diff options
Diffstat (limited to 'qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c')
-rw-r--r-- | qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c | 1179 |
1 files changed, 0 insertions, 1179 deletions
diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c deleted file mode 100644 index 036c113ad..000000000 --- a/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c +++ /dev/null @@ -1,1179 +0,0 @@ -/* - * Freescale i.MX28 NAND flash driver - * - * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> - * on behalf of DENX Software Engineering GmbH - * - * Based on code from LTIB: - * Freescale GPMI NFC NAND Flash Driver - * - * Copyright (C) 2010 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * SPDX-License-Identifier: GPL-2.0+ - */ - -#include <common.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/types.h> -#include <malloc.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/arch/clock.h> -#include <asm/arch/imx-regs.h> -#include <asm/imx-common/regs-bch.h> -#include <asm/imx-common/regs-gpmi.h> -#include <asm/arch/sys_proto.h> -#include <asm/imx-common/dma.h> - -#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 - -#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 -#if defined(CONFIG_MX6) -#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2 -#else -#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0 -#endif -#define MXS_NAND_METADATA_SIZE 10 - -#define MXS_NAND_COMMAND_BUFFER_SIZE 32 - -#define MXS_NAND_BCH_TIMEOUT 10000 - -struct mxs_nand_info { - int cur_chip; - - uint32_t cmd_queue_len; - uint32_t data_buf_size; - - uint8_t *cmd_buf; - uint8_t *data_buf; - uint8_t *oob_buf; - - uint8_t marking_block_bad; - uint8_t raw_oob_mode; - - /* Functions with altered behaviour */ - int (*hooked_read_oob)(struct mtd_info *mtd, - loff_t from, struct mtd_oob_ops *ops); - int (*hooked_write_oob)(struct mtd_info *mtd, - loff_t to, struct mtd_oob_ops *ops); - int (*hooked_block_markbad)(struct mtd_info *mtd, - loff_t ofs); - - /* DMA descriptors */ - struct mxs_dma_desc **desc; - uint32_t desc_index; -}; - -struct nand_ecclayout fake_ecc_layout; - -/* - * Cache management functions - */ -#ifndef CONFIG_SYS_DCACHE_OFF -static void mxs_nand_flush_data_buf(struct mxs_nand_info *info) -{ - uint32_t addr = (uint32_t)info->data_buf; - - flush_dcache_range(addr, addr + info->data_buf_size); -} - -static void mxs_nand_inval_data_buf(struct mxs_nand_info *info) -{ - uint32_t addr = (uint32_t)info->data_buf; - - invalidate_dcache_range(addr, addr + info->data_buf_size); -} - -static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) -{ - uint32_t addr = (uint32_t)info->cmd_buf; - - flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE); -} -#else -static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {} -static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {} -static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {} -#endif - -static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) -{ - struct mxs_dma_desc *desc; - - if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { - printf("MXS NAND: Too many DMA descriptors requested\n"); - return NULL; - } - - desc = info->desc[info->desc_index]; - info->desc_index++; - - return desc; -} - -static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) -{ - int i; - struct mxs_dma_desc *desc; - - for (i = 0; i < info->desc_index; i++) { - desc = info->desc[i]; - memset(desc, 0, sizeof(struct mxs_dma_desc)); - desc->address = (dma_addr_t)desc; - } - - info->desc_index = 0; -} - -static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size) -{ - return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; -} - -static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength) -{ - return ecc_strength * 13; -} - -static uint32_t mxs_nand_aux_status_offset(void) -{ - return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; -} - -static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size, - uint32_t page_oob_size) -{ - if (page_data_size == 2048) - return 8; - - if (page_data_size == 4096) { - if (page_oob_size == 128) - return 8; - - if (page_oob_size == 218) - return 16; - - if (page_oob_size == 224) - return 16; - } - - return 0; -} - -static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size, - uint32_t ecc_strength) -{ - uint32_t chunk_data_size_in_bits; - uint32_t chunk_ecc_size_in_bits; - uint32_t chunk_total_size_in_bits; - uint32_t block_mark_chunk_number; - uint32_t block_mark_chunk_bit_offset; - uint32_t block_mark_bit_offset; - - chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; - chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength); - - chunk_total_size_in_bits = - chunk_data_size_in_bits + chunk_ecc_size_in_bits; - - /* Compute the bit offset of the block mark within the physical page. */ - block_mark_bit_offset = page_data_size * 8; - - /* Subtract the metadata bits. */ - block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; - - /* - * Compute the chunk number (starting at zero) in which the block mark - * appears. - */ - block_mark_chunk_number = - block_mark_bit_offset / chunk_total_size_in_bits; - - /* - * Compute the bit offset of the block mark within its chunk, and - * validate it. - */ - block_mark_chunk_bit_offset = block_mark_bit_offset - - (block_mark_chunk_number * chunk_total_size_in_bits); - - if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) - return 1; - - /* - * Now that we know the chunk number in which the block mark appears, - * we can subtract all the ECC bits that appear before it. - */ - block_mark_bit_offset -= - block_mark_chunk_number * chunk_ecc_size_in_bits; - - return block_mark_bit_offset; -} - -static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) -{ - uint32_t ecc_strength; - ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); - return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3; -} - -static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) -{ - uint32_t ecc_strength; - ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); - return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7; -} - -/* - * Wait for BCH complete IRQ and clear the IRQ - */ -static int mxs_nand_wait_for_bch_complete(void) -{ - struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; - int timeout = MXS_NAND_BCH_TIMEOUT; - int ret; - - ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg, - BCH_CTRL_COMPLETE_IRQ, timeout); - - writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr); - - return ret; -} - -/* - * This is the function that we install in the cmd_ctrl function pointer of the - * owning struct nand_chip. The only functions in the reference implementation - * that use these functions pointers are cmdfunc and select_chip. - * - * In this driver, we implement our own select_chip, so this function will only - * be called by the reference implementation's cmdfunc. For this reason, we can - * ignore the chip enable bit and concentrate only on sending bytes to the NAND - * Flash. - */ -static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) -{ - struct nand_chip *nand = mtd->priv; - struct mxs_nand_info *nand_info = nand->priv; - struct mxs_dma_desc *d; - uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; - int ret; - - /* - * If this condition is true, something is _VERY_ wrong in MTD - * subsystem! - */ - if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { - printf("MXS NAND: Command queue too long\n"); - return; - } - - /* - * Every operation begins with a command byte and a series of zero or - * more address bytes. These are distinguished by either the Address - * Latch Enable (ALE) or Command Latch Enable (CLE) signals being - * asserted. When MTD is ready to execute the command, it will - * deasert both latch enables. - * - * Rather than run a separate DMA operation for every single byte, we - * queue them up and run a single DMA operation for the entire series - * of command and data bytes. - */ - if (ctrl & (NAND_ALE | NAND_CLE)) { - if (data != NAND_CMD_NONE) - nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; - return; - } - - /* - * If control arrives here, MTD has deasserted both the ALE and CLE, - * which means it's ready to run an operation. Check if we have any - * bytes to send. - */ - if (nand_info->cmd_queue_len == 0) - return; - - /* Compile the DMA descriptor -- a descriptor that sends command. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | - MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | - MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | - (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); - - d->cmd.address = (dma_addr_t)nand_info->cmd_buf; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_WRITE | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_CLE | - GPMI_CTRL0_ADDRESS_INCREMENT | - nand_info->cmd_queue_len; - - mxs_dma_desc_append(channel, d); - - /* Flush caches */ - mxs_nand_flush_cmd_buf(nand_info); - - /* Execute the DMA chain. */ - ret = mxs_dma_go(channel); - if (ret) - printf("MXS NAND: Error sending command\n"); - - mxs_nand_return_dma_descs(nand_info); - - /* Reset the command queue. */ - nand_info->cmd_queue_len = 0; -} - -/* - * Test if the NAND flash is ready. - */ -static int mxs_nand_device_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd->priv; - struct mxs_nand_info *nand_info = chip->priv; - struct mxs_gpmi_regs *gpmi_regs = - (struct mxs_gpmi_regs *)MXS_GPMI_BASE; - uint32_t tmp; - - tmp = readl(&gpmi_regs->hw_gpmi_stat); - tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); - - return tmp & 1; -} - -/* - * Select the NAND chip. - */ -static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand = mtd->priv; - struct mxs_nand_info *nand_info = nand->priv; - - nand_info->cur_chip = chip; -} - -/* - * Handle block mark swapping. - * - * Note that, when this function is called, it doesn't know whether it's - * swapping the block mark, or swapping it *back* -- but it doesn't matter - * because the the operation is the same. - */ -static void mxs_nand_swap_block_mark(struct mtd_info *mtd, - uint8_t *data_buf, uint8_t *oob_buf) -{ - uint32_t bit_offset; - uint32_t buf_offset; - - uint32_t src; - uint32_t dst; - - bit_offset = mxs_nand_mark_bit_offset(mtd); - buf_offset = mxs_nand_mark_byte_offset(mtd); - - /* - * Get the byte from the data area that overlays the block mark. Since - * the ECC engine applies its own view to the bits in the page, the - * physical block mark won't (in general) appear on a byte boundary in - * the data. - */ - src = data_buf[buf_offset] >> bit_offset; - src |= data_buf[buf_offset + 1] << (8 - bit_offset); - - dst = oob_buf[0]; - - oob_buf[0] = src; - - data_buf[buf_offset] &= ~(0xff << bit_offset); - data_buf[buf_offset + 1] &= 0xff << bit_offset; - - data_buf[buf_offset] |= dst << bit_offset; - data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); -} - -/* - * Read data from NAND. - */ -static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) -{ - struct nand_chip *nand = mtd->priv; - struct mxs_nand_info *nand_info = nand->priv; - struct mxs_dma_desc *d; - uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; - int ret; - - if (length > NAND_MAX_PAGESIZE) { - printf("MXS NAND: DMA buffer too big\n"); - return; - } - - if (!buf) { - printf("MXS NAND: DMA buffer is NULL\n"); - return; - } - - /* Compile the DMA descriptor - a descriptor that reads data. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | - MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | - (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | - (length << MXS_DMA_DESC_BYTES_OFFSET); - - d->cmd.address = (dma_addr_t)nand_info->data_buf; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_READ | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_DATA | - length; - - mxs_dma_desc_append(channel, d); - - /* - * A DMA descriptor that waits for the command to end and the chip to - * become ready. - * - * I think we actually should *not* be waiting for the chip to become - * ready because, after all, we don't care. I think the original code - * did that and no one has re-thought it yet. - */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | - MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | - MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET); - - d->cmd.address = 0; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_DATA; - - mxs_dma_desc_append(channel, d); - - /* Execute the DMA chain. */ - ret = mxs_dma_go(channel); - if (ret) { - printf("MXS NAND: DMA read error\n"); - goto rtn; - } - - /* Invalidate caches */ - mxs_nand_inval_data_buf(nand_info); - - memcpy(buf, nand_info->data_buf, length); - -rtn: - mxs_nand_return_dma_descs(nand_info); -} - -/* - * Write data to NAND. - */ -static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, - int length) -{ - struct nand_chip *nand = mtd->priv; - struct mxs_nand_info *nand_info = nand->priv; - struct mxs_dma_desc *d; - uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; - int ret; - - if (length > NAND_MAX_PAGESIZE) { - printf("MXS NAND: DMA buffer too big\n"); - return; - } - - if (!buf) { - printf("MXS NAND: DMA buffer is NULL\n"); - return; - } - - memcpy(nand_info->data_buf, buf, length); - - /* Compile the DMA descriptor - a descriptor that writes data. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | - MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | - (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | - (length << MXS_DMA_DESC_BYTES_OFFSET); - - d->cmd.address = (dma_addr_t)nand_info->data_buf; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_WRITE | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_DATA | - length; - - mxs_dma_desc_append(channel, d); - - /* Flush caches */ - mxs_nand_flush_data_buf(nand_info); - - /* Execute the DMA chain. */ - ret = mxs_dma_go(channel); - if (ret) - printf("MXS NAND: DMA write error\n"); - - mxs_nand_return_dma_descs(nand_info); -} - -/* - * Read a single byte from NAND. - */ -static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) -{ - uint8_t buf; - mxs_nand_read_buf(mtd, &buf, 1); - return buf; -} - -/* - * Read a page from NAND. - */ -static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand, - uint8_t *buf, int oob_required, - int page) -{ - struct mxs_nand_info *nand_info = nand->priv; - struct mxs_dma_desc *d; - uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; - uint32_t corrected = 0, failed = 0; - uint8_t *status; - int i, ret; - - /* Compile the DMA descriptor - wait for ready. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | - MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | - (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); - - d->cmd.address = 0; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_DATA; - - mxs_dma_desc_append(channel, d); - - /* Compile the DMA descriptor - enable the BCH block and read. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | - MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); - - d->cmd.address = 0; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_READ | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_DATA | - (mtd->writesize + mtd->oobsize); - d->cmd.pio_words[1] = 0; - d->cmd.pio_words[2] = - GPMI_ECCCTRL_ENABLE_ECC | - GPMI_ECCCTRL_ECC_CMD_DECODE | - GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; - d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; - d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; - d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; - - mxs_dma_desc_append(channel, d); - - /* Compile the DMA descriptor - disable the BCH block. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | - MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | - (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); - - d->cmd.address = 0; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_DATA | - (mtd->writesize + mtd->oobsize); - d->cmd.pio_words[1] = 0; - d->cmd.pio_words[2] = 0; - - mxs_dma_desc_append(channel, d); - - /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | - MXS_DMA_DESC_DEC_SEM; - - d->cmd.address = 0; - - mxs_dma_desc_append(channel, d); - - /* Execute the DMA chain. */ - ret = mxs_dma_go(channel); - if (ret) { - printf("MXS NAND: DMA read error\n"); - goto rtn; - } - - ret = mxs_nand_wait_for_bch_complete(); - if (ret) { - printf("MXS NAND: BCH read timeout\n"); - goto rtn; - } - - /* Invalidate caches */ - mxs_nand_inval_data_buf(nand_info); - - /* Read DMA completed, now do the mark swapping. */ - mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); - - /* Loop over status bytes, accumulating ECC status. */ - status = nand_info->oob_buf + mxs_nand_aux_status_offset(); - for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) { - if (status[i] == 0x00) - continue; - - if (status[i] == 0xff) - continue; - - if (status[i] == 0xfe) { - failed++; - continue; - } - - corrected += status[i]; - } - - /* Propagate ECC status to the owning MTD. */ - mtd->ecc_stats.failed += failed; - mtd->ecc_stats.corrected += corrected; - - /* - * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for - * details about our policy for delivering the OOB. - * - * We fill the caller's buffer with set bits, and then copy the block - * mark to the caller's buffer. Note that, if block mark swapping was - * necessary, it has already been done, so we can rely on the first - * byte of the auxiliary buffer to contain the block mark. - */ - memset(nand->oob_poi, 0xff, mtd->oobsize); - - nand->oob_poi[0] = nand_info->oob_buf[0]; - - memcpy(buf, nand_info->data_buf, mtd->writesize); - -rtn: - mxs_nand_return_dma_descs(nand_info); - - return ret; -} - -/* - * Write a page to NAND. - */ -static int mxs_nand_ecc_write_page(struct mtd_info *mtd, - struct nand_chip *nand, const uint8_t *buf, - int oob_required) -{ - struct mxs_nand_info *nand_info = nand->priv; - struct mxs_dma_desc *d; - uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; - int ret; - - memcpy(nand_info->data_buf, buf, mtd->writesize); - memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); - - /* Handle block mark swapping. */ - mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); - - /* Compile the DMA descriptor - write data. */ - d = mxs_nand_get_dma_desc(nand_info); - d->cmd.data = - MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | - MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | - (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); - - d->cmd.address = 0; - - d->cmd.pio_words[0] = - GPMI_CTRL0_COMMAND_MODE_WRITE | - GPMI_CTRL0_WORD_LENGTH | - (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | - GPMI_CTRL0_ADDRESS_NAND_DATA; - d->cmd.pio_words[1] = 0; - d->cmd.pio_words[2] = - GPMI_ECCCTRL_ENABLE_ECC | - GPMI_ECCCTRL_ECC_CMD_ENCODE | - GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; - d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); - d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; - d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; - - mxs_dma_desc_append(channel, d); - - /* Flush caches */ - mxs_nand_flush_data_buf(nand_info); - - /* Execute the DMA chain. */ - ret = mxs_dma_go(channel); - if (ret) { - printf("MXS NAND: DMA write error\n"); - goto rtn; - } - - ret = mxs_nand_wait_for_bch_complete(); - if (ret) { - printf("MXS NAND: BCH write timeout\n"); - goto rtn; - } - -rtn: - mxs_nand_return_dma_descs(nand_info); - return 0; -} - -/* - * Read OOB from NAND. - * - * This function is a veneer that replaces the function originally installed by - * the NAND Flash MTD code. - */ -static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - struct nand_chip *chip = mtd->priv; - struct mxs_nand_info *nand_info = chip->priv; - int ret; - - if (ops->mode == MTD_OPS_RAW) - nand_info->raw_oob_mode = 1; - else - nand_info->raw_oob_mode = 0; - - ret = nand_info->hooked_read_oob(mtd, from, ops); - - nand_info->raw_oob_mode = 0; - - return ret; -} - -/* - * Write OOB to NAND. - * - * This function is a veneer that replaces the function originally installed by - * the NAND Flash MTD code. - */ -static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - struct nand_chip *chip = mtd->priv; - struct mxs_nand_info *nand_info = chip->priv; - int ret; - - if (ops->mode == MTD_OPS_RAW) - nand_info->raw_oob_mode = 1; - else - nand_info->raw_oob_mode = 0; - - ret = nand_info->hooked_write_oob(mtd, to, ops); - - nand_info->raw_oob_mode = 0; - - return ret; -} - -/* - * Mark a block bad in NAND. - * - * This function is a veneer that replaces the function originally installed by - * the NAND Flash MTD code. - */ -static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd->priv; - struct mxs_nand_info *nand_info = chip->priv; - int ret; - - nand_info->marking_block_bad = 1; - - ret = nand_info->hooked_block_markbad(mtd, ofs); - - nand_info->marking_block_bad = 0; - - return ret; -} - -/* - * There are several places in this driver where we have to handle the OOB and - * block marks. This is the function where things are the most complicated, so - * this is where we try to explain it all. All the other places refer back to - * here. - * - * These are the rules, in order of decreasing importance: - * - * 1) Nothing the caller does can be allowed to imperil the block mark, so all - * write operations take measures to protect it. - * - * 2) In read operations, the first byte of the OOB we return must reflect the - * true state of the block mark, no matter where that block mark appears in - * the physical page. - * - * 3) ECC-based read operations return an OOB full of set bits (since we never - * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads - * return). - * - * 4) "Raw" read operations return a direct view of the physical bytes in the - * page, using the conventional definition of which bytes are data and which - * are OOB. This gives the caller a way to see the actual, physical bytes - * in the page, without the distortions applied by our ECC engine. - * - * What we do for this specific read operation depends on whether we're doing - * "raw" read, or an ECC-based read. - * - * It turns out that knowing whether we want an "ECC-based" or "raw" read is not - * easy. When reading a page, for example, the NAND Flash MTD code calls our - * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an - * ECC-based or raw view of the page is implicit in which function it calls - * (there is a similar pair of ECC-based/raw functions for writing). - * - * Since MTD assumes the OOB is not covered by ECC, there is no pair of - * ECC-based/raw functions for reading or or writing the OOB. The fact that the - * caller wants an ECC-based or raw view of the page is not propagated down to - * this driver. - * - * Since our OOB *is* covered by ECC, we need this information. So, we hook the - * ecc.read_oob and ecc.write_oob function pointers in the owning - * struct mtd_info with our own functions. These hook functions set the - * raw_oob_mode field so that, when control finally arrives here, we'll know - * what to do. - */ -static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, - int page) -{ - struct mxs_nand_info *nand_info = nand->priv; - - /* - * First, fill in the OOB buffer. If we're doing a raw read, we need to - * get the bytes from the physical page. If we're not doing a raw read, - * we need to fill the buffer with set bits. - */ - if (nand_info->raw_oob_mode) { - /* - * If control arrives here, we're doing a "raw" read. Send the - * command to read the conventional OOB and read it. - */ - nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); - nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); - } else { - /* - * If control arrives here, we're not doing a "raw" read. Fill - * the OOB buffer with set bits and correct the block mark. - */ - memset(nand->oob_poi, 0xff, mtd->oobsize); - - nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); - mxs_nand_read_buf(mtd, nand->oob_poi, 1); - } - - return 0; - -} - -/* - * Write OOB data to NAND. - */ -static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand, - int page) -{ - struct mxs_nand_info *nand_info = nand->priv; - uint8_t block_mark = 0; - - /* - * There are fundamental incompatibilities between the i.MX GPMI NFC and - * the NAND Flash MTD model that make it essentially impossible to write - * the out-of-band bytes. - * - * We permit *ONE* exception. If the *intent* of writing the OOB is to - * mark a block bad, we can do that. - */ - - if (!nand_info->marking_block_bad) { - printf("NXS NAND: Writing OOB isn't supported\n"); - return -EIO; - } - - /* Write the block mark. */ - nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); - nand->write_buf(mtd, &block_mark, 1); - nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - - /* Check if it worked. */ - if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} - -/* - * Claims all blocks are good. - * - * In principle, this function is *only* called when the NAND Flash MTD system - * isn't allowed to keep an in-memory bad block table, so it is forced to ask - * the driver for bad block information. - * - * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so - * this function is *only* called when we take it away. - * - * Thus, this function is only called when we want *all* blocks to look good, - * so it *always* return success. - */ -static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) -{ - return 0; -} - -/* - * Nominally, the purpose of this function is to look for or create the bad - * block table. In fact, since the we call this function at the very end of - * the initialization process started by nand_scan(), and we doesn't have a - * more formal mechanism, we "hook" this function to continue init process. - * - * At this point, the physical NAND Flash chips have been identified and - * counted, so we know the physical geometry. This enables us to make some - * important configuration decisions. - * - * The return value of this function propogates directly back to this driver's - * call to nand_scan(). Anything other than zero will cause this driver to - * tear everything down and declare failure. - */ -static int mxs_nand_scan_bbt(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd->priv; - struct mxs_nand_info *nand_info = nand->priv; - struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; - uint32_t tmp; - - /* Configure BCH and set NFC geometry */ - mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); - - /* Configure layout 0 */ - tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1) - << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; - tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; - tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) - << BCH_FLASHLAYOUT0_ECC0_OFFSET; - tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE - >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; - writel(tmp, &bch_regs->hw_bch_flash0layout0); - - tmp = (mtd->writesize + mtd->oobsize) - << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; - tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) - << BCH_FLASHLAYOUT1_ECCN_OFFSET; - tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE - >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; - writel(tmp, &bch_regs->hw_bch_flash0layout1); - - /* Set *all* chip selects to use layout 0 */ - writel(0, &bch_regs->hw_bch_layoutselect); - - /* Enable BCH complete interrupt */ - writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); - - /* Hook some operations at the MTD level. */ - if (mtd->_read_oob != mxs_nand_hook_read_oob) { - nand_info->hooked_read_oob = mtd->_read_oob; - mtd->_read_oob = mxs_nand_hook_read_oob; - } - - if (mtd->_write_oob != mxs_nand_hook_write_oob) { - nand_info->hooked_write_oob = mtd->_write_oob; - mtd->_write_oob = mxs_nand_hook_write_oob; - } - - if (mtd->_block_markbad != mxs_nand_hook_block_markbad) { - nand_info->hooked_block_markbad = mtd->_block_markbad; - mtd->_block_markbad = mxs_nand_hook_block_markbad; - } - - /* We use the reference implementation for bad block management. */ - return nand_default_bbt(mtd); -} - -/* - * Allocate DMA buffers - */ -int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) -{ - uint8_t *buf; - const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; - - nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT); - - /* DMA buffers */ - buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size); - if (!buf) { - printf("MXS NAND: Error allocating DMA buffers\n"); - return -ENOMEM; - } - - memset(buf, 0, nand_info->data_buf_size); - - nand_info->data_buf = buf; - nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; - /* Command buffers */ - nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, - MXS_NAND_COMMAND_BUFFER_SIZE); - if (!nand_info->cmd_buf) { - free(buf); - printf("MXS NAND: Error allocating command buffers\n"); - return -ENOMEM; - } - memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); - nand_info->cmd_queue_len = 0; - - return 0; -} - -/* - * Initializes the NFC hardware. - */ -int mxs_nand_init(struct mxs_nand_info *info) -{ - struct mxs_gpmi_regs *gpmi_regs = - (struct mxs_gpmi_regs *)MXS_GPMI_BASE; - struct mxs_bch_regs *bch_regs = - (struct mxs_bch_regs *)MXS_BCH_BASE; - int i = 0, j; - - info->desc = malloc(sizeof(struct mxs_dma_desc *) * - MXS_NAND_DMA_DESCRIPTOR_COUNT); - if (!info->desc) - goto err1; - - /* Allocate the DMA descriptors. */ - for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { - info->desc[i] = mxs_dma_desc_alloc(); - if (!info->desc[i]) - goto err2; - } - - /* Init the DMA controller. */ - for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0; - j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) { - if (mxs_dma_init_channel(j)) - goto err3; - } - - /* Reset the GPMI block. */ - mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg); - mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); - - /* - * Choose NAND mode, set IRQ polarity, disable write protection and - * select BCH ECC. - */ - clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1, - GPMI_CTRL1_GPMI_MODE, - GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | - GPMI_CTRL1_BCH_MODE); - - return 0; - -err3: - for (--j; j >= 0; j--) - mxs_dma_release(j); -err2: - free(info->desc); -err1: - for (--i; i >= 0; i--) - mxs_dma_desc_free(info->desc[i]); - printf("MXS NAND: Unable to allocate DMA descriptors\n"); - return -ENOMEM; -} - -/*! - * This function is called during the driver binding process. - * - * @param pdev the device structure used to store device specific - * information that is used by the suspend, resume and - * remove functions - * - * @return The function always returns 0. - */ -int board_nand_init(struct nand_chip *nand) -{ - struct mxs_nand_info *nand_info; - int err; - - nand_info = malloc(sizeof(struct mxs_nand_info)); - if (!nand_info) { - printf("MXS NAND: Failed to allocate private data\n"); - return -ENOMEM; - } - memset(nand_info, 0, sizeof(struct mxs_nand_info)); - - err = mxs_nand_alloc_buffers(nand_info); - if (err) - goto err1; - - err = mxs_nand_init(nand_info); - if (err) - goto err2; - - memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); - - nand->priv = nand_info; - nand->options |= NAND_NO_SUBPAGE_WRITE; - - nand->cmd_ctrl = mxs_nand_cmd_ctrl; - - nand->dev_ready = mxs_nand_device_ready; - nand->select_chip = mxs_nand_select_chip; - nand->block_bad = mxs_nand_block_bad; - nand->scan_bbt = mxs_nand_scan_bbt; - - nand->read_byte = mxs_nand_read_byte; - - nand->read_buf = mxs_nand_read_buf; - nand->write_buf = mxs_nand_write_buf; - - nand->ecc.read_page = mxs_nand_ecc_read_page; - nand->ecc.write_page = mxs_nand_ecc_write_page; - nand->ecc.read_oob = mxs_nand_ecc_read_oob; - nand->ecc.write_oob = mxs_nand_ecc_write_oob; - - nand->ecc.layout = &fake_ecc_layout; - nand->ecc.mode = NAND_ECC_HW; - nand->ecc.bytes = 9; - nand->ecc.size = 512; - nand->ecc.strength = 8; - - return 0; - -err2: - free(nand_info->data_buf); - free(nand_info->cmd_buf); -err1: - free(nand_info); - return err; -} |