frame_types[decoded_idx] = V4L2_BUF_FLAG_KEYFRAME;
		else if (val == 1)
			ctx->frame_types[decoded_idx] = V4L2_BUF_FLAG_PFRAME;
		else
			ctx->frame_types[decoded_idx] = V4L2_BUF_FLAG_BFRAME;

		ctx->frame_errors[decoded_idx] = err_mb;
	}

	if (display_idx == -1) {
		/*
		 * no more frames to be decoded, but there could still
		 * be rotator output to dequeue
		 */
		ctx->hold = true;
	} else if (display_idx == -3) {
		/* possibly prescan failure */
	} else if (display_idx < 0 || display_idx >= ctx->num_internal_frames) {
		v4l2_err(&dev->v4l2_dev,
			 "presentation frame index out of range: %d\n",
			 display_idx);
	}

	/* If a frame was copied out, return it */
	if (ctx->display_idx >= 0 &&
	    ctx->display_idx < ctx->num_internal_frames) {
		dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
		dst_buf->v4l2_buf.sequence = ctx->osequence++;

		dst_buf->v4l2_buf.flags &= ~(V4L2_BUF_FLAG_KEYFRAME |
					     V4L2_BUF_FLAG_PFRAME |
					     V4L2_BUF_FLAG_BFRAME);
		dst_buf->v4l2_buf.flags |= ctx->frame_types[ctx->display_idx];
		meta = &ctx->frame_metas[ctx->display_idx];
		dst_buf->v4l2_buf.timecode = meta->timecode;
		dst_buf->v4l2_buf.timestamp = meta->timestamp;

		trace_coda_dec_rot_done(ctx, meta, dst_buf);

		switch (q_data_dst->fourcc) {
		case V4L2_PIX_FMT_YUV420:
		case V4L2_PIX_FMT_YVU420:
		case V4L2_PIX_FMT_NV12:
		default:
			payload = width * height * 3 / 2;
			break;
		case V4L2_PIX_FMT_YUV422P:
			payload = width * height * 2;
			break;
		}
		vb2_set_plane_payload(dst_buf, 0, payload);

		v4l2_m2m_buf_done(dst_buf, ctx->frame_errors[display_idx] ?
				  VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);

		v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
			"job finished: decoding frame (%d) (%s)\n",
			dst_buf->v4l2_buf.sequence,
			(dst_buf->v4l2_buf.flags & V4L2_BUF_FLAG_KEYFRAME) ?
			"KEYFRAME" : "PFRAME");
	} else {
		v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
			"job finished: no frame decoded\n");
	}

	/* The rotator will copy the current display frame next time */
	ctx->display_idx = display_idx;
}

const struct coda_context_ops coda_bit_decode_ops = {
	.queue_init = coda_decoder_queue_init,
	.reqbufs = coda_decoder_reqbufs,
	.start_streaming = coda_start_decoding,
	.prepare_run = coda_prepare_decode,
	.finish_run = coda_finish_decode,
	.seq_end_work = coda_seq_end_work,
	.release = coda_bit_release,
};

irqreturn_t coda_irq_handler(int irq, void *data)
{
	struct coda_dev *dev = data;
	struct coda_ctx *ctx;

	/* read status register to attend the IRQ */
	coda_read(dev, CODA_REG_BIT_INT_STATUS);
	coda_write(dev, CODA_REG_BIT_INT_CLEAR_SET,
		      CODA_REG_BIT_INT_CLEAR);

	ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
	if (ctx == NULL) {
		v4l2_err(&dev->v4l2_dev,
			 "Instance released before the end of transaction\n");
		mutex_unlock(&dev->coda_mutex);
		return IRQ_HANDLED;
	}

	trace_coda_bit_done(ctx);

	if (ctx->aborting) {
		v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
			 "task has been aborted\n");
	}

	if (coda_isbusy(ctx->dev)) {
		v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
			 "coda is still busy!!!!\n");
		return IRQ_NONE;
	}

	complete(&ctx->completion);

	return IRQ_HANDLED;
}