summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c
diff options
context:
space:
mode:
authorYang Zhang <yang.z.zhang@intel.com>2015-08-28 09:58:54 +0800
committerYang Zhang <yang.z.zhang@intel.com>2015-09-01 12:44:00 +0800
commite44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch)
tree66b09f592c55df2878107a468a91d21506104d3f /qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c
parent9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff)
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5 Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c')
-rw-r--r--qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c1179
1 files changed, 1179 insertions, 0 deletions
diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c
new file mode 100644
index 000000000..036c113ad
--- /dev/null
+++ b/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c
@@ -0,0 +1,1179 @@
+/*
+ * Freescale i.MX28 NAND flash driver
+ *
+ * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
+ * on behalf of DENX Software Engineering GmbH
+ *
+ * Based on code from LTIB:
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/types.h>
+#include <malloc.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/imx-regs.h>
+#include <asm/imx-common/regs-bch.h>
+#include <asm/imx-common/regs-gpmi.h>
+#include <asm/arch/sys_proto.h>
+#include <asm/imx-common/dma.h>
+
+#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
+
+#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
+#if defined(CONFIG_MX6)
+#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
+#else
+#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
+#endif
+#define MXS_NAND_METADATA_SIZE 10
+
+#define MXS_NAND_COMMAND_BUFFER_SIZE 32
+
+#define MXS_NAND_BCH_TIMEOUT 10000
+
+struct mxs_nand_info {
+ int cur_chip;
+
+ uint32_t cmd_queue_len;
+ uint32_t data_buf_size;
+
+ uint8_t *cmd_buf;
+ uint8_t *data_buf;
+ uint8_t *oob_buf;
+
+ uint8_t marking_block_bad;
+ uint8_t raw_oob_mode;
+
+ /* Functions with altered behaviour */
+ int (*hooked_read_oob)(struct mtd_info *mtd,
+ loff_t from, struct mtd_oob_ops *ops);
+ int (*hooked_write_oob)(struct mtd_info *mtd,
+ loff_t to, struct mtd_oob_ops *ops);
+ int (*hooked_block_markbad)(struct mtd_info *mtd,
+ loff_t ofs);
+
+ /* DMA descriptors */
+ struct mxs_dma_desc **desc;
+ uint32_t desc_index;
+};
+
+struct nand_ecclayout fake_ecc_layout;
+
+/*
+ * Cache management functions
+ */
+#ifndef CONFIG_SYS_DCACHE_OFF
+static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
+{
+ uint32_t addr = (uint32_t)info->data_buf;
+
+ flush_dcache_range(addr, addr + info->data_buf_size);
+}
+
+static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
+{
+ uint32_t addr = (uint32_t)info->data_buf;
+
+ invalidate_dcache_range(addr, addr + info->data_buf_size);
+}
+
+static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
+{
+ uint32_t addr = (uint32_t)info->cmd_buf;
+
+ flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
+}
+#else
+static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
+static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
+static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
+#endif
+
+static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
+{
+ struct mxs_dma_desc *desc;
+
+ if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
+ printf("MXS NAND: Too many DMA descriptors requested\n");
+ return NULL;
+ }
+
+ desc = info->desc[info->desc_index];
+ info->desc_index++;
+
+ return desc;
+}
+
+static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
+{
+ int i;
+ struct mxs_dma_desc *desc;
+
+ for (i = 0; i < info->desc_index; i++) {
+ desc = info->desc[i];
+ memset(desc, 0, sizeof(struct mxs_dma_desc));
+ desc->address = (dma_addr_t)desc;
+ }
+
+ info->desc_index = 0;
+}
+
+static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
+{
+ return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
+}
+
+static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
+{
+ return ecc_strength * 13;
+}
+
+static uint32_t mxs_nand_aux_status_offset(void)
+{
+ return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
+}
+
+static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
+ uint32_t page_oob_size)
+{
+ if (page_data_size == 2048)
+ return 8;
+
+ if (page_data_size == 4096) {
+ if (page_oob_size == 128)
+ return 8;
+
+ if (page_oob_size == 218)
+ return 16;
+
+ if (page_oob_size == 224)
+ return 16;
+ }
+
+ return 0;
+}
+
+static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
+ uint32_t ecc_strength)
+{
+ uint32_t chunk_data_size_in_bits;
+ uint32_t chunk_ecc_size_in_bits;
+ uint32_t chunk_total_size_in_bits;
+ uint32_t block_mark_chunk_number;
+ uint32_t block_mark_chunk_bit_offset;
+ uint32_t block_mark_bit_offset;
+
+ chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
+ chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
+
+ chunk_total_size_in_bits =
+ chunk_data_size_in_bits + chunk_ecc_size_in_bits;
+
+ /* Compute the bit offset of the block mark within the physical page. */
+ block_mark_bit_offset = page_data_size * 8;
+
+ /* Subtract the metadata bits. */
+ block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
+
+ /*
+ * Compute the chunk number (starting at zero) in which the block mark
+ * appears.
+ */
+ block_mark_chunk_number =
+ block_mark_bit_offset / chunk_total_size_in_bits;
+
+ /*
+ * Compute the bit offset of the block mark within its chunk, and
+ * validate it.
+ */
+ block_mark_chunk_bit_offset = block_mark_bit_offset -
+ (block_mark_chunk_number * chunk_total_size_in_bits);
+
+ if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
+ return 1;
+
+ /*
+ * Now that we know the chunk number in which the block mark appears,
+ * we can subtract all the ECC bits that appear before it.
+ */
+ block_mark_bit_offset -=
+ block_mark_chunk_number * chunk_ecc_size_in_bits;
+
+ return block_mark_bit_offset;
+}
+
+static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
+{
+ uint32_t ecc_strength;
+ ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
+ return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
+}
+
+static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
+{
+ uint32_t ecc_strength;
+ ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
+ return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
+}
+
+/*
+ * Wait for BCH complete IRQ and clear the IRQ
+ */
+static int mxs_nand_wait_for_bch_complete(void)
+{
+ struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
+ int timeout = MXS_NAND_BCH_TIMEOUT;
+ int ret;
+
+ ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
+ BCH_CTRL_COMPLETE_IRQ, timeout);
+
+ writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
+
+ return ret;
+}
+
+/*
+ * This is the function that we install in the cmd_ctrl function pointer of the
+ * owning struct nand_chip. The only functions in the reference implementation
+ * that use these functions pointers are cmdfunc and select_chip.
+ *
+ * In this driver, we implement our own select_chip, so this function will only
+ * be called by the reference implementation's cmdfunc. For this reason, we can
+ * ignore the chip enable bit and concentrate only on sending bytes to the NAND
+ * Flash.
+ */
+static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ /*
+ * If this condition is true, something is _VERY_ wrong in MTD
+ * subsystem!
+ */
+ if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
+ printf("MXS NAND: Command queue too long\n");
+ return;
+ }
+
+ /*
+ * Every operation begins with a command byte and a series of zero or
+ * more address bytes. These are distinguished by either the Address
+ * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+ * asserted. When MTD is ready to execute the command, it will
+ * deasert both latch enables.
+ *
+ * Rather than run a separate DMA operation for every single byte, we
+ * queue them up and run a single DMA operation for the entire series
+ * of command and data bytes.
+ */
+ if (ctrl & (NAND_ALE | NAND_CLE)) {
+ if (data != NAND_CMD_NONE)
+ nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
+ return;
+ }
+
+ /*
+ * If control arrives here, MTD has deasserted both the ALE and CLE,
+ * which means it's ready to run an operation. Check if we have any
+ * bytes to send.
+ */
+ if (nand_info->cmd_queue_len == 0)
+ return;
+
+ /* Compile the DMA descriptor -- a descriptor that sends command. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
+ MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+ (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
+
+ d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WRITE |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_CLE |
+ GPMI_CTRL0_ADDRESS_INCREMENT |
+ nand_info->cmd_queue_len;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Flush caches */
+ mxs_nand_flush_cmd_buf(nand_info);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret)
+ printf("MXS NAND: Error sending command\n");
+
+ mxs_nand_return_dma_descs(nand_info);
+
+ /* Reset the command queue. */
+ nand_info->cmd_queue_len = 0;
+}
+
+/*
+ * Test if the NAND flash is ready.
+ */
+static int mxs_nand_device_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ struct mxs_gpmi_regs *gpmi_regs =
+ (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
+ uint32_t tmp;
+
+ tmp = readl(&gpmi_regs->hw_gpmi_stat);
+ tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
+
+ return tmp & 1;
+}
+
+/*
+ * Select the NAND chip.
+ */
+static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+
+ nand_info->cur_chip = chip;
+}
+
+/*
+ * Handle block mark swapping.
+ *
+ * Note that, when this function is called, it doesn't know whether it's
+ * swapping the block mark, or swapping it *back* -- but it doesn't matter
+ * because the the operation is the same.
+ */
+static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
+ uint8_t *data_buf, uint8_t *oob_buf)
+{
+ uint32_t bit_offset;
+ uint32_t buf_offset;
+
+ uint32_t src;
+ uint32_t dst;
+
+ bit_offset = mxs_nand_mark_bit_offset(mtd);
+ buf_offset = mxs_nand_mark_byte_offset(mtd);
+
+ /*
+ * Get the byte from the data area that overlays the block mark. Since
+ * the ECC engine applies its own view to the bits in the page, the
+ * physical block mark won't (in general) appear on a byte boundary in
+ * the data.
+ */
+ src = data_buf[buf_offset] >> bit_offset;
+ src |= data_buf[buf_offset + 1] << (8 - bit_offset);
+
+ dst = oob_buf[0];
+
+ oob_buf[0] = src;
+
+ data_buf[buf_offset] &= ~(0xff << bit_offset);
+ data_buf[buf_offset + 1] &= 0xff << bit_offset;
+
+ data_buf[buf_offset] |= dst << bit_offset;
+ data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
+}
+
+/*
+ * Read data from NAND.
+ */
+static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ if (length > NAND_MAX_PAGESIZE) {
+ printf("MXS NAND: DMA buffer too big\n");
+ return;
+ }
+
+ if (!buf) {
+ printf("MXS NAND: DMA buffer is NULL\n");
+ return;
+ }
+
+ /* Compile the DMA descriptor - a descriptor that reads data. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+ (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+ (length << MXS_DMA_DESC_BYTES_OFFSET);
+
+ d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_READ |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ length;
+
+ mxs_dma_desc_append(channel, d);
+
+ /*
+ * A DMA descriptor that waits for the command to end and the chip to
+ * become ready.
+ *
+ * I think we actually should *not* be waiting for the chip to become
+ * ready because, after all, we don't care. I think the original code
+ * did that and no one has re-thought it yet.
+ */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
+ MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret) {
+ printf("MXS NAND: DMA read error\n");
+ goto rtn;
+ }
+
+ /* Invalidate caches */
+ mxs_nand_inval_data_buf(nand_info);
+
+ memcpy(buf, nand_info->data_buf, length);
+
+rtn:
+ mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Write data to NAND.
+ */
+static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int length)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ if (length > NAND_MAX_PAGESIZE) {
+ printf("MXS NAND: DMA buffer too big\n");
+ return;
+ }
+
+ if (!buf) {
+ printf("MXS NAND: DMA buffer is NULL\n");
+ return;
+ }
+
+ memcpy(nand_info->data_buf, buf, length);
+
+ /* Compile the DMA descriptor - a descriptor that writes data. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+ (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+ (length << MXS_DMA_DESC_BYTES_OFFSET);
+
+ d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WRITE |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ length;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Flush caches */
+ mxs_nand_flush_data_buf(nand_info);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret)
+ printf("MXS NAND: DMA write error\n");
+
+ mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Read a single byte from NAND.
+ */
+static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
+{
+ uint8_t buf;
+ mxs_nand_read_buf(mtd, &buf, 1);
+ return buf;
+}
+
+/*
+ * Read a page from NAND.
+ */
+static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+ uint8_t *buf, int oob_required,
+ int page)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ uint32_t corrected = 0, failed = 0;
+ uint8_t *status;
+ int i, ret;
+
+ /* Compile the DMA descriptor - wait for ready. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+ MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+ (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Compile the DMA descriptor - enable the BCH block and read. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+ MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_READ |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ (mtd->writesize + mtd->oobsize);
+ d->cmd.pio_words[1] = 0;
+ d->cmd.pio_words[2] =
+ GPMI_ECCCTRL_ENABLE_ECC |
+ GPMI_ECCCTRL_ECC_CMD_DECODE |
+ GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+ d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
+ d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+ d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Compile the DMA descriptor - disable the BCH block. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+ MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+ (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ (mtd->writesize + mtd->oobsize);
+ d->cmd.pio_words[1] = 0;
+ d->cmd.pio_words[2] = 0;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM;
+
+ d->cmd.address = 0;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret) {
+ printf("MXS NAND: DMA read error\n");
+ goto rtn;
+ }
+
+ ret = mxs_nand_wait_for_bch_complete();
+ if (ret) {
+ printf("MXS NAND: BCH read timeout\n");
+ goto rtn;
+ }
+
+ /* Invalidate caches */
+ mxs_nand_inval_data_buf(nand_info);
+
+ /* Read DMA completed, now do the mark swapping. */
+ mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
+
+ /* Loop over status bytes, accumulating ECC status. */
+ status = nand_info->oob_buf + mxs_nand_aux_status_offset();
+ for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
+ if (status[i] == 0x00)
+ continue;
+
+ if (status[i] == 0xff)
+ continue;
+
+ if (status[i] == 0xfe) {
+ failed++;
+ continue;
+ }
+
+ corrected += status[i];
+ }
+
+ /* Propagate ECC status to the owning MTD. */
+ mtd->ecc_stats.failed += failed;
+ mtd->ecc_stats.corrected += corrected;
+
+ /*
+ * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
+ * details about our policy for delivering the OOB.
+ *
+ * We fill the caller's buffer with set bits, and then copy the block
+ * mark to the caller's buffer. Note that, if block mark swapping was
+ * necessary, it has already been done, so we can rely on the first
+ * byte of the auxiliary buffer to contain the block mark.
+ */
+ memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+ nand->oob_poi[0] = nand_info->oob_buf[0];
+
+ memcpy(buf, nand_info->data_buf, mtd->writesize);
+
+rtn:
+ mxs_nand_return_dma_descs(nand_info);
+
+ return ret;
+}
+
+/*
+ * Write a page to NAND.
+ */
+static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *nand, const uint8_t *buf,
+ int oob_required)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ memcpy(nand_info->data_buf, buf, mtd->writesize);
+ memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
+
+ /* Handle block mark swapping. */
+ mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
+
+ /* Compile the DMA descriptor - write data. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+ (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WRITE |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA;
+ d->cmd.pio_words[1] = 0;
+ d->cmd.pio_words[2] =
+ GPMI_ECCCTRL_ENABLE_ECC |
+ GPMI_ECCCTRL_ECC_CMD_ENCODE |
+ GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+ d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
+ d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+ d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Flush caches */
+ mxs_nand_flush_data_buf(nand_info);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret) {
+ printf("MXS NAND: DMA write error\n");
+ goto rtn;
+ }
+
+ ret = mxs_nand_wait_for_bch_complete();
+ if (ret) {
+ printf("MXS NAND: BCH write timeout\n");
+ goto rtn;
+ }
+
+rtn:
+ mxs_nand_return_dma_descs(nand_info);
+ return 0;
+}
+
+/*
+ * Read OOB from NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ int ret;
+
+ if (ops->mode == MTD_OPS_RAW)
+ nand_info->raw_oob_mode = 1;
+ else
+ nand_info->raw_oob_mode = 0;
+
+ ret = nand_info->hooked_read_oob(mtd, from, ops);
+
+ nand_info->raw_oob_mode = 0;
+
+ return ret;
+}
+
+/*
+ * Write OOB to NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ int ret;
+
+ if (ops->mode == MTD_OPS_RAW)
+ nand_info->raw_oob_mode = 1;
+ else
+ nand_info->raw_oob_mode = 0;
+
+ ret = nand_info->hooked_write_oob(mtd, to, ops);
+
+ nand_info->raw_oob_mode = 0;
+
+ return ret;
+}
+
+/*
+ * Mark a block bad in NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ int ret;
+
+ nand_info->marking_block_bad = 1;
+
+ ret = nand_info->hooked_block_markbad(mtd, ofs);
+
+ nand_info->marking_block_bad = 0;
+
+ return ret;
+}
+
+/*
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark, so all
+ * write operations take measures to protect it.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ * true state of the block mark, no matter where that block mark appears in
+ * the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ * return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ * page, using the conventional definition of which bytes are data and which
+ * are OOB. This gives the caller a way to see the actual, physical bytes
+ * in the page, without the distortions applied by our ECC engine.
+ *
+ * What we do for this specific read operation depends on whether we're doing
+ * "raw" read, or an ECC-based read.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ *
+ * Since our OOB *is* covered by ECC, we need this information. So, we hook the
+ * ecc.read_oob and ecc.write_oob function pointers in the owning
+ * struct mtd_info with our own functions. These hook functions set the
+ * raw_oob_mode field so that, when control finally arrives here, we'll know
+ * what to do.
+ */
+static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+ int page)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+
+ /*
+ * First, fill in the OOB buffer. If we're doing a raw read, we need to
+ * get the bytes from the physical page. If we're not doing a raw read,
+ * we need to fill the buffer with set bits.
+ */
+ if (nand_info->raw_oob_mode) {
+ /*
+ * If control arrives here, we're doing a "raw" read. Send the
+ * command to read the conventional OOB and read it.
+ */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
+ } else {
+ /*
+ * If control arrives here, we're not doing a "raw" read. Fill
+ * the OOB buffer with set bits and correct the block mark.
+ */
+ memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ mxs_nand_read_buf(mtd, nand->oob_poi, 1);
+ }
+
+ return 0;
+
+}
+
+/*
+ * Write OOB data to NAND.
+ */
+static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
+ int page)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+ uint8_t block_mark = 0;
+
+ /*
+ * There are fundamental incompatibilities between the i.MX GPMI NFC and
+ * the NAND Flash MTD model that make it essentially impossible to write
+ * the out-of-band bytes.
+ *
+ * We permit *ONE* exception. If the *intent* of writing the OOB is to
+ * mark a block bad, we can do that.
+ */
+
+ if (!nand_info->marking_block_bad) {
+ printf("NXS NAND: Writing OOB isn't supported\n");
+ return -EIO;
+ }
+
+ /* Write the block mark. */
+ nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+ nand->write_buf(mtd, &block_mark, 1);
+ nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ /* Check if it worked. */
+ if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+/*
+ * Claims all blocks are good.
+ *
+ * In principle, this function is *only* called when the NAND Flash MTD system
+ * isn't allowed to keep an in-memory bad block table, so it is forced to ask
+ * the driver for bad block information.
+ *
+ * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
+ * this function is *only* called when we take it away.
+ *
+ * Thus, this function is only called when we want *all* blocks to look good,
+ * so it *always* return success.
+ */
+static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ return 0;
+}
+
+/*
+ * Nominally, the purpose of this function is to look for or create the bad
+ * block table. In fact, since the we call this function at the very end of
+ * the initialization process started by nand_scan(), and we doesn't have a
+ * more formal mechanism, we "hook" this function to continue init process.
+ *
+ * At this point, the physical NAND Flash chips have been identified and
+ * counted, so we know the physical geometry. This enables us to make some
+ * important configuration decisions.
+ *
+ * The return value of this function propogates directly back to this driver's
+ * call to nand_scan(). Anything other than zero will cause this driver to
+ * tear everything down and declare failure.
+ */
+static int mxs_nand_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
+ uint32_t tmp;
+
+ /* Configure BCH and set NFC geometry */
+ mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
+
+ /* Configure layout 0 */
+ tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
+ << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
+ tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
+ tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
+ << BCH_FLASHLAYOUT0_ECC0_OFFSET;
+ tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
+ >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
+ writel(tmp, &bch_regs->hw_bch_flash0layout0);
+
+ tmp = (mtd->writesize + mtd->oobsize)
+ << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
+ tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
+ << BCH_FLASHLAYOUT1_ECCN_OFFSET;
+ tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
+ >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
+ writel(tmp, &bch_regs->hw_bch_flash0layout1);
+
+ /* Set *all* chip selects to use layout 0 */
+ writel(0, &bch_regs->hw_bch_layoutselect);
+
+ /* Enable BCH complete interrupt */
+ writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
+
+ /* Hook some operations at the MTD level. */
+ if (mtd->_read_oob != mxs_nand_hook_read_oob) {
+ nand_info->hooked_read_oob = mtd->_read_oob;
+ mtd->_read_oob = mxs_nand_hook_read_oob;
+ }
+
+ if (mtd->_write_oob != mxs_nand_hook_write_oob) {
+ nand_info->hooked_write_oob = mtd->_write_oob;
+ mtd->_write_oob = mxs_nand_hook_write_oob;
+ }
+
+ if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
+ nand_info->hooked_block_markbad = mtd->_block_markbad;
+ mtd->_block_markbad = mxs_nand_hook_block_markbad;
+ }
+
+ /* We use the reference implementation for bad block management. */
+ return nand_default_bbt(mtd);
+}
+
+/*
+ * Allocate DMA buffers
+ */
+int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
+{
+ uint8_t *buf;
+ const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
+
+ nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
+
+ /* DMA buffers */
+ buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
+ if (!buf) {
+ printf("MXS NAND: Error allocating DMA buffers\n");
+ return -ENOMEM;
+ }
+
+ memset(buf, 0, nand_info->data_buf_size);
+
+ nand_info->data_buf = buf;
+ nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
+ /* Command buffers */
+ nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
+ MXS_NAND_COMMAND_BUFFER_SIZE);
+ if (!nand_info->cmd_buf) {
+ free(buf);
+ printf("MXS NAND: Error allocating command buffers\n");
+ return -ENOMEM;
+ }
+ memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
+ nand_info->cmd_queue_len = 0;
+
+ return 0;
+}
+
+/*
+ * Initializes the NFC hardware.
+ */
+int mxs_nand_init(struct mxs_nand_info *info)
+{
+ struct mxs_gpmi_regs *gpmi_regs =
+ (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
+ struct mxs_bch_regs *bch_regs =
+ (struct mxs_bch_regs *)MXS_BCH_BASE;
+ int i = 0, j;
+
+ info->desc = malloc(sizeof(struct mxs_dma_desc *) *
+ MXS_NAND_DMA_DESCRIPTOR_COUNT);
+ if (!info->desc)
+ goto err1;
+
+ /* Allocate the DMA descriptors. */
+ for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
+ info->desc[i] = mxs_dma_desc_alloc();
+ if (!info->desc[i])
+ goto err2;
+ }
+
+ /* Init the DMA controller. */
+ for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
+ j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
+ if (mxs_dma_init_channel(j))
+ goto err3;
+ }
+
+ /* Reset the GPMI block. */
+ mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
+ mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
+
+ /*
+ * Choose NAND mode, set IRQ polarity, disable write protection and
+ * select BCH ECC.
+ */
+ clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
+ GPMI_CTRL1_GPMI_MODE,
+ GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
+ GPMI_CTRL1_BCH_MODE);
+
+ return 0;
+
+err3:
+ for (--j; j >= 0; j--)
+ mxs_dma_release(j);
+err2:
+ free(info->desc);
+err1:
+ for (--i; i >= 0; i--)
+ mxs_dma_desc_free(info->desc[i]);
+ printf("MXS NAND: Unable to allocate DMA descriptors\n");
+ return -ENOMEM;
+}
+
+/*!
+ * This function is called during the driver binding process.
+ *
+ * @param pdev the device structure used to store device specific
+ * information that is used by the suspend, resume and
+ * remove functions
+ *
+ * @return The function always returns 0.
+ */
+int board_nand_init(struct nand_chip *nand)
+{
+ struct mxs_nand_info *nand_info;
+ int err;
+
+ nand_info = malloc(sizeof(struct mxs_nand_info));
+ if (!nand_info) {
+ printf("MXS NAND: Failed to allocate private data\n");
+ return -ENOMEM;
+ }
+ memset(nand_info, 0, sizeof(struct mxs_nand_info));
+
+ err = mxs_nand_alloc_buffers(nand_info);
+ if (err)
+ goto err1;
+
+ err = mxs_nand_init(nand_info);
+ if (err)
+ goto err2;
+
+ memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
+
+ nand->priv = nand_info;
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+ nand->cmd_ctrl = mxs_nand_cmd_ctrl;
+
+ nand->dev_ready = mxs_nand_device_ready;
+ nand->select_chip = mxs_nand_select_chip;
+ nand->block_bad = mxs_nand_block_bad;
+ nand->scan_bbt = mxs_nand_scan_bbt;
+
+ nand->read_byte = mxs_nand_read_byte;
+
+ nand->read_buf = mxs_nand_read_buf;
+ nand->write_buf = mxs_nand_write_buf;
+
+ nand->ecc.read_page = mxs_nand_ecc_read_page;
+ nand->ecc.write_page = mxs_nand_ecc_write_page;
+ nand->ecc.read_oob = mxs_nand_ecc_read_oob;
+ nand->ecc.write_oob = mxs_nand_ecc_write_oob;
+
+ nand->ecc.layout = &fake_ecc_layout;
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.bytes = 9;
+ nand->ecc.size = 512;
+ nand->ecc.strength = 8;
+
+ return 0;
+
+err2:
+ free(nand_info->data_buf);
+ free(nand_info->cmd_buf);
+err1:
+ free(nand_info);
+ return err;
+}