summaryrefslogtreecommitdiffstats
path: root/qemu/roms/seabios/src/std/LegacyBios.h
diff options
context:
space:
mode:
authorYang Zhang <yang.z.zhang@intel.com>2015-08-28 09:58:54 +0800
committerYang Zhang <yang.z.zhang@intel.com>2015-09-01 12:44:00 +0800
commite44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch)
tree66b09f592c55df2878107a468a91d21506104d3f /qemu/roms/seabios/src/std/LegacyBios.h
parent9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff)
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5 Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/roms/seabios/src/std/LegacyBios.h')
-rw-r--r--qemu/roms/seabios/src/std/LegacyBios.h985
1 files changed, 985 insertions, 0 deletions
diff --git a/qemu/roms/seabios/src/std/LegacyBios.h b/qemu/roms/seabios/src/std/LegacyBios.h
new file mode 100644
index 000000000..5170c3786
--- /dev/null
+++ b/qemu/roms/seabios/src/std/LegacyBios.h
@@ -0,0 +1,985 @@
+/** @file
+ The EFI Legacy BIOS Protocol is used to abstract legacy Option ROM usage
+ under EFI and Legacy OS boot. This file also includes all the related
+ COMPATIBILIY16 structures and defintions.
+
+ Note: The names for EFI_IA32_REGISTER_SET elements were picked to follow
+ well known naming conventions.
+
+ Thunk is the code that switches from 32-bit protected environment into the 16-bit real-mode
+ environment. Reverse thunk is the code that does the opposite.
+
+Copyright (c) 2007 - 2010, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This protocol is defined in Framework for EFI Compatibility Support Module spec
+ Version 0.97.
+
+**/
+
+#ifndef _EFI_LEGACY_BIOS_H_
+#define _EFI_LEGACY_BIOS_H_
+
+///
+///
+///
+#pragma pack(1)
+
+typedef UINT8 SERIAL_MODE;
+typedef UINT8 PARALLEL_MODE;
+
+#define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$')
+
+///
+/// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx
+/// physical address range. It is located on a 16-byte boundary and provides the physical address of the
+/// entry point for the Compatibility16 functions. These functions provide the platform-specific
+/// information that is required by the generic EfiCompatibility code. The functions are invoked via
+/// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical
+/// entry point.
+///
+typedef struct {
+ ///
+ /// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte
+ /// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32.
+ ///
+ UINT32 Signature;
+
+ ///
+ /// The value required such that byte checksum of TableLength equals zero.
+ ///
+ UINT8 TableChecksum;
+
+ ///
+ /// The length of this table.
+ ///
+ UINT8 TableLength;
+
+ ///
+ /// The major EFI revision for which this table was generated.
+ ///
+ UINT8 EfiMajorRevision;
+
+ ///
+ /// The minor EFI revision for which this table was generated.
+ ///
+ UINT8 EfiMinorRevision;
+
+ ///
+ /// The major revision of this table.
+ ///
+ UINT8 TableMajorRevision;
+
+ ///
+ /// The minor revision of this table.
+ ///
+ UINT8 TableMinorRevision;
+
+ ///
+ /// Reserved for future usage.
+ ///
+ UINT16 Reserved;
+
+ ///
+ /// The segment of the entry point within the traditional BIOS for Compatibility16 functions.
+ ///
+ UINT16 Compatibility16CallSegment;
+
+ ///
+ /// The offset of the entry point within the traditional BIOS for Compatibility16 functions.
+ ///
+ UINT16 Compatibility16CallOffset;
+
+ ///
+ /// The segment of the entry point within the traditional BIOS for EfiCompatibility
+ /// to invoke the PnP installation check.
+ ///
+ UINT16 PnPInstallationCheckSegment;
+
+ ///
+ /// The Offset of the entry point within the traditional BIOS for EfiCompatibility
+ /// to invoke the PnP installation check.
+ ///
+ UINT16 PnPInstallationCheckOffset;
+
+ ///
+ /// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform
+ ///Innovation Framework for EFI Driver Execution Environment Core Interface Specification (DXE CIS).
+ ///
+ UINT32 EfiSystemTable;
+
+ ///
+ /// The address of an OEM-provided identifier string. The string is null terminated.
+ ///
+ UINT32 OemIdStringPointer;
+
+ ///
+ /// The 32-bit physical address where ACPI RSD PTR is stored within the traditional
+ /// BIOS. The remained of the ACPI tables are located at their EFI addresses. The size
+ /// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI
+ /// RSD PTR with either the ACPI 1.0b or 2.0 values.
+ ///
+ UINT32 AcpiRsdPtrPointer;
+
+ ///
+ /// The OEM revision number. Usage is undefined but provided for OEM module usage.
+ ///
+ UINT16 OemRevision;
+
+ ///
+ /// The 32-bit physical address where INT15 E820 data is stored within the traditional
+ /// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the
+ /// data to the indicated area.
+ ///
+ UINT32 E820Pointer;
+
+ ///
+ /// The length of the E820 data and is filled in by the EfiCompatibility code.
+ ///
+ UINT32 E820Length;
+
+ ///
+ /// The 32-bit physical address where the $PIR table is stored in the traditional BIOS.
+ /// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and
+ /// copy the data to the indicated area.
+ ///
+ UINT32 IrqRoutingTablePointer;
+
+ ///
+ /// The length of the $PIR table and is filled in by the EfiCompatibility code.
+ ///
+ UINT32 IrqRoutingTableLength;
+
+ ///
+ /// The 32-bit physical address where the MP table is stored in the traditional BIOS.
+ /// The EfiCompatibility code will fill in the MpTablePtr value and copy the data
+ /// to the indicated area.
+ ///
+ UINT32 MpTablePtr;
+
+ ///
+ /// The length of the MP table and is filled in by the EfiCompatibility code.
+ ///
+ UINT32 MpTableLength;
+
+ ///
+ /// The segment of the OEM-specific INT table/code.
+ ///
+ UINT16 OemIntSegment;
+
+ ///
+ /// The offset of the OEM-specific INT table/code.
+ ///
+ UINT16 OemIntOffset;
+
+ ///
+ /// The segment of the OEM-specific 32-bit table/code.
+ ///
+ UINT16 Oem32Segment;
+
+ ///
+ /// The offset of the OEM-specific 32-bit table/code.
+ ///
+ UINT16 Oem32Offset;
+
+ ///
+ /// The segment of the OEM-specific 16-bit table/code.
+ ///
+ UINT16 Oem16Segment;
+
+ ///
+ /// The offset of the OEM-specific 16-bit table/code.
+ ///
+ UINT16 Oem16Offset;
+
+ ///
+ /// The segment of the TPM binary passed to 16-bit CSM.
+ ///
+ UINT16 TpmSegment;
+
+ ///
+ /// The offset of the TPM binary passed to 16-bit CSM.
+ ///
+ UINT16 TpmOffset;
+
+ ///
+ /// A pointer to a string identifying the independent BIOS vendor.
+ ///
+ UINT32 IbvPointer;
+
+ ///
+ /// This field is NULL for all systems not supporting PCI Express. This field is the base
+ /// value of the start of the PCI Express memory-mapped configuration registers and
+ /// must be filled in prior to EfiCompatibility code issuing the Compatibility16 function
+ /// Compatibility16InitializeYourself().
+ /// Compatibility16InitializeYourself() is defined in Compatability16
+ /// Functions.
+ ///
+ UINT32 PciExpressBase;
+
+ ///
+ /// Maximum PCI bus number assigned.
+ ///
+ UINT8 LastPciBus;
+
+ ///
+ /// Start address of UMB RAM
+ ///
+ UINT32 UmaAddress;
+
+ ///
+ /// Size of UMB RAM
+ ///
+ UINT32 UmaSize;
+
+ ///
+ /// Start address of persistent allocation in high (>1MiB) memory
+ ///
+ UINT32 HiPermanentMemoryAddress;
+
+ ///
+ /// Size of persistent allocation in high (>1MiB) memory
+ ///
+ UINT32 HiPermanentMemorySize;
+} EFI_COMPATIBILITY16_TABLE;
+
+///
+/// Functions provided by the CSM binary which communicate between the EfiCompatibility
+/// and Compatability16 code.
+///
+/// Inconsistent with the specification here:
+/// The member's name started with "Compatibility16" [defined in Intel Framework
+/// Compatibility Support Module Specification / 0.97 version]
+/// has been changed to "Legacy16" since keeping backward compatible.
+///
+typedef enum {
+ ///
+ /// Causes the Compatibility16 code to do any internal initialization required.
+ /// Input:
+ /// AX = Compatibility16InitializeYourself
+ /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_INIT_TABLE
+ /// Return:
+ /// AX = Return Status codes
+ ///
+ Legacy16InitializeYourself = 0x0000,
+
+ ///
+ /// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence.
+ /// Input:
+ /// AX = Compatibility16UpdateBbs
+ /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE
+ /// Return:
+ /// AX = Returned status codes
+ ///
+ Legacy16UpdateBbs = 0x0001,
+
+ ///
+ /// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16
+ /// code is read/write.
+ /// Input:
+ /// AX = Compatibility16PrepareToBoot
+ /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE structure
+ /// Return:
+ /// AX = Returned status codes
+ ///
+ Legacy16PrepareToBoot = 0x0002,
+
+ ///
+ /// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only.
+ /// Input:
+ /// AX = Compatibility16Boot
+ /// Output:
+ /// AX = Returned status codes
+ ///
+ Legacy16Boot = 0x0003,
+
+ ///
+ /// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is
+ /// stored in CMOS and is the priority number of the last attempted boot device.
+ /// Input:
+ /// AX = Compatibility16RetrieveLastBootDevice
+ /// Output:
+ /// AX = Returned status codes
+ /// BX = Priority number of the boot device.
+ ///
+ Legacy16RetrieveLastBootDevice = 0x0004,
+
+ ///
+ /// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM.
+ /// Input:
+ /// AX = Compatibility16DispatchOprom
+ /// ES:BX = Pointer to EFI_DISPATCH_OPROM_TABLE
+ /// Output:
+ /// AX = Returned status codes
+ /// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant.
+ ///
+ Legacy16DispatchOprom = 0x0005,
+
+ ///
+ /// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address
+ /// of that region.
+ /// Input:
+ /// AX = Compatibility16GetTableAddress
+ /// BX = Allocation region
+ /// 00 = Allocate from either 0xE0000 or 0xF0000 64 KB blocks.
+ /// Bit 0 = 1 Allocate from 0xF0000 64 KB block
+ /// Bit 1 = 1 Allocate from 0xE0000 64 KB block
+ /// CX = Requested length in bytes.
+ /// DX = Required address alignment. Bit mapped. First non-zero bit from the right is the alignment.
+ /// Output:
+ /// AX = Returned status codes
+ /// DS:BX = Address of the region
+ ///
+ Legacy16GetTableAddress = 0x0006,
+
+ ///
+ /// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state.
+ /// Input:
+ /// AX = Compatibility16SetKeyboardLeds
+ /// CL = LED status.
+ /// Bit 0 Scroll Lock 0 = Off
+ /// Bit 1 NumLock
+ /// Bit 2 Caps Lock
+ /// Output:
+ /// AX = Returned status codes
+ ///
+ Legacy16SetKeyboardLeds = 0x0007,
+
+ ///
+ /// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that
+ /// do not have an OpROM associated with them. An example is SATA.
+ /// Input:
+ /// AX = Compatibility16InstallPciHandler
+ /// ES:BX = Pointer to EFI_LEGACY_INSTALL_PCI_HANDLER structure
+ /// Output:
+ /// AX = Returned status codes
+ ///
+ Legacy16InstallPciHandler = 0x0008
+} EFI_COMPATIBILITY_FUNCTIONS;
+
+
+///
+/// EFI_DISPATCH_OPROM_TABLE
+///
+typedef struct {
+ UINT16 PnPInstallationCheckSegment; ///< A pointer to the PnpInstallationCheck data structure.
+ UINT16 PnPInstallationCheckOffset; ///< A pointer to the PnpInstallationCheck data structure.
+ UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3.
+ UINT8 PciBus; ///< The PCI bus.
+ UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function.
+ UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may
+ ///< increase this number, if BBS-compliant devices also hook INTs in order to force the
+ ///< OpROM BIOS Setup to be executed.
+ UINT32 BbsTablePointer; ///< A pointer to the BBS table.
+ UINT16 RuntimeSegment; ///< The segment where the OpROM can be relocated to. If this value is 0x0000, this
+ ///< means that the relocation of this run time code is not supported.
+ ///< Inconsistent with specification here:
+ ///< The member's name "OpromDestinationSegment" [defined in Intel Framework Compatibility Support Module Specification / 0.97 version]
+ ///< has been changed to "RuntimeSegment" since keeping backward compatible.
+
+} EFI_DISPATCH_OPROM_TABLE;
+
+///
+/// EFI_TO_COMPATIBILITY16_INIT_TABLE
+///
+typedef struct {
+ ///
+ /// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF.
+ ///
+ UINT32 BiosLessThan1MB;
+
+ ///
+ /// The starting address of the high memory block.
+ ///
+ UINT32 HiPmmMemory;
+
+ ///
+ /// The length of high memory block.
+ ///
+ UINT32 HiPmmMemorySizeInBytes;
+
+ ///
+ /// The segment of the reverse thunk call code.
+ ///
+ UINT16 ReverseThunkCallSegment;
+
+ ///
+ /// The offset of the reverse thunk call code.
+ ///
+ UINT16 ReverseThunkCallOffset;
+
+ ///
+ /// The number of E820 entries copied to the Compatibility16 BIOS.
+ ///
+ UINT32 NumberE820Entries;
+
+ ///
+ /// The amount of usable memory above 1 MB, e.g., E820 type 1 memory.
+ ///
+ UINT32 OsMemoryAbove1Mb;
+
+ ///
+ /// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM.
+ ///
+ UINT32 ThunkStart;
+
+ ///
+ /// The size of the thunk code.
+ ///
+ UINT32 ThunkSizeInBytes;
+
+ ///
+ /// Starting address of memory under 1 MB.
+ ///
+ UINT32 LowPmmMemory;
+
+ ///
+ /// The length of low Memory block.
+ ///
+ UINT32 LowPmmMemorySizeInBytes;
+} EFI_TO_COMPATIBILITY16_INIT_TABLE;
+
+///
+/// DEVICE_PRODUCER_SERIAL.
+///
+typedef struct {
+ UINT16 Address; ///< I/O address assigned to the serial port.
+ UINT8 Irq; ///< IRQ assigned to the serial port.
+ SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below.
+} DEVICE_PRODUCER_SERIAL;
+
+///
+/// DEVICE_PRODUCER_SERIAL's modes.
+///@{
+#define DEVICE_SERIAL_MODE_NORMAL 0x00
+#define DEVICE_SERIAL_MODE_IRDA 0x01
+#define DEVICE_SERIAL_MODE_ASK_IR 0x02
+#define DEVICE_SERIAL_MODE_DUPLEX_HALF 0x00
+#define DEVICE_SERIAL_MODE_DUPLEX_FULL 0x10
+///@)
+
+///
+/// DEVICE_PRODUCER_PARALLEL.
+///
+typedef struct {
+ UINT16 Address; ///< I/O address assigned to the parallel port.
+ UINT8 Irq; ///< IRQ assigned to the parallel port.
+ UINT8 Dma; ///< DMA assigned to the parallel port.
+ PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below.
+} DEVICE_PRODUCER_PARALLEL;
+
+///
+/// DEVICE_PRODUCER_PARALLEL's modes.
+///@{
+#define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00
+#define DEVICE_PARALLEL_MODE_MODE_BIDIRECTIONAL 0x01
+#define DEVICE_PARALLEL_MODE_MODE_EPP 0x02
+#define DEVICE_PARALLEL_MODE_MODE_ECP 0x03
+///@}
+
+///
+/// DEVICE_PRODUCER_FLOPPY
+///
+typedef struct {
+ UINT16 Address; ///< I/O address assigned to the floppy.
+ UINT8 Irq; ///< IRQ assigned to the floppy.
+ UINT8 Dma; ///< DMA assigned to the floppy.
+ UINT8 NumberOfFloppy; ///< Number of floppies in the system.
+} DEVICE_PRODUCER_FLOPPY;
+
+///
+/// LEGACY_DEVICE_FLAGS
+///
+typedef struct {
+ UINT32 A20Kybd : 1; ///< A20 controller by keyboard controller.
+ UINT32 A20Port90 : 1; ///< A20 controlled by port 0x92.
+ UINT32 Reserved : 30; ///< Reserved for future usage.
+} LEGACY_DEVICE_FLAGS;
+
+///
+/// DEVICE_PRODUCER_DATA_HEADER
+///
+typedef struct {
+ DEVICE_PRODUCER_SERIAL Serial[4]; ///< Data for serial port x. Type DEVICE_PRODUCER_SERIAL is defined below.
+ DEVICE_PRODUCER_PARALLEL Parallel[3]; ///< Data for parallel port x. Type DEVICE_PRODUCER_PARALLEL is defined below.
+ DEVICE_PRODUCER_FLOPPY Floppy; ///< Data for floppy. Type DEVICE_PRODUCER_FLOPPY is defined below.
+ UINT8 MousePresent; ///< Flag to indicate if mouse is present.
+ LEGACY_DEVICE_FLAGS Flags; ///< Miscellaneous Boolean state information passed to CSM.
+} DEVICE_PRODUCER_DATA_HEADER;
+
+///
+/// ATAPI_IDENTIFY
+///
+typedef struct {
+ UINT16 Raw[256]; ///< Raw data from the IDE IdentifyDrive command.
+} ATAPI_IDENTIFY;
+
+///
+/// HDD_INFO
+///
+typedef struct {
+ ///
+ /// Status of IDE device. Values are defined below. There is one HDD_INFO structure
+ /// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index
+ /// 1 is slave.
+ ///
+ UINT16 Status;
+
+ ///
+ /// PCI bus of IDE controller.
+ ///
+ UINT32 Bus;
+
+ ///
+ /// PCI device of IDE controller.
+ ///
+ UINT32 Device;
+
+ ///
+ /// PCI function of IDE controller.
+ ///
+ UINT32 Function;
+
+ ///
+ /// Command ports base address.
+ ///
+ UINT16 CommandBaseAddress;
+
+ ///
+ /// Control ports base address.
+ ///
+ UINT16 ControlBaseAddress;
+
+ ///
+ /// Bus master address.
+ ///
+ UINT16 BusMasterAddress;
+
+ UINT8 HddIrq;
+
+ ///
+ /// Data that identifies the drive data; one per possible attached drive.
+ ///
+ ATAPI_IDENTIFY IdentifyDrive[2];
+} HDD_INFO;
+
+///
+/// HDD_INFO status bits
+///
+#define HDD_PRIMARY 0x01
+#define HDD_SECONDARY 0x02
+#define HDD_MASTER_ATAPI_CDROM 0x04
+#define HDD_SLAVE_ATAPI_CDROM 0x08
+#define HDD_MASTER_IDE 0x20
+#define HDD_SLAVE_IDE 0x40
+#define HDD_MASTER_ATAPI_ZIPDISK 0x10
+#define HDD_SLAVE_ATAPI_ZIPDISK 0x80
+
+///
+/// BBS_STATUS_FLAGS;\.
+///
+typedef struct {
+ UINT16 OldPosition : 4; ///< Prior priority.
+ UINT16 Reserved1 : 4; ///< Reserved for future use.
+ UINT16 Enabled : 1; ///< If 0, ignore this entry.
+ UINT16 Failed : 1; ///< 0 = Not known if boot failure occurred.
+ ///< 1 = Boot attempted failed.
+
+ ///
+ /// State of media present.
+ /// 00 = No bootable media is present in the device.
+ /// 01 = Unknown if a bootable media present.
+ /// 10 = Media is present and appears bootable.
+ /// 11 = Reserved.
+ ///
+ UINT16 MediaPresent : 2;
+ UINT16 Reserved2 : 4; ///< Reserved for future use.
+} BBS_STATUS_FLAGS;
+
+///
+/// BBS_TABLE, device type values & boot priority values.
+///
+typedef struct {
+ ///
+ /// The boot priority for this boot device. Values are defined below.
+ ///
+ UINT16 BootPriority;
+
+ ///
+ /// The PCI bus for this boot device.
+ ///
+ UINT32 Bus;
+
+ ///
+ /// The PCI device for this boot device.
+ ///
+ UINT32 Device;
+
+ ///
+ /// The PCI function for the boot device.
+ ///
+ UINT32 Function;
+
+ ///
+ /// The PCI class for this boot device.
+ ///
+ UINT8 Class;
+
+ ///
+ /// The PCI Subclass for this boot device.
+ ///
+ UINT8 SubClass;
+
+ ///
+ /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
+ ///
+ UINT16 MfgStringOffset;
+
+ ///
+ /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
+ ///
+ UINT16 MfgStringSegment;
+
+ ///
+ /// BBS device type. BBS device types are defined below.
+ ///
+ UINT16 DeviceType;
+
+ ///
+ /// Status of this boot device. Type BBS_STATUS_FLAGS is defined below.
+ ///
+ BBS_STATUS_FLAGS StatusFlags;
+
+ ///
+ /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
+ /// BCV devices.
+ ///
+ UINT16 BootHandlerOffset;
+
+ ///
+ /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
+ /// BCV devices.
+ ///
+ UINT16 BootHandlerSegment;
+
+ ///
+ /// Segment:offset address of an ASCIIZ description string describing this device.
+ ///
+ UINT16 DescStringOffset;
+
+ ///
+ /// Segment:offset address of an ASCIIZ description string describing this device.
+ ///
+ UINT16 DescStringSegment;
+
+ ///
+ /// Reserved.
+ ///
+ UINT32 InitPerReserved;
+
+ ///
+ /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
+ /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
+ /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
+ ///
+ UINT32 AdditionalIrq13Handler;
+
+ ///
+ /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
+ /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
+ /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
+ ///
+ UINT32 AdditionalIrq18Handler;
+
+ ///
+ /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
+ /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
+ /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
+ ///
+ UINT32 AdditionalIrq19Handler;
+
+ ///
+ /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
+ /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
+ /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
+ ///
+ UINT32 AdditionalIrq40Handler;
+ UINT8 AssignedDriveNumber;
+ UINT32 AdditionalIrq41Handler;
+ UINT32 AdditionalIrq46Handler;
+ UINT32 IBV1;
+ UINT32 IBV2;
+} BBS_TABLE;
+
+///
+/// BBS device type values
+///@{
+#define BBS_FLOPPY 0x01
+#define BBS_HARDDISK 0x02
+#define BBS_CDROM 0x03
+#define BBS_PCMCIA 0x04
+#define BBS_USB 0x05
+#define BBS_EMBED_NETWORK 0x06
+#define BBS_BEV_DEVICE 0x80
+#define BBS_UNKNOWN 0xff
+///@}
+
+///
+/// BBS boot priority values
+///@{
+#define BBS_DO_NOT_BOOT_FROM 0xFFFC
+#define BBS_LOWEST_PRIORITY 0xFFFD
+#define BBS_UNPRIORITIZED_ENTRY 0xFFFE
+#define BBS_IGNORE_ENTRY 0xFFFF
+///@}
+
+///
+/// SMM_ATTRIBUTES
+///
+typedef struct {
+ ///
+ /// Access mechanism used to generate the soft SMI. Defined types are below. The other
+ /// values are reserved for future usage.
+ ///
+ UINT16 Type : 3;
+
+ ///
+ /// The size of "port" in bits. Defined values are below.
+ ///
+ UINT16 PortGranularity : 3;
+
+ ///
+ /// The size of data in bits. Defined values are below.
+ ///
+ UINT16 DataGranularity : 3;
+
+ ///
+ /// Reserved for future use.
+ ///
+ UINT16 Reserved : 7;
+} SMM_ATTRIBUTES;
+
+///
+/// SMM_ATTRIBUTES type values.
+///@{
+#define STANDARD_IO 0x00
+#define STANDARD_MEMORY 0x01
+///@}
+
+///
+/// SMM_ATTRIBUTES port size constants.
+///@{
+#define PORT_SIZE_8 0x00
+#define PORT_SIZE_16 0x01
+#define PORT_SIZE_32 0x02
+#define PORT_SIZE_64 0x03
+///@}
+
+///
+/// SMM_ATTRIBUTES data size constants.
+///@{
+#define DATA_SIZE_8 0x00
+#define DATA_SIZE_16 0x01
+#define DATA_SIZE_32 0x02
+#define DATA_SIZE_64 0x03
+///@}
+
+///
+/// SMM_FUNCTION & relating constants.
+///
+typedef struct {
+ UINT16 Function : 15;
+ UINT16 Owner : 1;
+} SMM_FUNCTION;
+
+///
+/// SMM_FUNCTION Function constants.
+///@{
+#define INT15_D042 0x0000
+#define GET_USB_BOOT_INFO 0x0001
+#define DMI_PNP_50_57 0x0002
+///@}
+
+///
+/// SMM_FUNCTION Owner constants.
+///@{
+#define STANDARD_OWNER 0x0
+#define OEM_OWNER 0x1
+///@}
+
+///
+/// This structure assumes both port and data sizes are 1. SmmAttribute must be
+/// properly to reflect that assumption.
+///
+typedef struct {
+ ///
+ /// Describes the access mechanism, SmmPort, and SmmData sizes. Type
+ /// SMM_ATTRIBUTES is defined below.
+ ///
+ SMM_ATTRIBUTES SmmAttributes;
+
+ ///
+ /// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below.
+ ///
+ SMM_FUNCTION SmmFunction;
+
+ ///
+ /// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes.
+ ///
+ UINT8 SmmPort;
+
+ ///
+ /// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes.
+ ///
+ UINT8 SmmData;
+} SMM_ENTRY;
+
+///
+/// SMM_TABLE
+///
+typedef struct {
+ UINT16 NumSmmEntries; ///< Number of entries represented by SmmEntry.
+ SMM_ENTRY SmmEntry; ///< One entry per function. Type SMM_ENTRY is defined below.
+} SMM_TABLE;
+
+///
+/// UDC_ATTRIBUTES
+///
+typedef struct {
+ ///
+ /// This bit set indicates that the ServiceAreaData is valid.
+ ///
+ UINT8 DirectoryServiceValidity : 1;
+
+ ///
+ /// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if
+ /// DirectoryServiceValidity is 0.
+ ///
+ UINT8 RabcaUsedFlag : 1;
+
+ ///
+ /// This bit set indicates to execute hard disk diagnostics.
+ ///
+ UINT8 ExecuteHddDiagnosticsFlag : 1;
+
+ ///
+ /// Reserved for future use. Set to 0.
+ ///
+ UINT8 Reserved : 5;
+} UDC_ATTRIBUTES;
+
+///
+/// UD_TABLE
+///
+typedef struct {
+ ///
+ /// This field contains the bit-mapped attributes of the PARTIES information. Type
+ /// UDC_ATTRIBUTES is defined below.
+ ///
+ UDC_ATTRIBUTES Attributes;
+
+ ///
+ /// This field contains the zero-based device on which the selected
+ /// ServiceDataArea is present. It is 0 for master and 1 for the slave device.
+ ///
+ UINT8 DeviceNumber;
+
+ ///
+ /// This field contains the zero-based index into the BbsTable for the parent device.
+ /// This index allows the user to reference the parent device information such as PCI
+ /// bus, device function.
+ ///
+ UINT8 BbsTableEntryNumberForParentDevice;
+
+ ///
+ /// This field contains the zero-based index into the BbsTable for the boot entry.
+ ///
+ UINT8 BbsTableEntryNumberForBoot;
+
+ ///
+ /// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry.
+ ///
+ UINT8 BbsTableEntryNumberForHddDiag;
+
+ ///
+ /// The raw Beer data.
+ ///
+ UINT8 BeerData[128];
+
+ ///
+ /// The raw data of selected service area.
+ ///
+ UINT8 ServiceAreaData[64];
+} UD_TABLE;
+
+#define EFI_TO_LEGACY_MAJOR_VERSION 0x02
+#define EFI_TO_LEGACY_MINOR_VERSION 0x00
+#define MAX_IDE_CONTROLLER 8
+
+///
+/// EFI_TO_COMPATIBILITY16_BOOT_TABLE
+///
+typedef struct {
+ UINT16 MajorVersion; ///< The EfiCompatibility major version number.
+ UINT16 MinorVersion; ///< The EfiCompatibility minor version number.
+ UINT32 AcpiTable; ///< The location of the RSDT ACPI table. < 4G range.
+ UINT32 SmbiosTable; ///< The location of the SMBIOS table in EFI memory. < 4G range.
+ UINT32 SmbiosTableLength;
+ //
+ // Legacy SIO state
+ //
+ DEVICE_PRODUCER_DATA_HEADER SioData; ///< Standard traditional device information.
+ UINT16 DevicePathType; ///< The default boot type.
+ UINT16 PciIrqMask; ///< Mask of which IRQs have been assigned to PCI.
+ UINT32 NumberE820Entries; ///< Number of E820 entries. The number can change from the
+ ///< Compatibility16InitializeYourself() function.
+ //
+ // Controller & Drive Identify[2] per controller information
+ //
+ HDD_INFO HddInfo[MAX_IDE_CONTROLLER]; ///< Hard disk drive information, including raw Identify Drive data.
+ UINT32 NumberBbsEntries; ///< Number of entries in the BBS table
+ UINT32 BbsTable; ///< A pointer to the BBS table. Type BBS_TABLE is defined below.
+ UINT32 SmmTable; ///< A pointer to the SMM table. Type SMM_TABLE is defined below.
+ UINT32 OsMemoryAbove1Mb; ///< The amount of usable memory above 1 MB, i.e. E820 type 1 memory. This value can
+ ///< differ from the value in EFI_TO_COMPATIBILITY16_INIT_TABLE as more
+ ///< memory may have been discovered.
+ UINT32 UnconventionalDeviceTable; ///< Information to boot off an unconventional device like a PARTIES partition. Type
+ ///< UD_TABLE is defined below.
+} EFI_TO_COMPATIBILITY16_BOOT_TABLE;
+
+///
+/// EFI_LEGACY_INSTALL_PCI_HANDLER
+///
+typedef struct {
+ UINT8 PciBus; ///< The PCI bus of the device.
+ UINT8 PciDeviceFun; ///< The PCI device in bits 7:3 and function in bits 2:0.
+ UINT8 PciSegment; ///< The PCI segment of the device.
+ UINT8 PciClass; ///< The PCI class code of the device.
+ UINT8 PciSubclass; ///< The PCI subclass code of the device.
+ UINT8 PciInterface; ///< The PCI interface code of the device.
+ //
+ // Primary section
+ //
+ UINT8 PrimaryIrq; ///< The primary device IRQ.
+ UINT8 PrimaryReserved; ///< Reserved.
+ UINT16 PrimaryControl; ///< The primary device control I/O base.
+ UINT16 PrimaryBase; ///< The primary device I/O base.
+ UINT16 PrimaryBusMaster; ///< The primary device bus master I/O base.
+ //
+ // Secondary Section
+ //
+ UINT8 SecondaryIrq; ///< The secondary device IRQ.
+ UINT8 SecondaryReserved; ///< Reserved.
+ UINT16 SecondaryControl; ///< The secondary device control I/O base.
+ UINT16 SecondaryBase; ///< The secondary device I/O base.
+ UINT16 SecondaryBusMaster; ///< The secondary device bus master I/O base.
+} EFI_LEGACY_INSTALL_PCI_HANDLER;
+
+#endif