diff options
Diffstat (limited to 'qemu/roms/u-boot/fs/ubifs/orphan.c')
-rw-r--r-- | qemu/roms/u-boot/fs/ubifs/orphan.c | 316 |
1 files changed, 0 insertions, 316 deletions
diff --git a/qemu/roms/u-boot/fs/ubifs/orphan.c b/qemu/roms/u-boot/fs/ubifs/orphan.c deleted file mode 100644 index d091031b8..000000000 --- a/qemu/roms/u-boot/fs/ubifs/orphan.c +++ /dev/null @@ -1,316 +0,0 @@ -/* - * This file is part of UBIFS. - * - * Copyright (C) 2006-2008 Nokia Corporation. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - * - * Author: Adrian Hunter - */ - -#include "ubifs.h" - -/* - * An orphan is an inode number whose inode node has been committed to the index - * with a link count of zero. That happens when an open file is deleted - * (unlinked) and then a commit is run. In the normal course of events the inode - * would be deleted when the file is closed. However in the case of an unclean - * unmount, orphans need to be accounted for. After an unclean unmount, the - * orphans' inodes must be deleted which means either scanning the entire index - * looking for them, or keeping a list on flash somewhere. This unit implements - * the latter approach. - * - * The orphan area is a fixed number of LEBs situated between the LPT area and - * the main area. The number of orphan area LEBs is specified when the file - * system is created. The minimum number is 1. The size of the orphan area - * should be so that it can hold the maximum number of orphans that are expected - * to ever exist at one time. - * - * The number of orphans that can fit in a LEB is: - * - * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64) - * - * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough. - * - * Orphans are accumulated in a rb-tree. When an inode's link count drops to - * zero, the inode number is added to the rb-tree. It is removed from the tree - * when the inode is deleted. Any new orphans that are in the orphan tree when - * the commit is run, are written to the orphan area in 1 or more orphan nodes. - * If the orphan area is full, it is consolidated to make space. There is - * always enough space because validation prevents the user from creating more - * than the maximum number of orphans allowed. - */ - -/** - * tot_avail_orphs - calculate total space. - * @c: UBIFS file-system description object - * - * This function returns the number of orphans that can be written in half - * the total space. That leaves half the space for adding new orphans. - */ -static int tot_avail_orphs(struct ubifs_info *c) -{ - int avail_lebs, avail; - - avail_lebs = c->orph_lebs; - avail = avail_lebs * - ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); - return avail / 2; -} - -/** - * ubifs_clear_orphans - erase all LEBs used for orphans. - * @c: UBIFS file-system description object - * - * If recovery is not required, then the orphans from the previous session - * are not needed. This function locates the LEBs used to record - * orphans, and un-maps them. - */ -int ubifs_clear_orphans(struct ubifs_info *c) -{ - int lnum, err; - - for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { - err = ubifs_leb_unmap(c, lnum); - if (err) - return err; - } - c->ohead_lnum = c->orph_first; - c->ohead_offs = 0; - return 0; -} - -/** - * insert_dead_orphan - insert an orphan. - * @c: UBIFS file-system description object - * @inum: orphan inode number - * - * This function is a helper to the 'do_kill_orphans()' function. The orphan - * must be kept until the next commit, so it is added to the rb-tree and the - * deletion list. - */ -static int insert_dead_orphan(struct ubifs_info *c, ino_t inum) -{ - struct ubifs_orphan *orphan, *o; - struct rb_node **p, *parent = NULL; - - orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL); - if (!orphan) - return -ENOMEM; - orphan->inum = inum; - - p = &c->orph_tree.rb_node; - while (*p) { - parent = *p; - o = rb_entry(parent, struct ubifs_orphan, rb); - if (inum < o->inum) - p = &(*p)->rb_left; - else if (inum > o->inum) - p = &(*p)->rb_right; - else { - /* Already added - no problem */ - kfree(orphan); - return 0; - } - } - c->tot_orphans += 1; - rb_link_node(&orphan->rb, parent, p); - rb_insert_color(&orphan->rb, &c->orph_tree); - list_add_tail(&orphan->list, &c->orph_list); - orphan->dnext = c->orph_dnext; - c->orph_dnext = orphan; - dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum, - c->new_orphans, c->tot_orphans); - return 0; -} - -/** - * do_kill_orphans - remove orphan inodes from the index. - * @c: UBIFS file-system description object - * @sleb: scanned LEB - * @last_cmt_no: cmt_no of last orphan node read is passed and returned here - * @outofdate: whether the LEB is out of date is returned here - * @last_flagged: whether the end orphan node is encountered - * - * This function is a helper to the 'kill_orphans()' function. It goes through - * every orphan node in a LEB and for every inode number recorded, removes - * all keys for that inode from the TNC. - */ -static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, - unsigned long long *last_cmt_no, int *outofdate, - int *last_flagged) -{ - struct ubifs_scan_node *snod; - struct ubifs_orph_node *orph; - unsigned long long cmt_no; - ino_t inum; - int i, n, err, first = 1; - - list_for_each_entry(snod, &sleb->nodes, list) { - if (snod->type != UBIFS_ORPH_NODE) { - ubifs_err("invalid node type %d in orphan area at " - "%d:%d", snod->type, sleb->lnum, snod->offs); - dbg_dump_node(c, snod->node); - return -EINVAL; - } - - orph = snod->node; - - /* Check commit number */ - cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX; - /* - * The commit number on the master node may be less, because - * of a failed commit. If there are several failed commits in a - * row, the commit number written on orphan nodes will continue - * to increase (because the commit number is adjusted here) even - * though the commit number on the master node stays the same - * because the master node has not been re-written. - */ - if (cmt_no > c->cmt_no) - c->cmt_no = cmt_no; - if (cmt_no < *last_cmt_no && *last_flagged) { - /* - * The last orphan node had a higher commit number and - * was flagged as the last written for that commit - * number. That makes this orphan node, out of date. - */ - if (!first) { - ubifs_err("out of order commit number %llu in " - "orphan node at %d:%d", - cmt_no, sleb->lnum, snod->offs); - dbg_dump_node(c, snod->node); - return -EINVAL; - } - dbg_rcvry("out of date LEB %d", sleb->lnum); - *outofdate = 1; - return 0; - } - - if (first) - first = 0; - - n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; - for (i = 0; i < n; i++) { - inum = le64_to_cpu(orph->inos[i]); - dbg_rcvry("deleting orphaned inode %lu", - (unsigned long)inum); - err = ubifs_tnc_remove_ino(c, inum); - if (err) - return err; - err = insert_dead_orphan(c, inum); - if (err) - return err; - } - - *last_cmt_no = cmt_no; - if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) { - dbg_rcvry("last orph node for commit %llu at %d:%d", - cmt_no, sleb->lnum, snod->offs); - *last_flagged = 1; - } else - *last_flagged = 0; - } - - return 0; -} - -/** - * kill_orphans - remove all orphan inodes from the index. - * @c: UBIFS file-system description object - * - * If recovery is required, then orphan inodes recorded during the previous - * session (which ended with an unclean unmount) must be deleted from the index. - * This is done by updating the TNC, but since the index is not updated until - * the next commit, the LEBs where the orphan information is recorded are not - * erased until the next commit. - */ -static int kill_orphans(struct ubifs_info *c) -{ - unsigned long long last_cmt_no = 0; - int lnum, err = 0, outofdate = 0, last_flagged = 0; - - c->ohead_lnum = c->orph_first; - c->ohead_offs = 0; - /* Check no-orphans flag and skip this if no orphans */ - if (c->no_orphs) { - dbg_rcvry("no orphans"); - return 0; - } - /* - * Orph nodes always start at c->orph_first and are written to each - * successive LEB in turn. Generally unused LEBs will have been unmapped - * but may contain out of date orphan nodes if the unmap didn't go - * through. In addition, the last orphan node written for each commit is - * marked (top bit of orph->cmt_no is set to 1). It is possible that - * there are orphan nodes from the next commit (i.e. the commit did not - * complete successfully). In that case, no orphans will have been lost - * due to the way that orphans are written, and any orphans added will - * be valid orphans anyway and so can be deleted. - */ - for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { - struct ubifs_scan_leb *sleb; - - dbg_rcvry("LEB %d", lnum); - sleb = ubifs_scan(c, lnum, 0, c->sbuf); - if (IS_ERR(sleb)) { - sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0); - if (IS_ERR(sleb)) { - err = PTR_ERR(sleb); - break; - } - } - err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate, - &last_flagged); - if (err || outofdate) { - ubifs_scan_destroy(sleb); - break; - } - if (sleb->endpt) { - c->ohead_lnum = lnum; - c->ohead_offs = sleb->endpt; - } - ubifs_scan_destroy(sleb); - } - return err; -} - -/** - * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them. - * @c: UBIFS file-system description object - * @unclean: indicates recovery from unclean unmount - * @read_only: indicates read only mount - * - * This function is called when mounting to erase orphans from the previous - * session. If UBIFS was not unmounted cleanly, then the inodes recorded as - * orphans are deleted. - */ -int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only) -{ - int err = 0; - - c->max_orphans = tot_avail_orphs(c); - - if (!read_only) { - c->orph_buf = vmalloc(c->leb_size); - if (!c->orph_buf) - return -ENOMEM; - } - - if (unclean) - err = kill_orphans(c); - else if (!read_only) - err = ubifs_clear_orphans(c); - - return err; -} |