summaryrefslogtreecommitdiffstats
path: root/kernel/arch/mips/cavium-octeon/octeon-platform.c
blob: d113c8ded6e2f33626ee531fca8d7af3b70c2b47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2004-2011 Cavium Networks
 * Copyright (C) 2008 Wind River Systems
 */

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/i2c.h>
#include <linux/usb.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/usb/ehci_pdriver.h>
#include <linux/usb/ohci_pdriver.h>

#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-rnm-defs.h>
#include <asm/octeon/cvmx-helper.h>
#include <asm/octeon/cvmx-helper-board.h>
#include <asm/octeon/cvmx-uctlx-defs.h>

/* Octeon Random Number Generator.  */
static int __init octeon_rng_device_init(void)
{
	struct platform_device *pd;
	int ret = 0;

	struct resource rng_resources[] = {
		{
			.flags	= IORESOURCE_MEM,
			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
		}, {
			.flags	= IORESOURCE_MEM,
			.start	= cvmx_build_io_address(8, 0),
			.end	= cvmx_build_io_address(8, 0) + 0x7
		}
	};

	pd = platform_device_alloc("octeon_rng", -1);
	if (!pd) {
		ret = -ENOMEM;
		goto out;
	}

	ret = platform_device_add_resources(pd, rng_resources,
					    ARRAY_SIZE(rng_resources));
	if (ret)
		goto fail;

	ret = platform_device_add(pd);
	if (ret)
		goto fail;

	return ret;
fail:
	platform_device_put(pd);

out:
	return ret;
}
device_initcall(octeon_rng_device_init);

#ifdef CONFIG_USB

static DEFINE_MUTEX(octeon2_usb_clocks_mutex);

static int octeon2_usb_clock_start_cnt;

static void octeon2_usb_clocks_start(struct device *dev)
{
	u64 div;
	union cvmx_uctlx_if_ena if_ena;
	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
	int i;
	unsigned long io_clk_64_to_ns;
	u32 clock_rate = 12000000;
	bool is_crystal_clock = false;


	mutex_lock(&octeon2_usb_clocks_mutex);

	octeon2_usb_clock_start_cnt++;
	if (octeon2_usb_clock_start_cnt != 1)
		goto exit;

	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();

	if (dev->of_node) {
		struct device_node *uctl_node;
		const char *clock_type;

		uctl_node = of_get_parent(dev->of_node);
		if (!uctl_node) {
			dev_err(dev, "No UCTL device node\n");
			goto exit;
		}
		i = of_property_read_u32(uctl_node,
					 "refclk-frequency", &clock_rate);
		if (i) {
			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
			goto exit;
		}
		i = of_property_read_string(uctl_node,
					    "refclk-type", &clock_type);

		if (!i && strcmp("crystal", clock_type) == 0)
			is_crystal_clock = true;
	}

	/*
	 * Step 1: Wait for voltages stable.  That surely happened
	 * before starting the kernel.
	 *
	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
	 */
	if_ena.u64 = 0;
	if_ena.s.en = 1;
	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);

	/* Step 3: Configure the reference clock, PHY, and HCLK */
	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));

	/*
	 * If the UCTL looks like it has already been started, skip
	 * the initialization, otherwise bus errors are obtained.
	 */
	if (clk_rst_ctl.s.hrst)
		goto end_clock;
	/* 3a */
	clk_rst_ctl.s.p_por = 1;
	clk_rst_ctl.s.hrst = 0;
	clk_rst_ctl.s.p_prst = 0;
	clk_rst_ctl.s.h_clkdiv_rst = 0;
	clk_rst_ctl.s.o_clkdiv_rst = 0;
	clk_rst_ctl.s.h_clkdiv_en = 0;
	clk_rst_ctl.s.o_clkdiv_en = 0;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 3b */
	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
	switch (clock_rate) {
	default:
		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
			clock_rate);
		/* Fall through */
	case 12000000:
		clk_rst_ctl.s.p_refclk_div = 0;
		break;
	case 24000000:
		clk_rst_ctl.s.p_refclk_div = 1;
		break;
	case 48000000:
		clk_rst_ctl.s.p_refclk_div = 2;
		break;
	}
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 3c */
	div = octeon_get_io_clock_rate() / 130000000ull;

	switch (div) {
	case 0:
		div = 1;
		break;
	case 1:
	case 2:
	case 3:
	case 4:
		break;
	case 5:
		div = 4;
		break;
	case 6:
	case 7:
		div = 6;
		break;
	case 8:
	case 9:
	case 10:
	case 11:
		div = 8;
		break;
	default:
		div = 12;
		break;
	}
	clk_rst_ctl.s.h_div = div;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
	/* Read it back, */
	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
	clk_rst_ctl.s.h_clkdiv_en = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
	/* 3d */
	clk_rst_ctl.s.h_clkdiv_rst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 3e: delay 64 io clocks */
	ndelay(io_clk_64_to_ns);

	/*
	 * Step 4: Program the power-on reset field in the UCTL
	 * clock-reset-control register.
	 */
	clk_rst_ctl.s.p_por = 0;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* Step 5:    Wait 1 ms for the PHY clock to start. */
	mdelay(1);

	/*
	 * Step 6: Program the reset input from automatic test
	 * equipment field in the UPHY CSR
	 */
	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
	uphy_ctl_status.s.ate_reset = 1;
	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);

	/* Step 7: Wait for at least 10ns. */
	ndelay(10);

	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
	uphy_ctl_status.s.ate_reset = 0;
	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);

	/*
	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
	 * signals and OHCI_CLK48
	 */
	ndelay(20);

	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
	/* 10a */
	clk_rst_ctl.s.o_clkdiv_rst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 10b */
	clk_rst_ctl.s.o_clkdiv_en = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 10c */
	ndelay(io_clk_64_to_ns);

	/*
	 * Step 11: Program the PHY reset field:
	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
	 */
	clk_rst_ctl.s.p_prst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* Step 12: Wait 1 uS. */
	udelay(1);

	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
	clk_rst_ctl.s.hrst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

end_clock:
	/* Now we can set some other registers.  */

	for (i = 0; i <= 1; i++) {
		port_ctl_status.u64 =
			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
		port_ctl_status.s.txvreftune = 15;
		port_ctl_status.s.txrisetune = 1;
		port_ctl_status.s.txpreemphasistune = 1;
		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
			       port_ctl_status.u64);
	}

	/* Set uSOF cycle period to 60,000 bits. */
	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
exit:
	mutex_unlock(&octeon2_usb_clocks_mutex);
}

static void octeon2_usb_clocks_stop(void)
{
	mutex_lock(&octeon2_usb_clocks_mutex);
	octeon2_usb_clock_start_cnt--;
	mutex_unlock(&octeon2_usb_clocks_mutex);
}

static int octeon_ehci_power_on(struct platform_device *pdev)
{
	octeon2_usb_clocks_start(&pdev->dev);
	return 0;
}

static void octeon_ehci_power_off(struct platform_device *pdev)
{
	octeon2_usb_clocks_stop();
}

static struct usb_ehci_pdata octeon_ehci_pdata = {
	/* Octeon EHCI matches CPU endianness. */
#ifdef __BIG_ENDIAN
	.big_endian_mmio	= 1,
#endif
	.dma_mask_64	= 1,
	.power_on	= octeon_ehci_power_on,
	.power_off	= octeon_ehci_power_off,
};

static void __init octeon_ehci_hw_start(struct device *dev)
{
	union cvmx_uctlx_ehci_ctl ehci_ctl;

	octeon2_usb_clocks_start(dev);

	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
	/* Use 64-bit addressing. */
	ehci_ctl.s.ehci_64b_addr_en = 1;
	ehci_ctl.s.l2c_addr_msb = 0;
#ifdef __BIG_ENDIAN
	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
#else
	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
	ehci_ctl.s.inv_reg_a2 = 1;
#endif
	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);

	octeon2_usb_clocks_stop();
}

static int __init octeon_ehci_device_init(void)
{
	struct platform_device *pd;
	struct device_node *ehci_node;
	int ret = 0;

	ehci_node = of_find_node_by_name(NULL, "ehci");
	if (!ehci_node)
		return 0;

	pd = of_find_device_by_node(ehci_node);
	if (!pd)
		return 0;

	pd->dev.platform_data = &octeon_ehci_pdata;
	octeon_ehci_hw_start(&pd->dev);

	return ret;
}
device_initcall(octeon_ehci_device_init);

static int octeon_ohci_power_on(struct platform_device *pdev)
{
	octeon2_usb_clocks_start(&pdev->dev);
	return 0;
}

static void octeon_ohci_power_off(struct platform_device *pdev)
{
	octeon2_usb_clocks_stop();
}

static struct usb_ohci_pdata octeon_ohci_pdata = {
	/* Octeon OHCI matches CPU endianness. */
#ifdef __BIG_ENDIAN
	.big_endian_mmio	= 1,
#endif
	.power_on	= octeon_ohci_power_on,
	.power_off	= octeon_ohci_power_off,
};

static void __init octeon_ohci_hw_start(struct device *dev)
{
	union cvmx_uctlx_ohci_ctl ohci_ctl;

	octeon2_usb_clocks_start(dev);

	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
	ohci_ctl.s.l2c_addr_msb = 0;
#ifdef __BIG_ENDIAN
	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
#else
	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
	ohci_ctl.s.inv_reg_a2 = 1;
#endif
	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);

	octeon2_usb_clocks_stop();
}

static int __init octeon_ohci_device_init(void)
{
	struct platform_device *pd;
	struct device_node *ohci_node;
	int ret = 0;

	ohci_node = of_find_node_by_name(NULL, "ohci");
	if (!ohci_node)
		return 0;

	pd = of_find_device_by_node(ohci_node);
	if (!pd)
		return 0;

	pd->dev.platform_data = &octeon_ohci_pdata;
	octeon_ohci_hw_start(&pd->dev);

	return ret;
}
device_initcall(octeon_ohci_device_init);

#endif /* CONFIG_USB */


static struct of_device_id __initdata octeon_ids[] = {
	{ .compatible = "simple-bus", },
	{ .compatible = "cavium,octeon-6335-uctl", },
	{ .compatible = "cavium,octeon-5750-usbn", },
	{ .compatible = "cavium,octeon-3860-bootbus", },
	{ .compatible = "cavium,mdio-mux", },
	{ .compatible = "gpio-leds", },
	{},
};

static bool __init octeon_has_88e1145(void)
{
	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
}

static void __init octeon_fdt_set_phy(int eth, int phy_addr)
{
	const __be32 *phy_handle;
	const __be32 *alt_phy_handle;
	const __be32 *reg;
	u32 phandle;
	int phy;
	int alt_phy;
	const char *p;
	int current_len;
	char new_name[20];

	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
	if (!phy_handle)
		return;

	phandle = be32_to_cpup(phy_handle);
	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);

	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
	if (alt_phy_handle) {
		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
	} else {
		alt_phy = -1;
	}

	if (phy_addr < 0 || phy < 0) {
		/* Delete the PHY things */
		fdt_nop_property(initial_boot_params, eth, "phy-handle");
		/* This one may fail */
		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
		if (phy >= 0)
			fdt_nop_node(initial_boot_params, phy);
		if (alt_phy >= 0)
			fdt_nop_node(initial_boot_params, alt_phy);
		return;
	}

	if (phy_addr >= 256 && alt_phy > 0) {
		const struct fdt_property *phy_prop;
		struct fdt_property *alt_prop;
		u32 phy_handle_name;

		/* Use the alt phy node instead.*/
		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
		phy_handle_name = phy_prop->nameoff;
		fdt_nop_node(initial_boot_params, phy);
		fdt_nop_property(initial_boot_params, eth, "phy-handle");
		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
		alt_prop->nameoff = phy_handle_name;
		phy = alt_phy;
	}

	phy_addr &= 0xff;

	if (octeon_has_88e1145()) {
		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
		memset(new_name, 0, sizeof(new_name));
		strcpy(new_name, "marvell,88e1145");
		p = fdt_getprop(initial_boot_params, phy, "compatible",
				&current_len);
		if (p && current_len >= strlen(new_name))
			fdt_setprop_inplace(initial_boot_params, phy,
					"compatible", new_name, current_len);
	}

	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
	if (phy_addr == be32_to_cpup(reg))
		return;

	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);

	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);

	p = fdt_get_name(initial_boot_params, phy, &current_len);
	if (p && current_len == strlen(new_name))
		fdt_set_name(initial_boot_params, phy, new_name);
	else
		pr_err("Error: could not rename ethernet phy: <%s>", p);
}

static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
{
	u8 new_mac[6];
	u64 mac = *pmac;
	int r;

	new_mac[0] = (mac >> 40) & 0xff;
	new_mac[1] = (mac >> 32) & 0xff;
	new_mac[2] = (mac >> 24) & 0xff;
	new_mac[3] = (mac >> 16) & 0xff;
	new_mac[4] = (mac >> 8) & 0xff;
	new_mac[5] = mac & 0xff;

	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
				new_mac, sizeof(new_mac));

	if (r) {
		pr_err("Setting \"local-mac-address\" failed %d", r);
		return;
	}
	*pmac = mac + 1;
}

static void __init octeon_fdt_rm_ethernet(int node)
{
	const __be32 *phy_handle;

	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
	if (phy_handle) {
		u32 ph = be32_to_cpup(phy_handle);
		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
		if (p >= 0)
			fdt_nop_node(initial_boot_params, p);
	}
	fdt_nop_node(initial_boot_params, node);
}

static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
{
	char name_buffer[20];
	int eth;
	int phy_addr;
	int ipd_port;

	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
	if (eth < 0)
		return;
	if (p > max) {
		pr_debug("Deleting port %x:%x\n", i, p);
		octeon_fdt_rm_ethernet(eth);
		return;
	}
	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
	else
		ipd_port = 16 * i + p;

	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
	octeon_fdt_set_phy(eth, phy_addr);
	octeon_fdt_set_mac_addr(eth, pmac);
}

static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
{
	char name_buffer[20];
	int iface;
	int p;
	int count = 0;

	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
	if (iface < 0)
		return;

	if (cvmx_helper_interface_enumerate(idx) == 0)
		count = cvmx_helper_ports_on_interface(idx);

	for (p = 0; p < 16; p++)
		octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
}

int __init octeon_prune_device_tree(void)
{
	int i, max_port, uart_mask;
	const char *pip_path;
	const char *alias_prop;
	char name_buffer[20];
	int aliases;
	u64 mac_addr_base;

	if (fdt_check_header(initial_boot_params))
		panic("Corrupt Device Tree.");

	aliases = fdt_path_offset(initial_boot_params, "/aliases");
	if (aliases < 0) {
		pr_err("Error: No /aliases node in device tree.");
		return -EINVAL;
	}


	mac_addr_base =
		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
		(octeon_bootinfo->mac_addr_base[5] & 0xffull);

	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
		max_port = 2;
	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
		max_port = 1;
	else
		max_port = 0;

	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
		max_port = 0;

	for (i = 0; i < 2; i++) {
		int mgmt;
		snprintf(name_buffer, sizeof(name_buffer),
			 "mix%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);
		if (alias_prop) {
			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
			if (mgmt < 0)
				continue;
			if (i >= max_port) {
				pr_debug("Deleting mix%d\n", i);
				octeon_fdt_rm_ethernet(mgmt);
				fdt_nop_property(initial_boot_params, aliases,
						 name_buffer);
			} else {
				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
				octeon_fdt_set_phy(mgmt, phy_addr);
				octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
			}
		}
	}

	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
	if (pip_path) {
		int pip = fdt_path_offset(initial_boot_params, pip_path);
		if (pip	 >= 0)
			for (i = 0; i <= 4; i++)
				octeon_fdt_pip_iface(pip, i, &mac_addr_base);
	}

	/* I2C */
	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
	    OCTEON_IS_MODEL(OCTEON_CN56XX))
		max_port = 2;
	else
		max_port = 1;

	for (i = 0; i < 2; i++) {
		int i2c;
		snprintf(name_buffer, sizeof(name_buffer),
			 "twsi%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);

		if (alias_prop) {
			i2c = fdt_path_offset(initial_boot_params, alias_prop);
			if (i2c < 0)
				continue;
			if (i >= max_port) {
				pr_debug("Deleting twsi%d\n", i);
				fdt_nop_node(initial_boot_params, i2c);
				fdt_nop_property(initial_boot_params, aliases,
						 name_buffer);
			}
		}
	}

	/* SMI/MDIO */
	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
		max_port = 4;
	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
		 OCTEON_IS_MODEL(OCTEON_CN56XX))
		max_port = 2;
	else
		max_port = 1;

	for (i = 0; i < 2; i++) {
		int i2c;
		snprintf(name_buffer, sizeof(name_buffer),
			 "smi%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);

		if (alias_prop) {
			i2c = fdt_path_offset(initial_boot_params, alias_prop);
			if (i2c < 0)
				continue;
			if (i >= max_port) {
				pr_debug("Deleting smi%d\n", i);
				fdt_nop_node(initial_boot_params, i2c);
				fdt_nop_property(initial_boot_params, aliases,
						 name_buffer);
			}
		}
	}

	/* Serial */
	uart_mask = 3;

	/* Right now CN52XX is the only chip with a third uart */
	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
		uart_mask |= 4; /* uart2 */

	for (i = 0; i < 3; i++) {
		int uart;
		snprintf(name_buffer, sizeof(name_buffer),
			 "uart%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);

		if (alias_prop) {
			uart = fdt_path_offset(initial_boot_params, alias_prop);
			if (uart_mask & (1 << i)) {
				__be32 f;

				f = cpu_to_be32(octeon_get_io_clock_rate());
				fdt_setprop_inplace(initial_boot_params,
						    uart, "clock-frequency",
						    &f, sizeof(f));
				continue;
			}
			pr_debug("Deleting uart%d\n", i);
			fdt_nop_node(initial_boot_params, uart);
			fdt_nop_property(initial_boot_params, aliases,
					 name_buffer);
		}
	}

	/* Compact Flash */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "cf0", NULL);
	if (alias_prop) {
		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
		unsigned long base_ptr, region_base, region_size;
		unsigned long region1_base = 0;
		unsigned long region1_size = 0;
		int cs, bootbus;
		bool is_16bit = false;
		bool is_true_ide = false;
		__be32 new_reg[6];
		__be32 *ranges;
		int len;

		int cf = fdt_path_offset(initial_boot_params, alias_prop);
		base_ptr = 0;
		if (octeon_bootinfo->major_version == 1
			&& octeon_bootinfo->minor_version >= 1) {
			if (octeon_bootinfo->compact_flash_common_base_addr)
				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
		} else {
			base_ptr = 0x1d000800;
		}

		if (!base_ptr)
			goto no_cf;

		/* Find CS0 region. */
		for (cs = 0; cs < 8; cs++) {
			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
			region_base = mio_boot_reg_cfg.s.base << 16;
			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
				&& base_ptr < region_base + region_size) {
				is_16bit = mio_boot_reg_cfg.s.width;
				break;
			}
		}
		if (cs >= 7) {
			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
			goto no_cf;
		}

		if (!(base_ptr & 0xfffful)) {
			/*
			 * Boot loader signals availability of DMA (true_ide
			 * mode) by setting low order bits of base_ptr to
			 * zero.
			 */

			/* Asume that CS1 immediately follows. */
			mio_boot_reg_cfg.u64 =
				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
			region1_base = mio_boot_reg_cfg.s.base << 16;
			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
			if (!mio_boot_reg_cfg.s.en)
				goto no_cf;
			is_true_ide = true;

		} else {
			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
			if (!is_16bit) {
				__be32 width = cpu_to_be32(8);
				fdt_setprop_inplace(initial_boot_params, cf,
						"cavium,bus-width", &width, sizeof(width));
			}
		}
		new_reg[0] = cpu_to_be32(cs);
		new_reg[1] = cpu_to_be32(0);
		new_reg[2] = cpu_to_be32(0x10000);
		new_reg[3] = cpu_to_be32(cs + 1);
		new_reg[4] = cpu_to_be32(0);
		new_reg[5] = cpu_to_be32(0x10000);
		fdt_setprop_inplace(initial_boot_params, cf,
				    "reg",  new_reg, sizeof(new_reg));

		bootbus = fdt_parent_offset(initial_boot_params, cf);
		if (bootbus < 0)
			goto no_cf;
		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
		if (!ranges || len < (5 * 8 * sizeof(__be32)))
			goto no_cf;

		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
		if (is_true_ide) {
			cs++;
			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
		}
		goto end_cf;
no_cf:
		fdt_nop_node(initial_boot_params, cf);

end_cf:
		;
	}

	/* 8 char LED */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "led0", NULL);
	if (alias_prop) {
		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
		unsigned long base_ptr, region_base, region_size;
		int cs, bootbus;
		__be32 new_reg[6];
		__be32 *ranges;
		int len;
		int led = fdt_path_offset(initial_boot_params, alias_prop);

		base_ptr = octeon_bootinfo->led_display_base_addr;
		if (base_ptr == 0)
			goto no_led;
		/* Find CS0 region. */
		for (cs = 0; cs < 8; cs++) {
			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
			region_base = mio_boot_reg_cfg.s.base << 16;
			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
				&& base_ptr < region_base + region_size)
				break;
		}

		if (cs > 7)
			goto no_led;

		new_reg[0] = cpu_to_be32(cs);
		new_reg[1] = cpu_to_be32(0x20);
		new_reg[2] = cpu_to_be32(0x20);
		new_reg[3] = cpu_to_be32(cs);
		new_reg[4] = cpu_to_be32(0);
		new_reg[5] = cpu_to_be32(0x20);
		fdt_setprop_inplace(initial_boot_params, led,
				    "reg",  new_reg, sizeof(new_reg));

		bootbus = fdt_parent_offset(initial_boot_params, led);
		if (bootbus < 0)
			goto no_led;
		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
		if (!ranges || len < (5 * 8 * sizeof(__be32)))
			goto no_led;

		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
		goto end_led;

no_led:
		fdt_nop_node(initial_boot_params, led);
end_led:
		;
	}

	/* OHCI/UHCI USB */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "uctl", NULL);
	if (alias_prop) {
		int uctl = fdt_path_offset(initial_boot_params, alias_prop);

		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
			pr_debug("Deleting uctl\n");
			fdt_nop_node(initial_boot_params, uctl);
			fdt_nop_property(initial_boot_params, aliases, "uctl");
		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
			/* Missing "refclk-type" defaults to crystal. */
			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
		}
	}

	/* DWC2 USB */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "usbn", NULL);
	if (alias_prop) {
		int usbn = fdt_path_offset(initial_boot_params, alias_prop);

		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
			pr_debug("Deleting usbn\n");
			fdt_nop_node(initial_boot_params, usbn);
			fdt_nop_property(initial_boot_params, aliases, "usbn");
		} else  {
			__be32 new_f[1];
			enum cvmx_helper_board_usb_clock_types c;
			c = __cvmx_helper_board_usb_get_clock_type();
			switch (c) {
			case USB_CLOCK_TYPE_REF_48:
				new_f[0] = cpu_to_be32(48000000);
				fdt_setprop_inplace(initial_boot_params, usbn,
						    "refclk-frequency",  new_f, sizeof(new_f));
				/* Fall through ...*/
			case USB_CLOCK_TYPE_REF_12:
				/* Missing "refclk-type" defaults to external. */
				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
				break;
			default:
				break;
			}
		}
	}

	if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
		int dsr1000n_leds = fdt_path_offset(initial_boot_params,
						    "/dsr1000n-leds");
		if (dsr1000n_leds >= 0)
			fdt_nop_node(initial_boot_params, dsr1000n_leds);
	}

	return 0;
}

static int __init octeon_publish_devices(void)
{
	return of_platform_bus_probe(NULL, octeon_ids, NULL);
}
device_initcall(octeon_publish_devices);

MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Platform driver for Octeon SOC");