1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
/*
* AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support
*
* Copyright (C) 2013 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/scatterwalk.h>
#include "ccp-crypto.h"
struct ccp_aes_xts_def {
const char *name;
const char *drv_name;
};
static struct ccp_aes_xts_def aes_xts_algs[] = {
{
.name = "xts(aes)",
.drv_name = "xts-aes-ccp",
},
};
struct ccp_unit_size_map {
unsigned int size;
u32 value;
};
static struct ccp_unit_size_map unit_size_map[] = {
{
.size = 4096,
.value = CCP_XTS_AES_UNIT_SIZE_4096,
},
{
.size = 2048,
.value = CCP_XTS_AES_UNIT_SIZE_2048,
},
{
.size = 1024,
.value = CCP_XTS_AES_UNIT_SIZE_1024,
},
{
.size = 512,
.value = CCP_XTS_AES_UNIT_SIZE_512,
},
{
.size = 256,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 128,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 64,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 32,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 16,
.value = CCP_XTS_AES_UNIT_SIZE_16,
},
{
.size = 1,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
};
static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret)
{
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
if (ret)
return ret;
memcpy(req->info, rctx->iv, AES_BLOCK_SIZE);
return 0;
}
static int ccp_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ablkcipher_tfm(tfm));
/* Only support 128-bit AES key with a 128-bit Tweak key,
* otherwise use the fallback
*/
switch (key_len) {
case AES_KEYSIZE_128 * 2:
memcpy(ctx->u.aes.key, key, key_len);
break;
}
ctx->u.aes.key_len = key_len / 2;
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
return crypto_ablkcipher_setkey(ctx->u.aes.tfm_ablkcipher, key,
key_len);
}
static int ccp_aes_xts_crypt(struct ablkcipher_request *req,
unsigned int encrypt)
{
struct crypto_tfm *tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
unsigned int unit;
u32 unit_size;
int ret;
if (!ctx->u.aes.key_len)
return -EINVAL;
if (req->nbytes & (AES_BLOCK_SIZE - 1))
return -EINVAL;
if (!req->info)
return -EINVAL;
unit_size = CCP_XTS_AES_UNIT_SIZE__LAST;
if (req->nbytes <= unit_size_map[0].size) {
for (unit = 0; unit < ARRAY_SIZE(unit_size_map); unit++) {
if (!(req->nbytes & (unit_size_map[unit].size - 1))) {
unit_size = unit_size_map[unit].value;
break;
}
}
}
if ((unit_size == CCP_XTS_AES_UNIT_SIZE__LAST) ||
(ctx->u.aes.key_len != AES_KEYSIZE_128)) {
/* Use the fallback to process the request for any
* unsupported unit sizes or key sizes
*/
ablkcipher_request_set_tfm(req, ctx->u.aes.tfm_ablkcipher);
ret = (encrypt) ? crypto_ablkcipher_encrypt(req) :
crypto_ablkcipher_decrypt(req);
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
return ret;
}
memcpy(rctx->iv, req->info, AES_BLOCK_SIZE);
sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE);
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
INIT_LIST_HEAD(&rctx->cmd.entry);
rctx->cmd.engine = CCP_ENGINE_XTS_AES_128;
rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT
: CCP_AES_ACTION_DECRYPT;
rctx->cmd.u.xts.unit_size = unit_size;
rctx->cmd.u.xts.key = &ctx->u.aes.key_sg;
rctx->cmd.u.xts.key_len = ctx->u.aes.key_len;
rctx->cmd.u.xts.iv = &rctx->iv_sg;
rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE;
rctx->cmd.u.xts.src = req->src;
rctx->cmd.u.xts.src_len = req->nbytes;
rctx->cmd.u.xts.dst = req->dst;
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
return ret;
}
static int ccp_aes_xts_encrypt(struct ablkcipher_request *req)
{
return ccp_aes_xts_crypt(req, 1);
}
static int ccp_aes_xts_decrypt(struct ablkcipher_request *req)
{
return ccp_aes_xts_crypt(req, 0);
}
static int ccp_aes_xts_cra_init(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_ablkcipher *fallback_tfm;
ctx->complete = ccp_aes_xts_complete;
ctx->u.aes.key_len = 0;
fallback_tfm = crypto_alloc_ablkcipher(crypto_tfm_alg_name(tfm), 0,
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
pr_warn("could not load fallback driver %s\n",
crypto_tfm_alg_name(tfm));
return PTR_ERR(fallback_tfm);
}
ctx->u.aes.tfm_ablkcipher = fallback_tfm;
tfm->crt_ablkcipher.reqsize = sizeof(struct ccp_aes_req_ctx) +
fallback_tfm->base.crt_ablkcipher.reqsize;
return 0;
}
static void ccp_aes_xts_cra_exit(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->u.aes.tfm_ablkcipher)
crypto_free_ablkcipher(ctx->u.aes.tfm_ablkcipher);
ctx->u.aes.tfm_ablkcipher = NULL;
}
static int ccp_register_aes_xts_alg(struct list_head *head,
const struct ccp_aes_xts_def *def)
{
struct ccp_crypto_ablkcipher_alg *ccp_alg;
struct crypto_alg *alg;
int ret;
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
if (!ccp_alg)
return -ENOMEM;
INIT_LIST_HEAD(&ccp_alg->entry);
alg = &ccp_alg->alg;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->drv_name);
alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK;
alg->cra_blocksize = AES_BLOCK_SIZE;
alg->cra_ctxsize = sizeof(struct ccp_ctx);
alg->cra_priority = CCP_CRA_PRIORITY;
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_ablkcipher.setkey = ccp_aes_xts_setkey;
alg->cra_ablkcipher.encrypt = ccp_aes_xts_encrypt;
alg->cra_ablkcipher.decrypt = ccp_aes_xts_decrypt;
alg->cra_ablkcipher.min_keysize = AES_MIN_KEY_SIZE * 2;
alg->cra_ablkcipher.max_keysize = AES_MAX_KEY_SIZE * 2;
alg->cra_ablkcipher.ivsize = AES_BLOCK_SIZE;
alg->cra_init = ccp_aes_xts_cra_init;
alg->cra_exit = ccp_aes_xts_cra_exit;
alg->cra_module = THIS_MODULE;
ret = crypto_register_alg(alg);
if (ret) {
pr_err("%s ablkcipher algorithm registration error (%d)\n",
alg->cra_name, ret);
kfree(ccp_alg);
return ret;
}
list_add(&ccp_alg->entry, head);
return 0;
}
int ccp_register_aes_xts_algs(struct list_head *head)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) {
ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]);
if (ret)
return ret;
}
return 0;
}
|