summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
blob: 254094ab7fb8f9c4d3dce31f581bbb8f76cbb27e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/*
 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
 *
 */
#define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
#include "priv.h"

#include <core/tegra.h>
#include <subdev/timer.h>

#define MHZ (1000 * 1000)

#define MASK(w)	((1 << w) - 1)

#define SYS_GPCPLL_CFG_BASE			0x00137000
#define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800

#define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
#define GPCPLL_CFG_ENABLE	BIT(0)
#define GPCPLL_CFG_IDDQ		BIT(1)
#define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
#define GPCPLL_CFG_LOCK		BIT(17)

#define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
#define GPCPLL_COEFF_M_SHIFT	0
#define GPCPLL_COEFF_M_WIDTH	8
#define GPCPLL_COEFF_N_SHIFT	8
#define GPCPLL_COEFF_N_WIDTH	8
#define GPCPLL_COEFF_P_SHIFT	16
#define GPCPLL_COEFF_P_WIDTH	6

#define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
#define GPCPLL_CFG2_SETUP2_SHIFT	16
#define GPCPLL_CFG2_PLL_STEPA_SHIFT	24

#define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
#define GPCPLL_CFG3_PLL_STEPB_SHIFT	16

#define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
#define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
#define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
#define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
#define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
#define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31

#define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
#define SEL_VCO_GPC2CLK_OUT_SHIFT	0

#define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
#define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
#define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
#define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
#define GPC2CLK_OUT_VCODIV_WIDTH	6
#define GPC2CLK_OUT_VCODIV_SHIFT	8
#define GPC2CLK_OUT_VCODIV1		0
#define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
					GPC2CLK_OUT_VCODIV_SHIFT)
#define	GPC2CLK_OUT_BYPDIV_WIDTH	6
#define GPC2CLK_OUT_BYPDIV_SHIFT	0
#define GPC2CLK_OUT_BYPDIV31		0x3c
#define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
#define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))

#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)

static const u8 pl_to_div[] = {
/* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
};

/* All frequencies in Mhz */
struct gk20a_clk_pllg_params {
	u32 min_vco, max_vco;
	u32 min_u, max_u;
	u32 min_m, max_m;
	u32 min_n, max_n;
	u32 min_pl, max_pl;
};

static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
	.min_vco = 1000, .max_vco = 2064,
	.min_u = 12, .max_u = 38,
	.min_m = 1, .max_m = 255,
	.min_n = 8, .max_n = 255,
	.min_pl = 1, .max_pl = 32,
};

struct gk20a_clk {
	struct nvkm_clk base;
	const struct gk20a_clk_pllg_params *params;
	u32 m, n, pl;
	u32 parent_rate;
};

static void
gk20a_pllg_read_mnp(struct gk20a_clk *clk)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 val;

	val = nvkm_rd32(device, GPCPLL_COEFF);
	clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
	clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
	clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
}

static u32
gk20a_pllg_calc_rate(struct gk20a_clk *clk)
{
	u32 rate;
	u32 divider;

	rate = clk->parent_rate * clk->n;
	divider = clk->m * pl_to_div[clk->pl];
	do_div(rate, divider);

	return rate / 2;
}

static int
gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	u32 target_clk_f, ref_clk_f, target_freq;
	u32 min_vco_f, max_vco_f;
	u32 low_pl, high_pl, best_pl;
	u32 target_vco_f, vco_f;
	u32 best_m, best_n;
	u32 u_f;
	u32 m, n, n2;
	u32 delta, lwv, best_delta = ~0;
	u32 pl;

	target_clk_f = rate * 2 / MHZ;
	ref_clk_f = clk->parent_rate / MHZ;

	max_vco_f = clk->params->max_vco;
	min_vco_f = clk->params->min_vco;
	best_m = clk->params->max_m;
	best_n = clk->params->min_n;
	best_pl = clk->params->min_pl;

	target_vco_f = target_clk_f + target_clk_f / 50;
	if (max_vco_f < target_vco_f)
		max_vco_f = target_vco_f;

	/* min_pl <= high_pl <= max_pl */
	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
	high_pl = min(high_pl, clk->params->max_pl);
	high_pl = max(high_pl, clk->params->min_pl);

	/* min_pl <= low_pl <= max_pl */
	low_pl = min_vco_f / target_vco_f;
	low_pl = min(low_pl, clk->params->max_pl);
	low_pl = max(low_pl, clk->params->min_pl);

	/* Find Indices of high_pl and low_pl */
	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
		if (pl_to_div[pl] >= low_pl) {
			low_pl = pl;
			break;
		}
	}
	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
		if (pl_to_div[pl] >= high_pl) {
			high_pl = pl;
			break;
		}
	}

	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
		   pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);

	/* Select lowest possible VCO */
	for (pl = low_pl; pl <= high_pl; pl++) {
		target_vco_f = target_clk_f * pl_to_div[pl];
		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
			u_f = ref_clk_f / m;

			if (u_f < clk->params->min_u)
				break;
			if (u_f > clk->params->max_u)
				continue;

			n = (target_vco_f * m) / ref_clk_f;
			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;

			if (n > clk->params->max_n)
				break;

			for (; n <= n2; n++) {
				if (n < clk->params->min_n)
					continue;
				if (n > clk->params->max_n)
					break;

				vco_f = ref_clk_f * n / m;

				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
					lwv = (vco_f + (pl_to_div[pl] / 2))
						/ pl_to_div[pl];
					delta = abs(lwv - target_clk_f);

					if (delta < best_delta) {
						best_delta = delta;
						best_m = m;
						best_n = n;
						best_pl = pl;

						if (best_delta == 0)
							goto found_match;
					}
				}
			}
		}
	}

found_match:
	WARN_ON(best_delta == ~0);

	if (best_delta != 0)
		nvkm_debug(subdev,
			   "no best match for target @ %dMHz on gpc_pll",
			   target_clk_f);

	clk->m = best_m;
	clk->n = best_n;
	clk->pl = best_pl;

	target_freq = gk20a_pllg_calc_rate(clk) / MHZ;

	nvkm_debug(subdev,
		   "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
		   target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
	return 0;
}

static int
gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val;
	int ramp_timeout;

	/* get old coefficients */
	val = nvkm_rd32(device, GPCPLL_COEFF);
	/* do nothing if NDIV is the same */
	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
		return 0;

	/* setup */
	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);

	/* pll slowdown mode */
	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));

	/* new ndiv ready for ramp */
	val = nvkm_rd32(device, GPCPLL_COEFF);
	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
	udelay(1);
	nvkm_wr32(device, GPCPLL_COEFF, val);

	/* dynamic ramp to new ndiv */
	val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
	udelay(1);
	nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);

	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
		udelay(1);
		val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
			break;
	}

	/* exit slowdown mode */
	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);

	if (ramp_timeout <= 0) {
		nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static void
_gk20a_pllg_enable(struct gk20a_clk *clk)
{
	struct nvkm_device *device = clk->base.subdev.device;
	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
	nvkm_rd32(device, GPCPLL_CFG);
}

static void
_gk20a_pllg_disable(struct gk20a_clk *clk)
{
	struct nvkm_device *device = clk->base.subdev.device;
	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
	nvkm_rd32(device, GPCPLL_CFG);
}

static int
_gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val, cfg;
	u32 m_old, pl_old, n_lo;

	/* get old coefficients */
	val = nvkm_rd32(device, GPCPLL_COEFF);
	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);

	/* do NDIV slide if there is no change in M and PL */
	cfg = nvkm_rd32(device, GPCPLL_CFG);
	if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
	    (cfg & GPCPLL_CFG_ENABLE)) {
		return gk20a_pllg_slide(clk, clk->n);
	}

	/* slide down to NDIV_LO */
	n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
			    clk->parent_rate / MHZ);
	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
		int ret = gk20a_pllg_slide(clk, n_lo);

		if (ret)
			return ret;
	}

	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);

	/* put PLL in bypass before programming it */
	val = nvkm_rd32(device, SEL_VCO);
	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
	udelay(2);
	nvkm_wr32(device, SEL_VCO, val);

	/* get out from IDDQ */
	val = nvkm_rd32(device, GPCPLL_CFG);
	if (val & GPCPLL_CFG_IDDQ) {
		val &= ~GPCPLL_CFG_IDDQ;
		nvkm_wr32(device, GPCPLL_CFG, val);
		nvkm_rd32(device, GPCPLL_CFG);
		udelay(2);
	}

	_gk20a_pllg_disable(clk);

	nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
		   clk->m, clk->n, clk->pl);

	n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
			    clk->parent_rate / MHZ);
	val = clk->m << GPCPLL_COEFF_M_SHIFT;
	val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
	val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
	nvkm_wr32(device, GPCPLL_COEFF, val);

	_gk20a_pllg_enable(clk);

	val = nvkm_rd32(device, GPCPLL_CFG);
	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
		nvkm_wr32(device, GPCPLL_CFG, val);
	}

	if (nvkm_usec(device, 300,
		if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
			break;
	) < 0)
		return -ETIMEDOUT;

	/* switch to VCO mode */
	nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));

	/* restore out divider 1:1 */
	val = nvkm_rd32(device, GPC2CLK_OUT);
	val &= ~GPC2CLK_OUT_VCODIV_MASK;
	udelay(2);
	nvkm_wr32(device, GPC2CLK_OUT, val);

	/* slide up to new NDIV */
	return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
}

static int
gk20a_pllg_program_mnp(struct gk20a_clk *clk)
{
	int err;

	err = _gk20a_pllg_program_mnp(clk, true);
	if (err)
		err = _gk20a_pllg_program_mnp(clk, false);

	return err;
}

static void
gk20a_pllg_disable(struct gk20a_clk *clk)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 val;

	/* slide to VCO min */
	val = nvkm_rd32(device, GPCPLL_CFG);
	if (val & GPCPLL_CFG_ENABLE) {
		u32 coeff, m, n_lo;

		coeff = nvkm_rd32(device, GPCPLL_COEFF);
		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
		n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
				    clk->parent_rate / MHZ);
		gk20a_pllg_slide(clk, n_lo);
	}

	/* put PLL in bypass before disabling it */
	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);

	_gk20a_pllg_disable(clk);
}

#define GK20A_CLK_GPC_MDIV 1000

static struct nvkm_pstate
gk20a_pstates[] = {
	{
		.base = {
			.domain[nv_clk_src_gpc] = 72000,
			.voltage = 0,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 108000,
			.voltage = 1,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 180000,
			.voltage = 2,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 252000,
			.voltage = 3,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 324000,
			.voltage = 4,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 396000,
			.voltage = 5,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 468000,
			.voltage = 6,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 540000,
			.voltage = 7,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 612000,
			.voltage = 8,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 648000,
			.voltage = 9,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 684000,
			.voltage = 10,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 708000,
			.voltage = 11,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 756000,
			.voltage = 12,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 804000,
			.voltage = 13,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 852000,
			.voltage = 14,
		},
	},
};

static int
gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
{
	struct gk20a_clk *clk = gk20a_clk(base);
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;

	switch (src) {
	case nv_clk_src_crystal:
		return device->crystal;
	case nv_clk_src_gpc:
		gk20a_pllg_read_mnp(clk);
		return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
	default:
		nvkm_error(subdev, "invalid clock source %d\n", src);
		return -EINVAL;
	}
}

static int
gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
{
	struct gk20a_clk *clk = gk20a_clk(base);

	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
					 GK20A_CLK_GPC_MDIV);
}

static int
gk20a_clk_prog(struct nvkm_clk *base)
{
	struct gk20a_clk *clk = gk20a_clk(base);

	return gk20a_pllg_program_mnp(clk);
}

static void
gk20a_clk_tidy(struct nvkm_clk *base)
{
}

static void
gk20a_clk_fini(struct nvkm_clk *base)
{
	struct gk20a_clk *clk = gk20a_clk(base);
	gk20a_pllg_disable(clk);
}

static int
gk20a_clk_init(struct nvkm_clk *base)
{
	struct gk20a_clk *clk = gk20a_clk(base);
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	int ret;

	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);

	ret = gk20a_clk_prog(&clk->base);
	if (ret) {
		nvkm_error(subdev, "cannot initialize clock\n");
		return ret;
	}

	return 0;
}

static const struct nvkm_clk_func
gk20a_clk = {
	.init = gk20a_clk_init,
	.fini = gk20a_clk_fini,
	.read = gk20a_clk_read,
	.calc = gk20a_clk_calc,
	.prog = gk20a_clk_prog,
	.tidy = gk20a_clk_tidy,
	.pstates = gk20a_pstates,
	.nr_pstates = ARRAY_SIZE(gk20a_pstates),
	.domains = {
		{ nv_clk_src_crystal, 0xff },
		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
		{ nv_clk_src_max }
	}
};

int
gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
{
	struct nvkm_device_tegra *tdev = device->func->tegra(device);
	struct gk20a_clk *clk;
	int ret, i;

	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
		return -ENOMEM;
	*pclk = &clk->base;

	/* Finish initializing the pstates */
	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
		INIT_LIST_HEAD(&gk20a_pstates[i].list);
		gk20a_pstates[i].pstate = i + 1;
	}

	clk->params = &gk20a_pllg_params;
	clk->parent_rate = clk_get_rate(tdev->clk);

	ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
	nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
		  clk->parent_rate / MHZ);
	return ret;
}