diff options
Diffstat (limited to 'qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c')
-rw-r--r-- | qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c | 1342 |
1 files changed, 0 insertions, 1342 deletions
diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c deleted file mode 100644 index ed0ca3aca..000000000 --- a/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c +++ /dev/null @@ -1,1342 +0,0 @@ -/* - * Copyright 2004-2007 Freescale Semiconductor, Inc. - * Copyright 2008 Sascha Hauer, kernel@pengutronix.de - * Copyright 2009 Ilya Yanok, <yanok@emcraft.com> - * - * SPDX-License-Identifier: GPL-2.0+ - */ - -#include <common.h> -#include <nand.h> -#include <linux/err.h> -#include <asm/io.h> -#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \ - defined(CONFIG_MX51) || defined(CONFIG_MX53) -#include <asm/arch/imx-regs.h> -#endif -#include "mxc_nand.h" - -#define DRIVER_NAME "mxc_nand" - -struct mxc_nand_host { - struct mtd_info mtd; - struct nand_chip *nand; - - struct mxc_nand_regs __iomem *regs; -#ifdef MXC_NFC_V3_2 - struct mxc_nand_ip_regs __iomem *ip_regs; -#endif - int spare_only; - int status_request; - int pagesize_2k; - int clk_act; - uint16_t col_addr; - unsigned int page_addr; -}; - -static struct mxc_nand_host mxc_host; -static struct mxc_nand_host *host = &mxc_host; - -/* Define delays in microsec for NAND device operations */ -#define TROP_US_DELAY 2000 -/* Macros to get byte and bit positions of ECC */ -#define COLPOS(x) ((x) >> 3) -#define BITPOS(x) ((x) & 0xf) - -/* Define single bit Error positions in Main & Spare area */ -#define MAIN_SINGLEBIT_ERROR 0x4 -#define SPARE_SINGLEBIT_ERROR 0x1 - -/* OOB placement block for use with hardware ecc generation */ -#if defined(MXC_NFC_V1) -#ifndef CONFIG_SYS_NAND_LARGEPAGE -static struct nand_ecclayout nand_hw_eccoob = { - .eccbytes = 5, - .eccpos = {6, 7, 8, 9, 10}, - .oobfree = { {0, 5}, {11, 5}, } -}; -#else -static struct nand_ecclayout nand_hw_eccoob2k = { - .eccbytes = 20, - .eccpos = { - 6, 7, 8, 9, 10, - 22, 23, 24, 25, 26, - 38, 39, 40, 41, 42, - 54, 55, 56, 57, 58, - }, - .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} }, -}; -#endif -#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) -#ifndef CONFIG_SYS_NAND_LARGEPAGE -static struct nand_ecclayout nand_hw_eccoob = { - .eccbytes = 9, - .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, - .oobfree = { {2, 5} } -}; -#else -static struct nand_ecclayout nand_hw_eccoob2k = { - .eccbytes = 36, - .eccpos = { - 7, 8, 9, 10, 11, 12, 13, 14, 15, - 23, 24, 25, 26, 27, 28, 29, 30, 31, - 39, 40, 41, 42, 43, 44, 45, 46, 47, - 55, 56, 57, 58, 59, 60, 61, 62, 63, - }, - .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} }, -}; -#endif -#endif - -static int is_16bit_nand(void) -{ -#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT) - return 1; -#else - return 0; -#endif -} - -static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size) -{ - uint32_t *d = dest; - - size >>= 2; - while (size--) - __raw_writel(__raw_readl(source++), d++); - return dest; -} - -/* - * This function polls the NANDFC to wait for the basic operation to - * complete by checking the INT bit. - */ -static void wait_op_done(struct mxc_nand_host *host, int max_retries, - uint16_t param) -{ - uint32_t tmp; - - while (max_retries-- > 0) { -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - tmp = readnfc(&host->regs->config2); - if (tmp & NFC_V1_V2_CONFIG2_INT) { - tmp &= ~NFC_V1_V2_CONFIG2_INT; - writenfc(tmp, &host->regs->config2); -#elif defined(MXC_NFC_V3_2) - tmp = readnfc(&host->ip_regs->ipc); - if (tmp & NFC_V3_IPC_INT) { - tmp &= ~NFC_V3_IPC_INT; - writenfc(tmp, &host->ip_regs->ipc); -#endif - break; - } - udelay(1); - } - if (max_retries < 0) { - MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", - __func__, param); - } -} - -/* - * This function issues the specified command to the NAND device and - * waits for completion. - */ -static void send_cmd(struct mxc_nand_host *host, uint16_t cmd) -{ - MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd); - - writenfc(cmd, &host->regs->flash_cmd); - writenfc(NFC_CMD, &host->regs->operation); - - /* Wait for operation to complete */ - wait_op_done(host, TROP_US_DELAY, cmd); -} - -/* - * This function sends an address (or partial address) to the - * NAND device. The address is used to select the source/destination for - * a NAND command. - */ -static void send_addr(struct mxc_nand_host *host, uint16_t addr) -{ - MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr); - - writenfc(addr, &host->regs->flash_addr); - writenfc(NFC_ADDR, &host->regs->operation); - - /* Wait for operation to complete */ - wait_op_done(host, TROP_US_DELAY, addr); -} - -/* - * This function requests the NANDFC to initiate the transfer - * of data currently in the NANDFC RAM buffer to the NAND device. - */ -static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, - int spare_only) -{ - if (spare_only) - MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only); - - if (is_mxc_nfc_21() || is_mxc_nfc_32()) { - int i; - /* - * The controller copies the 64 bytes of spare data from - * the first 16 bytes of each of the 4 64 byte spare buffers. - * Copy the contiguous data starting in spare_area[0] to - * the four spare area buffers. - */ - for (i = 1; i < 4; i++) { - void __iomem *src = &host->regs->spare_area[0][i * 16]; - void __iomem *dst = &host->regs->spare_area[i][0]; - - mxc_nand_memcpy32(dst, src, 16); - } - } - -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - writenfc(buf_id, &host->regs->buf_addr); -#elif defined(MXC_NFC_V3_2) - uint32_t tmp = readnfc(&host->regs->config1); - tmp &= ~NFC_V3_CONFIG1_RBA_MASK; - tmp |= NFC_V3_CONFIG1_RBA(buf_id); - writenfc(tmp, &host->regs->config1); -#endif - - /* Configure spare or page+spare access */ - if (!host->pagesize_2k) { - uint32_t config1 = readnfc(&host->regs->config1); - if (spare_only) - config1 |= NFC_CONFIG1_SP_EN; - else - config1 &= ~NFC_CONFIG1_SP_EN; - writenfc(config1, &host->regs->config1); - } - - writenfc(NFC_INPUT, &host->regs->operation); - - /* Wait for operation to complete */ - wait_op_done(host, TROP_US_DELAY, spare_only); -} - -/* - * Requests NANDFC to initiate the transfer of data from the - * NAND device into in the NANDFC ram buffer. - */ -static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, - int spare_only) -{ - MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); - -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - writenfc(buf_id, &host->regs->buf_addr); -#elif defined(MXC_NFC_V3_2) - uint32_t tmp = readnfc(&host->regs->config1); - tmp &= ~NFC_V3_CONFIG1_RBA_MASK; - tmp |= NFC_V3_CONFIG1_RBA(buf_id); - writenfc(tmp, &host->regs->config1); -#endif - - /* Configure spare or page+spare access */ - if (!host->pagesize_2k) { - uint32_t config1 = readnfc(&host->regs->config1); - if (spare_only) - config1 |= NFC_CONFIG1_SP_EN; - else - config1 &= ~NFC_CONFIG1_SP_EN; - writenfc(config1, &host->regs->config1); - } - - writenfc(NFC_OUTPUT, &host->regs->operation); - - /* Wait for operation to complete */ - wait_op_done(host, TROP_US_DELAY, spare_only); - - if (is_mxc_nfc_21() || is_mxc_nfc_32()) { - int i; - - /* - * The controller copies the 64 bytes of spare data to - * the first 16 bytes of each of the 4 spare buffers. - * Make the data contiguous starting in spare_area[0]. - */ - for (i = 1; i < 4; i++) { - void __iomem *src = &host->regs->spare_area[i][0]; - void __iomem *dst = &host->regs->spare_area[0][i * 16]; - - mxc_nand_memcpy32(dst, src, 16); - } - } -} - -/* Request the NANDFC to perform a read of the NAND device ID. */ -static void send_read_id(struct mxc_nand_host *host) -{ - uint32_t tmp; - -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - /* NANDFC buffer 0 is used for device ID output */ - writenfc(0x0, &host->regs->buf_addr); -#elif defined(MXC_NFC_V3_2) - tmp = readnfc(&host->regs->config1); - tmp &= ~NFC_V3_CONFIG1_RBA_MASK; - writenfc(tmp, &host->regs->config1); -#endif - - /* Read ID into main buffer */ - tmp = readnfc(&host->regs->config1); - tmp &= ~NFC_CONFIG1_SP_EN; - writenfc(tmp, &host->regs->config1); - - writenfc(NFC_ID, &host->regs->operation); - - /* Wait for operation to complete */ - wait_op_done(host, TROP_US_DELAY, 0); -} - -/* - * This function requests the NANDFC to perform a read of the - * NAND device status and returns the current status. - */ -static uint16_t get_dev_status(struct mxc_nand_host *host) -{ -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - void __iomem *main_buf = host->regs->main_area[1]; - uint32_t store; -#endif - uint32_t ret, tmp; - /* Issue status request to NAND device */ - -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - /* store the main area1 first word, later do recovery */ - store = readl(main_buf); - /* NANDFC buffer 1 is used for device status */ - writenfc(1, &host->regs->buf_addr); -#endif - - /* Read status into main buffer */ - tmp = readnfc(&host->regs->config1); - tmp &= ~NFC_CONFIG1_SP_EN; - writenfc(tmp, &host->regs->config1); - - writenfc(NFC_STATUS, &host->regs->operation); - - /* Wait for operation to complete */ - wait_op_done(host, TROP_US_DELAY, 0); - -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - /* - * Status is placed in first word of main buffer - * get status, then recovery area 1 data - */ - ret = readw(main_buf); - writel(store, main_buf); -#elif defined(MXC_NFC_V3_2) - ret = readnfc(&host->regs->config1) >> 16; -#endif - - return ret; -} - -/* This function is used by upper layer to checks if device is ready */ -static int mxc_nand_dev_ready(struct mtd_info *mtd) -{ - /* - * NFC handles R/B internally. Therefore, this function - * always returns status as ready. - */ - return 1; -} - -static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) - uint16_t tmp = readnfc(&host->regs->config1); - - if (on) - tmp |= NFC_V1_V2_CONFIG1_ECC_EN; - else - tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN; - writenfc(tmp, &host->regs->config1); -#elif defined(MXC_NFC_V3_2) - uint32_t tmp = readnfc(&host->ip_regs->config2); - - if (on) - tmp |= NFC_V3_CONFIG2_ECC_EN; - else - tmp &= ~NFC_V3_CONFIG2_ECC_EN; - writenfc(tmp, &host->ip_regs->config2); -#endif -} - -#ifdef CONFIG_MXC_NAND_HWECC -static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - /* - * If HW ECC is enabled, we turn it on during init. There is - * no need to enable again here. - */ -} - -#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) -static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - int page) -{ - struct mxc_nand_host *host = chip->priv; - uint8_t *buf = chip->oob_poi; - int length = mtd->oobsize; - int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; - uint8_t *bufpoi = buf; - int i, toread; - - MTDDEBUG(MTD_DEBUG_LEVEL0, - "%s: Reading OOB area of page %u to oob %p\n", - __func__, page, buf); - - chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); - for (i = 0; i < chip->ecc.steps; i++) { - toread = min_t(int, length, chip->ecc.prepad); - if (toread) { - chip->read_buf(mtd, bufpoi, toread); - bufpoi += toread; - length -= toread; - } - bufpoi += chip->ecc.bytes; - host->col_addr += chip->ecc.bytes; - length -= chip->ecc.bytes; - - toread = min_t(int, length, chip->ecc.postpad); - if (toread) { - chip->read_buf(mtd, bufpoi, toread); - bufpoi += toread; - length -= toread; - } - } - if (length > 0) - chip->read_buf(mtd, bufpoi, length); - - _mxc_nand_enable_hwecc(mtd, 0); - chip->cmdfunc(mtd, NAND_CMD_READOOB, - mtd->writesize + chip->ecc.prepad, page); - bufpoi = buf + chip->ecc.prepad; - length = mtd->oobsize - chip->ecc.prepad; - for (i = 0; i < chip->ecc.steps; i++) { - toread = min_t(int, length, chip->ecc.bytes); - chip->read_buf(mtd, bufpoi, toread); - bufpoi += eccpitch; - length -= eccpitch; - host->col_addr += chip->ecc.postpad + chip->ecc.prepad; - } - _mxc_nand_enable_hwecc(mtd, 1); - return 1; -} - -static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - uint8_t *buf, - int oob_required, - int page) -{ - struct mxc_nand_host *host = chip->priv; - int eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; - uint8_t *oob = chip->oob_poi; - int steps, size; - int n; - - _mxc_nand_enable_hwecc(mtd, 0); - chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); - - for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { - host->col_addr = n * eccsize; - chip->read_buf(mtd, buf, eccsize); - buf += eccsize; - - host->col_addr = mtd->writesize + n * eccpitch; - if (chip->ecc.prepad) { - chip->read_buf(mtd, oob, chip->ecc.prepad); - oob += chip->ecc.prepad; - } - - chip->read_buf(mtd, oob, eccbytes); - oob += eccbytes; - - if (chip->ecc.postpad) { - chip->read_buf(mtd, oob, chip->ecc.postpad); - oob += chip->ecc.postpad; - } - } - - size = mtd->oobsize - (oob - chip->oob_poi); - if (size) - chip->read_buf(mtd, oob, size); - _mxc_nand_enable_hwecc(mtd, 1); - - return 0; -} - -static int mxc_nand_read_page_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - uint8_t *buf, - int oob_required, - int page) -{ - struct mxc_nand_host *host = chip->priv; - int n, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *oob = chip->oob_poi; - - MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n", - page, buf, oob); - - /* first read the data area and the available portion of OOB */ - for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { - int stat; - - host->col_addr = n * eccsize; - - chip->read_buf(mtd, p, eccsize); - - host->col_addr = mtd->writesize + n * eccpitch; - - if (chip->ecc.prepad) { - chip->read_buf(mtd, oob, chip->ecc.prepad); - oob += chip->ecc.prepad; - } - - stat = chip->ecc.correct(mtd, p, oob, NULL); - - if (stat < 0) - mtd->ecc_stats.failed++; - else - mtd->ecc_stats.corrected += stat; - oob += eccbytes; - - if (chip->ecc.postpad) { - chip->read_buf(mtd, oob, chip->ecc.postpad); - oob += chip->ecc.postpad; - } - } - - /* Calculate remaining oob bytes */ - n = mtd->oobsize - (oob - chip->oob_poi); - if (n) - chip->read_buf(mtd, oob, n); - - /* Then switch ECC off and read the OOB area to get the ECC code */ - _mxc_nand_enable_hwecc(mtd, 0); - chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); - eccsteps = chip->ecc.steps; - oob = chip->oob_poi + chip->ecc.prepad; - for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { - host->col_addr = mtd->writesize + - n * eccpitch + - chip->ecc.prepad; - chip->read_buf(mtd, oob, eccbytes); - oob += eccbytes + chip->ecc.postpad; - } - _mxc_nand_enable_hwecc(mtd, 1); - return 0; -} - -static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - struct mxc_nand_host *host = chip->priv; - int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; - int length = mtd->oobsize; - int i, len, status, steps = chip->ecc.steps; - const uint8_t *bufpoi = chip->oob_poi; - - chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); - for (i = 0; i < steps; i++) { - len = min_t(int, length, eccpitch); - - chip->write_buf(mtd, bufpoi, len); - bufpoi += len; - length -= len; - host->col_addr += chip->ecc.prepad + chip->ecc.postpad; - } - if (length > 0) - chip->write_buf(mtd, bufpoi, length); - - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - status = chip->waitfunc(mtd, chip); - return status & NAND_STATUS_FAIL ? -EIO : 0; -} - -static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required) -{ - struct mxc_nand_host *host = chip->priv; - int eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; - uint8_t *oob = chip->oob_poi; - int steps, size; - int n; - - for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { - host->col_addr = n * eccsize; - chip->write_buf(mtd, buf, eccsize); - buf += eccsize; - - host->col_addr = mtd->writesize + n * eccpitch; - - if (chip->ecc.prepad) { - chip->write_buf(mtd, oob, chip->ecc.prepad); - oob += chip->ecc.prepad; - } - - host->col_addr += eccbytes; - oob += eccbytes; - - if (chip->ecc.postpad) { - chip->write_buf(mtd, oob, chip->ecc.postpad); - oob += chip->ecc.postpad; - } - } - - size = mtd->oobsize - (oob - chip->oob_poi); - if (size) - chip->write_buf(mtd, oob, size); - return 0; -} - -static int mxc_nand_write_page_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required) -{ - struct mxc_nand_host *host = chip->priv; - int i, n, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; - int eccsteps = chip->ecc.steps; - const uint8_t *p = buf; - uint8_t *oob = chip->oob_poi; - - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - for (i = n = 0; - eccsteps; - n++, eccsteps--, i += eccbytes, p += eccsize) { - host->col_addr = n * eccsize; - - chip->write_buf(mtd, p, eccsize); - - host->col_addr = mtd->writesize + n * eccpitch; - - if (chip->ecc.prepad) { - chip->write_buf(mtd, oob, chip->ecc.prepad); - oob += chip->ecc.prepad; - } - - chip->write_buf(mtd, oob, eccbytes); - oob += eccbytes; - - if (chip->ecc.postpad) { - chip->write_buf(mtd, oob, chip->ecc.postpad); - oob += chip->ecc.postpad; - } - } - - /* Calculate remaining oob bytes */ - i = mtd->oobsize - (oob - chip->oob_poi); - if (i) - chip->write_buf(mtd, oob, i); - return 0; -} - -static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - uint32_t ecc_status = readl(&host->regs->ecc_status_result); - int subpages = mtd->writesize / nand_chip->subpagesize; - int pg2blk_shift = nand_chip->phys_erase_shift - - nand_chip->page_shift; - - do { - if ((ecc_status & 0xf) > 4) { - static int last_bad = -1; - - if (last_bad != host->page_addr >> pg2blk_shift) { - last_bad = host->page_addr >> pg2blk_shift; - printk(KERN_DEBUG - "MXC_NAND: HWECC uncorrectable ECC error" - " in block %u page %u subpage %d\n", - last_bad, host->page_addr, - mtd->writesize / nand_chip->subpagesize - - subpages); - } - return -1; - } - ecc_status >>= 4; - subpages--; - } while (subpages > 0); - - return 0; -} -#else -#define mxc_nand_read_page_syndrome NULL -#define mxc_nand_read_page_raw_syndrome NULL -#define mxc_nand_read_oob_syndrome NULL -#define mxc_nand_write_page_syndrome NULL -#define mxc_nand_write_page_raw_syndrome NULL -#define mxc_nand_write_oob_syndrome NULL - -static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - - /* - * 1-Bit errors are automatically corrected in HW. No need for - * additional correction. 2-Bit errors cannot be corrected by - * HW ECC, so we need to return failure - */ - uint16_t ecc_status = readnfc(&host->regs->ecc_status_result); - - if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { - MTDDEBUG(MTD_DEBUG_LEVEL0, - "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); - return -1; - } - - return 0; -} -#endif - -static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - return 0; -} -#endif - -static u_char mxc_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - uint8_t ret = 0; - uint16_t col; - uint16_t __iomem *main_buf = - (uint16_t __iomem *)host->regs->main_area[0]; - uint16_t __iomem *spare_buf = - (uint16_t __iomem *)host->regs->spare_area[0]; - union { - uint16_t word; - uint8_t bytes[2]; - } nfc_word; - - /* Check for status request */ - if (host->status_request) - return get_dev_status(host) & 0xFF; - - /* Get column for 16-bit access */ - col = host->col_addr >> 1; - - /* If we are accessing the spare region */ - if (host->spare_only) - nfc_word.word = readw(&spare_buf[col]); - else - nfc_word.word = readw(&main_buf[col]); - - /* Pick upper/lower byte of word from RAM buffer */ - ret = nfc_word.bytes[host->col_addr & 0x1]; - - /* Update saved column address */ - if (nand_chip->options & NAND_BUSWIDTH_16) - host->col_addr += 2; - else - host->col_addr++; - - return ret; -} - -static uint16_t mxc_nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - uint16_t col, ret; - uint16_t __iomem *p; - - MTDDEBUG(MTD_DEBUG_LEVEL3, - "mxc_nand_read_word(col = %d)\n", host->col_addr); - - col = host->col_addr; - /* Adjust saved column address */ - if (col < mtd->writesize && host->spare_only) - col += mtd->writesize; - - if (col < mtd->writesize) { - p = (uint16_t __iomem *)(host->regs->main_area[0] + - (col >> 1)); - } else { - p = (uint16_t __iomem *)(host->regs->spare_area[0] + - ((col - mtd->writesize) >> 1)); - } - - if (col & 1) { - union { - uint16_t word; - uint8_t bytes[2]; - } nfc_word[3]; - - nfc_word[0].word = readw(p); - nfc_word[1].word = readw(p + 1); - - nfc_word[2].bytes[0] = nfc_word[0].bytes[1]; - nfc_word[2].bytes[1] = nfc_word[1].bytes[0]; - - ret = nfc_word[2].word; - } else { - ret = readw(p); - } - - /* Update saved column address */ - host->col_addr = col + 2; - - return ret; -} - -/* - * Write data of length len to buffer buf. The data to be - * written on NAND Flash is first copied to RAMbuffer. After the Data Input - * Operation by the NFC, the data is written to NAND Flash - */ -static void mxc_nand_write_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - int n, col, i = 0; - - MTDDEBUG(MTD_DEBUG_LEVEL3, - "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, - len); - - col = host->col_addr; - - /* Adjust saved column address */ - if (col < mtd->writesize && host->spare_only) - col += mtd->writesize; - - n = mtd->writesize + mtd->oobsize - col; - n = min(len, n); - - MTDDEBUG(MTD_DEBUG_LEVEL3, - "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); - - while (n > 0) { - void __iomem *p; - - if (col < mtd->writesize) { - p = host->regs->main_area[0] + (col & ~3); - } else { - p = host->regs->spare_area[0] - - mtd->writesize + (col & ~3); - } - - MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, - __LINE__, p); - - if (((col | (unsigned long)&buf[i]) & 3) || n < 4) { - union { - uint32_t word; - uint8_t bytes[4]; - } nfc_word; - - nfc_word.word = readl(p); - nfc_word.bytes[col & 3] = buf[i++]; - n--; - col++; - - writel(nfc_word.word, p); - } else { - int m = mtd->writesize - col; - - if (col >= mtd->writesize) - m += mtd->oobsize; - - m = min(n, m) & ~3; - - MTDDEBUG(MTD_DEBUG_LEVEL3, - "%s:%d: n = %d, m = %d, i = %d, col = %d\n", - __func__, __LINE__, n, m, i, col); - - mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m); - col += m; - i += m; - n -= m; - } - } - /* Update saved column address */ - host->col_addr = col; -} - -/* - * Read the data buffer from the NAND Flash. To read the data from NAND - * Flash first the data output cycle is initiated by the NFC, which copies - * the data to RAMbuffer. This data of length len is then copied to buffer buf. - */ -static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - int n, col, i = 0; - - MTDDEBUG(MTD_DEBUG_LEVEL3, - "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); - - col = host->col_addr; - - /* Adjust saved column address */ - if (col < mtd->writesize && host->spare_only) - col += mtd->writesize; - - n = mtd->writesize + mtd->oobsize - col; - n = min(len, n); - - while (n > 0) { - void __iomem *p; - - if (col < mtd->writesize) { - p = host->regs->main_area[0] + (col & ~3); - } else { - p = host->regs->spare_area[0] - - mtd->writesize + (col & ~3); - } - - if (((col | (int)&buf[i]) & 3) || n < 4) { - union { - uint32_t word; - uint8_t bytes[4]; - } nfc_word; - - nfc_word.word = readl(p); - buf[i++] = nfc_word.bytes[col & 3]; - n--; - col++; - } else { - int m = mtd->writesize - col; - - if (col >= mtd->writesize) - m += mtd->oobsize; - - m = min(n, m) & ~3; - mxc_nand_memcpy32((uint32_t *)&buf[i], p, m); - - col += m; - i += m; - n -= m; - } - } - /* Update saved column address */ - host->col_addr = col; -} - -/* - * Used by the upper layer to verify the data in NAND Flash - * with the data in the buf. - */ -static int mxc_nand_verify_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - u_char tmp[256]; - uint bsize; - - while (len) { - bsize = min(len, 256); - mxc_nand_read_buf(mtd, tmp, bsize); - - if (memcmp(buf, tmp, bsize)) - return 1; - - buf += bsize; - len -= bsize; - } - - return 0; -} - -/* - * This function is used by upper layer for select and - * deselect of the NAND chip - */ -static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - - switch (chip) { - case -1: - /* TODO: Disable the NFC clock */ - if (host->clk_act) - host->clk_act = 0; - break; - case 0: - /* TODO: Enable the NFC clock */ - if (!host->clk_act) - host->clk_act = 1; - break; - - default: - break; - } -} - -/* - * Used by the upper layer to write command to NAND Flash for - * different operations to be carried out on NAND Flash - */ -void mxc_nand_command(struct mtd_info *mtd, unsigned command, - int column, int page_addr) -{ - struct nand_chip *nand_chip = mtd->priv; - struct mxc_nand_host *host = nand_chip->priv; - - MTDDEBUG(MTD_DEBUG_LEVEL3, - "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", - command, column, page_addr); - - /* Reset command state information */ - host->status_request = false; - - /* Command pre-processing step */ - switch (command) { - - case NAND_CMD_STATUS: - host->col_addr = 0; - host->status_request = true; - break; - - case NAND_CMD_READ0: - host->page_addr = page_addr; - host->col_addr = column; - host->spare_only = false; - break; - - case NAND_CMD_READOOB: - host->col_addr = column; - host->spare_only = true; - if (host->pagesize_2k) - command = NAND_CMD_READ0; /* only READ0 is valid */ - break; - - case NAND_CMD_SEQIN: - if (column >= mtd->writesize) { - /* - * before sending SEQIN command for partial write, - * we need read one page out. FSL NFC does not support - * partial write. It always sends out 512+ecc+512+ecc - * for large page nand flash. But for small page nand - * flash, it does support SPARE ONLY operation. - */ - if (host->pagesize_2k) { - /* call ourself to read a page */ - mxc_nand_command(mtd, NAND_CMD_READ0, 0, - page_addr); - } - - host->col_addr = column - mtd->writesize; - host->spare_only = true; - - /* Set program pointer to spare region */ - if (!host->pagesize_2k) - send_cmd(host, NAND_CMD_READOOB); - } else { - host->spare_only = false; - host->col_addr = column; - - /* Set program pointer to page start */ - if (!host->pagesize_2k) - send_cmd(host, NAND_CMD_READ0); - } - break; - - case NAND_CMD_PAGEPROG: - send_prog_page(host, 0, host->spare_only); - - if (host->pagesize_2k && is_mxc_nfc_1()) { - /* data in 4 areas */ - send_prog_page(host, 1, host->spare_only); - send_prog_page(host, 2, host->spare_only); - send_prog_page(host, 3, host->spare_only); - } - - break; - } - - /* Write out the command to the device. */ - send_cmd(host, command); - - /* Write out column address, if necessary */ - if (column != -1) { - /* - * MXC NANDFC can only perform full page+spare or - * spare-only read/write. When the upper layers perform - * a read/write buffer operation, we will use the saved - * column address to index into the full page. - */ - send_addr(host, 0); - if (host->pagesize_2k) - /* another col addr cycle for 2k page */ - send_addr(host, 0); - } - - /* Write out page address, if necessary */ - if (page_addr != -1) { - u32 page_mask = nand_chip->pagemask; - do { - send_addr(host, page_addr & 0xFF); - page_addr >>= 8; - page_mask >>= 8; - } while (page_mask); - } - - /* Command post-processing step */ - switch (command) { - - case NAND_CMD_RESET: - break; - - case NAND_CMD_READOOB: - case NAND_CMD_READ0: - if (host->pagesize_2k) { - /* send read confirm command */ - send_cmd(host, NAND_CMD_READSTART); - /* read for each AREA */ - send_read_page(host, 0, host->spare_only); - if (is_mxc_nfc_1()) { - send_read_page(host, 1, host->spare_only); - send_read_page(host, 2, host->spare_only); - send_read_page(host, 3, host->spare_only); - } - } else { - send_read_page(host, 0, host->spare_only); - } - break; - - case NAND_CMD_READID: - host->col_addr = 0; - send_read_id(host); - break; - - case NAND_CMD_PAGEPROG: - break; - - case NAND_CMD_STATUS: - break; - - case NAND_CMD_ERASE2: - break; - } -} - -#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT - -static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; -static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 0, - .len = 4, - .veroffs = 4, - .maxblocks = 4, - .pattern = bbt_pattern, -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 0, - .len = 4, - .veroffs = 4, - .maxblocks = 4, - .pattern = mirror_pattern, -}; - -#endif - -int board_nand_init(struct nand_chip *this) -{ - struct mtd_info *mtd; -#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) - uint32_t tmp; -#endif - -#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT - this->bbt_options |= NAND_BBT_USE_FLASH; - this->bbt_td = &bbt_main_descr; - this->bbt_md = &bbt_mirror_descr; -#endif - - /* structures must be linked */ - mtd = &host->mtd; - mtd->priv = this; - host->nand = this; - - /* 5 us command delay time */ - this->chip_delay = 5; - - this->priv = host; - this->dev_ready = mxc_nand_dev_ready; - this->cmdfunc = mxc_nand_command; - this->select_chip = mxc_nand_select_chip; - this->read_byte = mxc_nand_read_byte; - this->read_word = mxc_nand_read_word; - this->write_buf = mxc_nand_write_buf; - this->read_buf = mxc_nand_read_buf; - this->verify_buf = mxc_nand_verify_buf; - - host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE; -#ifdef MXC_NFC_V3_2 - host->ip_regs = - (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE; -#endif - host->clk_act = 1; - -#ifdef CONFIG_MXC_NAND_HWECC - this->ecc.calculate = mxc_nand_calculate_ecc; - this->ecc.hwctl = mxc_nand_enable_hwecc; - this->ecc.correct = mxc_nand_correct_data; - if (is_mxc_nfc_21() || is_mxc_nfc_32()) { - this->ecc.mode = NAND_ECC_HW_SYNDROME; - this->ecc.read_page = mxc_nand_read_page_syndrome; - this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome; - this->ecc.read_oob = mxc_nand_read_oob_syndrome; - this->ecc.write_page = mxc_nand_write_page_syndrome; - this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome; - this->ecc.write_oob = mxc_nand_write_oob_syndrome; - this->ecc.bytes = 9; - this->ecc.prepad = 7; - } else { - this->ecc.mode = NAND_ECC_HW; - } - - if (is_mxc_nfc_1()) - this->ecc.strength = 1; - else - this->ecc.strength = 4; - - host->pagesize_2k = 0; - - this->ecc.size = 512; - _mxc_nand_enable_hwecc(mtd, 1); -#else - this->ecc.layout = &nand_soft_eccoob; - this->ecc.mode = NAND_ECC_SOFT; - _mxc_nand_enable_hwecc(mtd, 0); -#endif - /* Reset NAND */ - this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); - - /* NAND bus width determines access functions used by upper layer */ - if (is_16bit_nand()) - this->options |= NAND_BUSWIDTH_16; - -#ifdef CONFIG_SYS_NAND_LARGEPAGE - host->pagesize_2k = 1; - this->ecc.layout = &nand_hw_eccoob2k; -#else - host->pagesize_2k = 0; - this->ecc.layout = &nand_hw_eccoob; -#endif - -#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) -#ifdef MXC_NFC_V2_1 - tmp = readnfc(&host->regs->config1); - tmp |= NFC_V2_CONFIG1_ONE_CYCLE; - tmp |= NFC_V2_CONFIG1_ECC_MODE_4; - writenfc(tmp, &host->regs->config1); - if (host->pagesize_2k) - writenfc(64/2, &host->regs->spare_area_size); - else - writenfc(16/2, &host->regs->spare_area_size); -#endif - - /* - * preset operation - * Unlock the internal RAM Buffer - */ - writenfc(0x2, &host->regs->config); - - /* Blocks to be unlocked */ - writenfc(0x0, &host->regs->unlockstart_blkaddr); - /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the - * unlockend_blkaddr, but the magic 0x4000 does not always work - * when writing more than some 32 megabytes (on 2k page nands) - * However 0xFFFF doesn't seem to have this kind - * of limitation (tried it back and forth several times). - * The linux kernel driver sets this to 0xFFFF for the v2 controller - * only, but probably this was not tested there for v1. - * The very same limitation seems to apply to this kernel driver. - * This might be NAND chip specific and the i.MX31 datasheet is - * extremely vague about the semantics of this register. - */ - writenfc(0xFFFF, &host->regs->unlockend_blkaddr); - - /* Unlock Block Command for given address range */ - writenfc(0x4, &host->regs->wrprot); -#elif defined(MXC_NFC_V3_2) - writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1); - writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc); - - /* Unlock the internal RAM Buffer */ - writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, - &host->ip_regs->wrprot); - - /* Blocks to be unlocked */ - for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++) - writenfc(0x0 | 0xFFFF << 16, - &host->ip_regs->wrprot_unlock_blkaddr[tmp]); - - writenfc(0, &host->ip_regs->ipc); - - tmp = readnfc(&host->ip_regs->config2); - tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK | - NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK); - tmp |= NFC_V3_CONFIG2_ONE_CYCLE; - - if (host->pagesize_2k) { - tmp |= NFC_V3_CONFIG2_SPAS(64/2); - tmp |= NFC_V3_CONFIG2_PS_2048; - } else { - tmp |= NFC_V3_CONFIG2_SPAS(16/2); - tmp |= NFC_V3_CONFIG2_PS_512; - } - - writenfc(tmp, &host->ip_regs->config2); - - tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) | - NFC_V3_CONFIG3_NO_SDMA | - NFC_V3_CONFIG3_RBB_MODE | - NFC_V3_CONFIG3_SBB(6) | /* Reset default */ - NFC_V3_CONFIG3_ADD_OP(0); - - if (!(this->options & NAND_BUSWIDTH_16)) - tmp |= NFC_V3_CONFIG3_FW8; - - writenfc(tmp, &host->ip_regs->config3); - - writenfc(0, &host->ip_regs->delay_line); -#endif - - return 0; -} |