diff options
author | Yang Zhang <yang.z.zhang@intel.com> | 2015-08-28 09:58:54 +0800 |
---|---|---|
committer | Yang Zhang <yang.z.zhang@intel.com> | 2015-09-01 12:44:00 +0800 |
commit | e44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch) | |
tree | 66b09f592c55df2878107a468a91d21506104d3f /qemu/roms/u-boot/post/drivers | |
parent | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff) |
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/roms/u-boot/post/drivers')
-rw-r--r-- | qemu/roms/u-boot/post/drivers/Makefile | 8 | ||||
-rw-r--r-- | qemu/roms/u-boot/post/drivers/flash.c | 107 | ||||
-rw-r--r-- | qemu/roms/u-boot/post/drivers/i2c.c | 97 | ||||
-rw-r--r-- | qemu/roms/u-boot/post/drivers/memory.c | 550 | ||||
-rw-r--r-- | qemu/roms/u-boot/post/drivers/rtc.c | 179 |
5 files changed, 941 insertions, 0 deletions
diff --git a/qemu/roms/u-boot/post/drivers/Makefile b/qemu/roms/u-boot/post/drivers/Makefile new file mode 100644 index 000000000..1abfb1ffe --- /dev/null +++ b/qemu/roms/u-boot/post/drivers/Makefile @@ -0,0 +1,8 @@ +# +# (C) Copyright 2002-2006 +# Wolfgang Denk, DENX Software Engineering, wd@denx.de. +# +# SPDX-License-Identifier: GPL-2.0+ +# + +obj-y += flash.o i2c.o memory.o rtc.o diff --git a/qemu/roms/u-boot/post/drivers/flash.c b/qemu/roms/u-boot/post/drivers/flash.c new file mode 100644 index 000000000..07eab332d --- /dev/null +++ b/qemu/roms/u-boot/post/drivers/flash.c @@ -0,0 +1,107 @@ +/* + * Parallel NOR Flash tests + * + * Copyright (c) 2005-2011 Analog Devices Inc. + * + * Licensed under the GPL-2 or later. + */ + +#include <common.h> +#include <malloc.h> +#include <post.h> +#include <flash.h> + +#if CONFIG_POST & CONFIG_SYS_POST_FLASH + +/* + * This code will walk over the declared sectors erasing them, + * then programming them, then verifying the written contents. + * Possible future work: + * - verify sectors before/after are not erased/written + * - verify partial writes (e.g. programming only middle of sector) + * - verify the contents of the erased sector + * - better seed pattern than 0x00..0xff + */ + +#ifndef CONFIG_SYS_POST_FLASH_NUM +# define CONFIG_SYS_POST_FLASH_NUM 0 +#endif +#if CONFIG_SYS_POST_FLASH_START >= CONFIG_SYS_POST_FLASH_END +# error "invalid flash block start/end" +#endif + +extern flash_info_t flash_info[]; + +static void *seed_src_data(void *ptr, ulong *old_len, ulong new_len) +{ + unsigned char *p; + ulong i; + + p = ptr = realloc(ptr, new_len); + if (!ptr) + return ptr; + + for (i = *old_len; i < new_len; ++i) + p[i] = i; + + *old_len = new_len; + + return ptr; +} + +int flash_post_test(int flags) +{ + ulong len; + void *src; + int ret, n, n_start, n_end; + flash_info_t *info; + + /* the output from the common flash layers needs help */ + puts("\n"); + + len = 0; + src = NULL; + info = &flash_info[CONFIG_SYS_POST_FLASH_NUM]; + n_start = CONFIG_SYS_POST_FLASH_START; + n_end = CONFIG_SYS_POST_FLASH_END; + + for (n = n_start; n < n_end; ++n) { + ulong s_start, s_len, s_off; + + s_start = info->start[n]; + s_len = flash_sector_size(info, n); + s_off = s_start - info->start[0]; + + src = seed_src_data(src, &len, s_len); + if (!src) { + printf("malloc(%#lx) failed\n", s_len); + return 1; + } + + printf("\tsector %i: %#lx +%#lx", n, s_start, s_len); + + ret = flash_erase(info, n, n + 1); + if (ret) { + flash_perror(ret); + break; + } + + ret = write_buff(info, src, s_start, s_len); + if (ret) { + flash_perror(ret); + break; + } + + ret = memcmp(src, (void *)s_start, s_len); + if (ret) { + printf(" verify failed with %i\n", ret); + break; + } + } + + free(src); + + return ret; +} + +#endif diff --git a/qemu/roms/u-boot/post/drivers/i2c.c b/qemu/roms/u-boot/post/drivers/i2c.c new file mode 100644 index 000000000..95da2ebda --- /dev/null +++ b/qemu/roms/u-boot/post/drivers/i2c.c @@ -0,0 +1,97 @@ +/* + * (C) Copyright 2002 + * Wolfgang Denk, DENX Software Engineering, wd@denx.de. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +/* + * I2C test + * + * For verifying the I2C bus, a full I2C bus scanning is performed. + * + * #ifdef CONFIG_SYS_POST_I2C_ADDRS + * The test is considered as passed if all the devices and only the devices + * in the list are found. + * #ifdef CONFIG_SYS_POST_I2C_IGNORES + * Ignore devices listed in CONFIG_SYS_POST_I2C_IGNORES. These devices + * are optional or not vital to board functionality. + * #endif + * #else [ ! CONFIG_SYS_POST_I2C_ADDRS ] + * The test is considered as passed if any I2C device is found. + * #endif + */ + +#include <common.h> +#include <post.h> +#include <i2c.h> + +#if CONFIG_POST & CONFIG_SYS_POST_I2C + +static int i2c_ignore_device(unsigned int chip) +{ +#ifdef CONFIG_SYS_POST_I2C_IGNORES + const unsigned char i2c_ignore_list[] = CONFIG_SYS_POST_I2C_IGNORES; + int i; + + for (i = 0; i < sizeof(i2c_ignore_list); i++) + if (i2c_ignore_list[i] == chip) + return 1; +#endif + + return 0; +} + +int i2c_post_test (int flags) +{ + unsigned int i; +#ifndef CONFIG_SYS_POST_I2C_ADDRS + /* Start at address 1, address 0 is the general call address */ + for (i = 1; i < 128; i++) { + if (i2c_ignore_device(i)) + continue; + if (i2c_probe (i) == 0) + return 0; + } + + /* No devices found */ + return -1; +#else + unsigned int ret = 0; + int j; + unsigned char i2c_addr_list[] = CONFIG_SYS_POST_I2C_ADDRS; + + /* Start at address 1, address 0 is the general call address */ + for (i = 1; i < 128; i++) { + if (i2c_ignore_device(i)) + continue; + if (i2c_probe(i) != 0) + continue; + + for (j = 0; j < sizeof(i2c_addr_list); ++j) { + if (i == i2c_addr_list[j]) { + i2c_addr_list[j] = 0xff; + break; + } + } + + if (j == sizeof(i2c_addr_list)) { + ret = -1; + post_log("I2C: addr %02x not expected\n", i); + } + } + + for (i = 0; i < sizeof(i2c_addr_list); ++i) { + if (i2c_addr_list[i] == 0xff) + continue; + if (i2c_ignore_device(i2c_addr_list[i])) + continue; + post_log("I2C: addr %02x did not respond\n", i2c_addr_list[i]); + ret = -1; + } + + return ret; +#endif +} + +#endif /* CONFIG_POST & CONFIG_SYS_POST_I2C */ diff --git a/qemu/roms/u-boot/post/drivers/memory.c b/qemu/roms/u-boot/post/drivers/memory.c new file mode 100644 index 000000000..d94a43744 --- /dev/null +++ b/qemu/roms/u-boot/post/drivers/memory.c @@ -0,0 +1,550 @@ +/* + * (C) Copyright 2002 + * Wolfgang Denk, DENX Software Engineering, wd@denx.de. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> + +/* Memory test + * + * General observations: + * o The recommended test sequence is to test the data lines: if they are + * broken, nothing else will work properly. Then test the address + * lines. Finally, test the cells in the memory now that the test + * program knows that the address and data lines work properly. + * This sequence also helps isolate and identify what is faulty. + * + * o For the address line test, it is a good idea to use the base + * address of the lowest memory location, which causes a '1' bit to + * walk through a field of zeros on the address lines and the highest + * memory location, which causes a '0' bit to walk through a field of + * '1's on the address line. + * + * o Floating buses can fool memory tests if the test routine writes + * a value and then reads it back immediately. The problem is, the + * write will charge the residual capacitance on the data bus so the + * bus retains its state briefely. When the test program reads the + * value back immediately, the capacitance of the bus can allow it + * to read back what was written, even though the memory circuitry + * is broken. To avoid this, the test program should write a test + * pattern to the target location, write a different pattern elsewhere + * to charge the residual capacitance in a differnt manner, then read + * the target location back. + * + * o Always read the target location EXACTLY ONCE and save it in a local + * variable. The problem with reading the target location more than + * once is that the second and subsequent reads may work properly, + * resulting in a failed test that tells the poor technician that + * "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which + * doesn't help him one bit and causes puzzled phone calls. Been there, + * done that. + * + * Data line test: + * --------------- + * This tests data lines for shorts and opens by forcing adjacent data + * to opposite states. Because the data lines could be routed in an + * arbitrary manner the must ensure test patterns ensure that every case + * is tested. By using the following series of binary patterns every + * combination of adjacent bits is test regardless of routing. + * + * ...101010101010101010101010 + * ...110011001100110011001100 + * ...111100001111000011110000 + * ...111111110000000011111111 + * + * Carrying this out, gives us six hex patterns as follows: + * + * 0xaaaaaaaaaaaaaaaa + * 0xcccccccccccccccc + * 0xf0f0f0f0f0f0f0f0 + * 0xff00ff00ff00ff00 + * 0xffff0000ffff0000 + * 0xffffffff00000000 + * + * To test for short and opens to other signals on our boards, we + * simply test with the 1's complemnt of the paterns as well, resulting + * in twelve patterns total. + * + * After writing a test pattern. a special pattern 0x0123456789ABCDEF is + * written to a different address in case the data lines are floating. + * Thus, if a byte lane fails, you will see part of the special + * pattern in that byte lane when the test runs. For example, if the + * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa + * (for the 'a' test pattern). + * + * Address line test: + * ------------------ + * This function performs a test to verify that all the address lines + * hooked up to the RAM work properly. If there is an address line + * fault, it usually shows up as two different locations in the address + * map (related by the faulty address line) mapping to one physical + * memory storage location. The artifact that shows up is writing to + * the first location "changes" the second location. + * + * To test all address lines, we start with the given base address and + * xor the address with a '1' bit to flip one address line. For each + * test, we shift the '1' bit left to test the next address line. + * + * In the actual code, we start with address sizeof(ulong) since our + * test pattern we use is a ulong and thus, if we tried to test lower + * order address bits, it wouldn't work because our pattern would + * overwrite itself. + * + * Example for a 4 bit address space with the base at 0000: + * 0000 <- base + * 0001 <- test 1 + * 0010 <- test 2 + * 0100 <- test 3 + * 1000 <- test 4 + * Example for a 4 bit address space with the base at 0010: + * 0010 <- base + * 0011 <- test 1 + * 0000 <- (below the base address, skipped) + * 0110 <- test 2 + * 1010 <- test 3 + * + * The test locations are successively tested to make sure that they are + * not "mirrored" onto the base address due to a faulty address line. + * Note that the base and each test location are related by one address + * line flipped. Note that the base address need not be all zeros. + * + * Memory tests 1-4: + * ----------------- + * These tests verify RAM using sequential writes and reads + * to/from RAM. There are several test cases that use different patterns to + * verify RAM. Each test case fills a region of RAM with one pattern and + * then reads the region back and compares its contents with the pattern. + * The following patterns are used: + * + * 1a) zero pattern (0x00000000) + * 1b) negative pattern (0xffffffff) + * 1c) checkerboard pattern (0x55555555) + * 1d) checkerboard pattern (0xaaaaaaaa) + * 2) bit-flip pattern ((1 << (offset % 32)) + * 3) address pattern (offset) + * 4) address pattern (~offset) + * + * Being run in normal mode, the test verifies only small 4Kb + * regions of RAM around each 1Mb boundary. For example, for 64Mb + * RAM the following areas are verified: 0x00000000-0x00000800, + * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800- + * 0x04000000. If the test is run in slow-test mode, it verifies + * the whole RAM. + */ + +#include <post.h> +#include <watchdog.h> + +#if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS) + +DECLARE_GLOBAL_DATA_PTR; + +/* + * Define INJECT_*_ERRORS for testing error detection in the presence of + * _good_ hardware. + */ +#undef INJECT_DATA_ERRORS +#undef INJECT_ADDRESS_ERRORS + +#ifdef INJECT_DATA_ERRORS +#warning "Injecting data line errors for testing purposes" +#endif + +#ifdef INJECT_ADDRESS_ERRORS +#warning "Injecting address line errors for testing purposes" +#endif + + +/* + * This function performs a double word move from the data at + * the source pointer to the location at the destination pointer. + * This is helpful for testing memory on processors which have a 64 bit + * wide data bus. + * + * On those PowerPC with FPU, use assembly and a floating point move: + * this does a 64 bit move. + * + * For other processors, let the compiler generate the best code it can. + */ +static void move64(const unsigned long long *src, unsigned long long *dest) +{ +#if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X) + asm ("lfd 0, 0(3)\n\t" /* fpr0 = *scr */ + "stfd 0, 0(4)" /* *dest = fpr0 */ + : : : "fr0" ); /* Clobbers fr0 */ + return; +#else + *dest = *src; +#endif +} + +/* + * This is 64 bit wide test patterns. Note that they reside in ROM + * (which presumably works) and the tests write them to RAM which may + * not work. + * + * The "otherpattern" is written to drive the data bus to values other + * than the test pattern. This is for detecting floating bus lines. + * + */ +const static unsigned long long pattern[] = { + 0xaaaaaaaaaaaaaaaaULL, + 0xccccccccccccccccULL, + 0xf0f0f0f0f0f0f0f0ULL, + 0xff00ff00ff00ff00ULL, + 0xffff0000ffff0000ULL, + 0xffffffff00000000ULL, + 0x00000000ffffffffULL, + 0x0000ffff0000ffffULL, + 0x00ff00ff00ff00ffULL, + 0x0f0f0f0f0f0f0f0fULL, + 0x3333333333333333ULL, + 0x5555555555555555ULL +}; +const unsigned long long otherpattern = 0x0123456789abcdefULL; + + +static int memory_post_dataline(unsigned long long * pmem) +{ + unsigned long long temp64 = 0; + int num_patterns = ARRAY_SIZE(pattern); + int i; + unsigned int hi, lo, pathi, patlo; + int ret = 0; + + for ( i = 0; i < num_patterns; i++) { + move64(&(pattern[i]), pmem++); + /* + * Put a different pattern on the data lines: otherwise they + * may float long enough to read back what we wrote. + */ + move64(&otherpattern, pmem--); + move64(pmem, &temp64); + +#ifdef INJECT_DATA_ERRORS + temp64 ^= 0x00008000; +#endif + + if (temp64 != pattern[i]){ + pathi = (pattern[i]>>32) & 0xffffffff; + patlo = pattern[i] & 0xffffffff; + + hi = (temp64>>32) & 0xffffffff; + lo = temp64 & 0xffffffff; + + post_log("Memory (date line) error at %08x, " + "wrote %08x%08x, read %08x%08x !\n", + pmem, pathi, patlo, hi, lo); + ret = -1; + } + } + return ret; +} + +static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size) +{ + ulong *target; + ulong *end; + ulong readback; + ulong xor; + int ret = 0; + + end = (ulong *)((ulong)base + size); /* pointer arith! */ + xor = 0; + for(xor = sizeof(ulong); xor > 0; xor <<= 1) { + target = (ulong *)((ulong)testaddr ^ xor); + if((target >= base) && (target < end)) { + *testaddr = ~*target; + readback = *target; + +#ifdef INJECT_ADDRESS_ERRORS + if(xor == 0x00008000) { + readback = *testaddr; + } +#endif + if(readback == *testaddr) { + post_log("Memory (address line) error at %08x<->%08x, " + "XOR value %08x !\n", + testaddr, target, xor); + ret = -1; + } + } + } + return ret; +} + +static int memory_post_test1(unsigned long start, + unsigned long size, + unsigned long val) +{ + unsigned long i; + ulong *mem = (ulong *) start; + ulong readback; + int ret = 0; + + for (i = 0; i < size / sizeof (ulong); i++) { + mem[i] = val; + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + for (i = 0; i < size / sizeof (ulong) && !ret; i++) { + readback = mem[i]; + if (readback != val) { + post_log("Memory error at %08x, " + "wrote %08x, read %08x !\n", + mem + i, val, readback); + + ret = -1; + break; + } + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + return ret; +} + +static int memory_post_test2(unsigned long start, unsigned long size) +{ + unsigned long i; + ulong *mem = (ulong *) start; + ulong readback; + int ret = 0; + + for (i = 0; i < size / sizeof (ulong); i++) { + mem[i] = 1 << (i % 32); + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + for (i = 0; i < size / sizeof (ulong) && !ret; i++) { + readback = mem[i]; + if (readback != (1 << (i % 32))) { + post_log("Memory error at %08x, " + "wrote %08x, read %08x !\n", + mem + i, 1 << (i % 32), readback); + + ret = -1; + break; + } + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + return ret; +} + +static int memory_post_test3(unsigned long start, unsigned long size) +{ + unsigned long i; + ulong *mem = (ulong *) start; + ulong readback; + int ret = 0; + + for (i = 0; i < size / sizeof (ulong); i++) { + mem[i] = i; + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + for (i = 0; i < size / sizeof (ulong) && !ret; i++) { + readback = mem[i]; + if (readback != i) { + post_log("Memory error at %08x, " + "wrote %08x, read %08x !\n", + mem + i, i, readback); + + ret = -1; + break; + } + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + return ret; +} + +static int memory_post_test4(unsigned long start, unsigned long size) +{ + unsigned long i; + ulong *mem = (ulong *) start; + ulong readback; + int ret = 0; + + for (i = 0; i < size / sizeof (ulong); i++) { + mem[i] = ~i; + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + for (i = 0; i < size / sizeof (ulong) && !ret; i++) { + readback = mem[i]; + if (readback != ~i) { + post_log("Memory error at %08x, " + "wrote %08x, read %08x !\n", + mem + i, ~i, readback); + + ret = -1; + break; + } + if (i % 1024 == 0) + WATCHDOG_RESET(); + } + + return ret; +} + +static int memory_post_test_lines(unsigned long start, unsigned long size) +{ + int ret = 0; + + ret = memory_post_dataline((unsigned long long *)start); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_addrline((ulong *)start, (ulong *)start, + size); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_addrline((ulong *)(start+size-8), + (ulong *)start, size); + WATCHDOG_RESET(); + + return ret; +} + +static int memory_post_test_patterns(unsigned long start, unsigned long size) +{ + int ret = 0; + + ret = memory_post_test1(start, size, 0x00000000); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_test1(start, size, 0xffffffff); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_test1(start, size, 0x55555555); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_test1(start, size, 0xaaaaaaaa); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_test2(start, size); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_test3(start, size); + WATCHDOG_RESET(); + if (!ret) + ret = memory_post_test4(start, size); + WATCHDOG_RESET(); + + return ret; +} + +static int memory_post_test_regions(unsigned long start, unsigned long size) +{ + unsigned long i; + int ret = 0; + + for (i = 0; i < (size >> 20) && (!ret); i++) { + if (!ret) + ret = memory_post_test_patterns(start + (i << 20), + 0x800); + if (!ret) + ret = memory_post_test_patterns(start + (i << 20) + + 0xff800, 0x800); + } + + return ret; +} + +static int memory_post_tests(unsigned long start, unsigned long size) +{ + int ret = 0; + + ret = memory_post_test_lines(start, size); + if (!ret) + ret = memory_post_test_patterns(start, size); + + return ret; +} + +/* + * !! this is only valid, if you have contiguous memory banks !! + */ +__attribute__((weak)) +int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) +{ + bd_t *bd = gd->bd; + + *vstart = CONFIG_SYS_SDRAM_BASE; + *size = (gd->ram_size >= 256 << 20 ? + 256 << 20 : gd->ram_size) - (1 << 20); + + /* Limit area to be tested with the board info struct */ + if ((*vstart) + (*size) > (ulong)bd) + *size = (ulong)bd - *vstart; + + return 0; +} + +__attribute__((weak)) +int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset) +{ + return 1; +} + +__attribute__((weak)) +int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset) +{ + return 0; +} + +__attribute__((weak)) +void arch_memory_failure_handle(void) +{ + return; +} + +int memory_regions_post_test(int flags) +{ + int ret = 0; + phys_addr_t phys_offset = 0; + u32 memsize, vstart; + + arch_memory_test_prepare(&vstart, &memsize, &phys_offset); + + ret = memory_post_test_lines(vstart, memsize); + if (!ret) + ret = memory_post_test_regions(vstart, memsize); + + return ret; +} + +int memory_post_test(int flags) +{ + int ret = 0; + phys_addr_t phys_offset = 0; + u32 memsize, vstart; + + arch_memory_test_prepare(&vstart, &memsize, &phys_offset); + + do { + if (flags & POST_SLOWTEST) { + ret = memory_post_tests(vstart, memsize); + } else { /* POST_NORMAL */ + ret = memory_post_test_regions(vstart, memsize); + } + } while (!ret && + !arch_memory_test_advance(&vstart, &memsize, &phys_offset)); + + arch_memory_test_cleanup(&vstart, &memsize, &phys_offset); + if (ret) + arch_memory_failure_handle(); + + return ret; +} + +#endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */ diff --git a/qemu/roms/u-boot/post/drivers/rtc.c b/qemu/roms/u-boot/post/drivers/rtc.c new file mode 100644 index 000000000..cd19f7568 --- /dev/null +++ b/qemu/roms/u-boot/post/drivers/rtc.c @@ -0,0 +1,179 @@ +/* + * (C) Copyright 2002 + * Wolfgang Denk, DENX Software Engineering, wd@denx.de. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> + +/* + * RTC test + * + * The Real Time Clock (RTC) operation is verified by this test. + * The following features are verified: + * o) RTC Power Fault + * This is verified by analyzing the rtc_get() return status. + * o) Time uniformity + * This is verified by reading RTC in polling within + * a short period of time. + * o) Passing month boundaries + * This is checked by setting RTC to a second before + * a month boundary and reading it after its passing the + * boundary. The test is performed for both leap- and + * nonleap-years. + */ + +#include <post.h> +#include <rtc.h> + +#if CONFIG_POST & CONFIG_SYS_POST_RTC + +static int rtc_post_skip (ulong * diff) +{ + struct rtc_time tm1; + struct rtc_time tm2; + ulong start1; + ulong start2; + + rtc_get (&tm1); + start1 = get_timer (0); + + while (1) { + rtc_get (&tm2); + start2 = get_timer (0); + if (tm1.tm_sec != tm2.tm_sec) + break; + if (start2 - start1 > 1500) + break; + } + + if (tm1.tm_sec != tm2.tm_sec) { + *diff = start2 - start1; + + return 0; + } else { + return -1; + } +} + +static void rtc_post_restore (struct rtc_time *tm, unsigned int sec) +{ + time_t t = mktime (tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_hour, + tm->tm_min, tm->tm_sec) + sec; + struct rtc_time ntm; + + to_tm (t, &ntm); + + rtc_set (&ntm); +} + +int rtc_post_test (int flags) +{ + ulong diff; + unsigned int i; + struct rtc_time svtm; + static unsigned int daysnl[] = + { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; + static unsigned int daysl[] = + { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; + unsigned int ynl = 1999; + unsigned int yl = 2000; + unsigned int skipped = 0; + int reliable; + + /* Time reliability */ + reliable = rtc_get (&svtm); + + /* Time uniformity */ + if (rtc_post_skip (&diff) != 0) { + post_log ("Timeout while waiting for a new second !\n"); + + return -1; + } + + for (i = 0; i < 5; i++) { + if (rtc_post_skip (&diff) != 0) { + post_log ("Timeout while waiting for a new second !\n"); + + return -1; + } + + if (diff < 950 || diff > 1050) { + post_log ("Invalid second duration !\n"); + + return -1; + } + } + + /* Passing month boundaries */ + + if (rtc_post_skip (&diff) != 0) { + post_log ("Timeout while waiting for a new second !\n"); + + return -1; + } + rtc_get (&svtm); + + for (i = 0; i < 12; i++) { + time_t t = mktime (ynl, i + 1, daysnl[i], 23, 59, 59); + struct rtc_time tm; + + to_tm (t, &tm); + rtc_set (&tm); + + skipped++; + if (rtc_post_skip (&diff) != 0) { + rtc_post_restore (&svtm, skipped); + post_log ("Timeout while waiting for a new second !\n"); + + return -1; + } + + rtc_get (&tm); + if (tm.tm_mon == i + 1) { + rtc_post_restore (&svtm, skipped); + post_log ("Month %d boundary is not passed !\n", i + 1); + + return -1; + } + } + + for (i = 0; i < 12; i++) { + time_t t = mktime (yl, i + 1, daysl[i], 23, 59, 59); + struct rtc_time tm; + + to_tm (t, &tm); + rtc_set (&tm); + + skipped++; + if (rtc_post_skip (&diff) != 0) { + rtc_post_restore (&svtm, skipped); + post_log ("Timeout while waiting for a new second !\n"); + + return -1; + } + + rtc_get (&tm); + if (tm.tm_mon == i + 1) { + rtc_post_restore (&svtm, skipped); + post_log ("Month %d boundary is not passed !\n", i + 1); + + return -1; + } + } + rtc_post_restore (&svtm, skipped); + + /* If come here, then RTC operates correcty, check the correctness + * of the time it reports. + */ + if (reliable < 0) { + post_log ("RTC Time is not reliable! Power fault? \n"); + + return -1; + } + + return 0; +} + +#endif /* CONFIG_POST & CONFIG_SYS_POST_RTC */ |