diff options
author | 2017-05-23 17:55:06 +0000 | |
---|---|---|
committer | 2017-05-23 17:55:06 +0000 | |
commit | 0f6296e038b5c299654d596026e7bee5aa723e56 (patch) | |
tree | a51b545d58c8128abfd6caa9ca43d32343011f62 /qemu/hw/arm/boot.c | |
parent | c4d68bc45aa6aa8b7fe39bce206cb17c2cb2d365 (diff) | |
parent | bb756eebdac6fd24e8919e2c43f7d2c8c4091f59 (diff) |
Merge "Adding qemu as a submodule of KVMFORNFV"
Diffstat (limited to 'qemu/hw/arm/boot.c')
-rw-r--r-- | qemu/hw/arm/boot.c | 994 |
1 files changed, 0 insertions, 994 deletions
diff --git a/qemu/hw/arm/boot.c b/qemu/hw/arm/boot.c deleted file mode 100644 index 587694557..000000000 --- a/qemu/hw/arm/boot.c +++ /dev/null @@ -1,994 +0,0 @@ -/* - * ARM kernel loader. - * - * Copyright (c) 2006-2007 CodeSourcery. - * Written by Paul Brook - * - * This code is licensed under the GPL. - */ - -#include "qemu/osdep.h" -#include "qapi/error.h" -#include "hw/hw.h" -#include "hw/arm/arm.h" -#include "hw/arm/linux-boot-if.h" -#include "sysemu/kvm.h" -#include "sysemu/sysemu.h" -#include "hw/boards.h" -#include "hw/loader.h" -#include "elf.h" -#include "sysemu/device_tree.h" -#include "qemu/config-file.h" -#include "exec/address-spaces.h" - -/* Kernel boot protocol is specified in the kernel docs - * Documentation/arm/Booting and Documentation/arm64/booting.txt - * They have different preferred image load offsets from system RAM base. - */ -#define KERNEL_ARGS_ADDR 0x100 -#define KERNEL_LOAD_ADDR 0x00010000 -#define KERNEL64_LOAD_ADDR 0x00080000 - -typedef enum { - FIXUP_NONE = 0, /* do nothing */ - FIXUP_TERMINATOR, /* end of insns */ - FIXUP_BOARDID, /* overwrite with board ID number */ - FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ - FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ - FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ - FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ - FIXUP_BOOTREG, /* overwrite with boot register address */ - FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ - FIXUP_MAX, -} FixupType; - -typedef struct ARMInsnFixup { - uint32_t insn; - FixupType fixup; -} ARMInsnFixup; - -static const ARMInsnFixup bootloader_aarch64[] = { - { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ - { 0xaa1f03e1 }, /* mov x1, xzr */ - { 0xaa1f03e2 }, /* mov x2, xzr */ - { 0xaa1f03e3 }, /* mov x3, xzr */ - { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ - { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ - { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ - { 0 }, /* .word @DTB Higher 32-bits */ - { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ - { 0 }, /* .word @Kernel Entry Higher 32-bits */ - { 0, FIXUP_TERMINATOR } -}; - -/* A very small bootloader: call the board-setup code (if needed), - * set r0-r2, then jump to the kernel. - * If we're not calling boot setup code then we don't copy across - * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. - */ - -static const ARMInsnFixup bootloader[] = { - { 0xe28fe004 }, /* add lr, pc, #4 */ - { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ - { 0, FIXUP_BOARD_SETUP }, -#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 - { 0xe3a00000 }, /* mov r0, #0 */ - { 0xe59f1004 }, /* ldr r1, [pc, #4] */ - { 0xe59f2004 }, /* ldr r2, [pc, #4] */ - { 0xe59ff004 }, /* ldr pc, [pc, #4] */ - { 0, FIXUP_BOARDID }, - { 0, FIXUP_ARGPTR }, - { 0, FIXUP_ENTRYPOINT }, - { 0, FIXUP_TERMINATOR } -}; - -/* Handling for secondary CPU boot in a multicore system. - * Unlike the uniprocessor/primary CPU boot, this is platform - * dependent. The default code here is based on the secondary - * CPU boot protocol used on realview/vexpress boards, with - * some parameterisation to increase its flexibility. - * QEMU platform models for which this code is not appropriate - * should override write_secondary_boot and secondary_cpu_reset_hook - * instead. - * - * This code enables the interrupt controllers for the secondary - * CPUs and then puts all the secondary CPUs into a loop waiting - * for an interprocessor interrupt and polling a configurable - * location for the kernel secondary CPU entry point. - */ -#define DSB_INSN 0xf57ff04f -#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ - -static const ARMInsnFixup smpboot[] = { - { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ - { 0xe59f0028 }, /* ldr r0, bootreg_addr */ - { 0xe3a01001 }, /* mov r1, #1 */ - { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ - { 0xe3a010ff }, /* mov r1, #0xff */ - { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ - { 0, FIXUP_DSB }, /* dsb */ - { 0xe320f003 }, /* wfi */ - { 0xe5901000 }, /* ldr r1, [r0] */ - { 0xe1110001 }, /* tst r1, r1 */ - { 0x0afffffb }, /* beq <wfi> */ - { 0xe12fff11 }, /* bx r1 */ - { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ - { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ - { 0, FIXUP_TERMINATOR } -}; - -static void write_bootloader(const char *name, hwaddr addr, - const ARMInsnFixup *insns, uint32_t *fixupcontext) -{ - /* Fix up the specified bootloader fragment and write it into - * guest memory using rom_add_blob_fixed(). fixupcontext is - * an array giving the values to write in for the fixup types - * which write a value into the code array. - */ - int i, len; - uint32_t *code; - - len = 0; - while (insns[len].fixup != FIXUP_TERMINATOR) { - len++; - } - - code = g_new0(uint32_t, len); - - for (i = 0; i < len; i++) { - uint32_t insn = insns[i].insn; - FixupType fixup = insns[i].fixup; - - switch (fixup) { - case FIXUP_NONE: - break; - case FIXUP_BOARDID: - case FIXUP_BOARD_SETUP: - case FIXUP_ARGPTR: - case FIXUP_ENTRYPOINT: - case FIXUP_GIC_CPU_IF: - case FIXUP_BOOTREG: - case FIXUP_DSB: - insn = fixupcontext[fixup]; - break; - default: - abort(); - } - code[i] = tswap32(insn); - } - - rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr); - - g_free(code); -} - -static void default_write_secondary(ARMCPU *cpu, - const struct arm_boot_info *info) -{ - uint32_t fixupcontext[FIXUP_MAX]; - - fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; - fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; - if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { - fixupcontext[FIXUP_DSB] = DSB_INSN; - } else { - fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; - } - - write_bootloader("smpboot", info->smp_loader_start, - smpboot, fixupcontext); -} - -void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, - const struct arm_boot_info *info, - hwaddr mvbar_addr) -{ - int n; - uint32_t mvbar_blob[] = { - /* mvbar_addr: secure monitor vectors - * Default unimplemented and unused vectors to spin. Makes it - * easier to debug (as opposed to the CPU running away). - */ - 0xeafffffe, /* (spin) */ - 0xeafffffe, /* (spin) */ - 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ - 0xeafffffe, /* (spin) */ - 0xeafffffe, /* (spin) */ - 0xeafffffe, /* (spin) */ - 0xeafffffe, /* (spin) */ - 0xeafffffe, /* (spin) */ - }; - uint32_t board_setup_blob[] = { - /* board setup addr */ - 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ - 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ - 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ - 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ - 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ - 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ - 0xe1600070, /* smc #0 ;call monitor to flush SCR */ - 0xe1a0f001, /* mov pc, r1 ;return */ - }; - - /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ - assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); - - /* check that these blobs don't overlap */ - assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) - || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); - - for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { - mvbar_blob[n] = tswap32(mvbar_blob[n]); - } - rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), - mvbar_addr); - - for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { - board_setup_blob[n] = tswap32(board_setup_blob[n]); - } - rom_add_blob_fixed("board-setup", board_setup_blob, - sizeof(board_setup_blob), info->board_setup_addr); -} - -static void default_reset_secondary(ARMCPU *cpu, - const struct arm_boot_info *info) -{ - CPUState *cs = CPU(cpu); - - address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr, - 0, MEMTXATTRS_UNSPECIFIED, NULL); - cpu_set_pc(cs, info->smp_loader_start); -} - -static inline bool have_dtb(const struct arm_boot_info *info) -{ - return info->dtb_filename || info->get_dtb; -} - -#define WRITE_WORD(p, value) do { \ - address_space_stl_notdirty(&address_space_memory, p, value, \ - MEMTXATTRS_UNSPECIFIED, NULL); \ - p += 4; \ -} while (0) - -static void set_kernel_args(const struct arm_boot_info *info) -{ - int initrd_size = info->initrd_size; - hwaddr base = info->loader_start; - hwaddr p; - - p = base + KERNEL_ARGS_ADDR; - /* ATAG_CORE */ - WRITE_WORD(p, 5); - WRITE_WORD(p, 0x54410001); - WRITE_WORD(p, 1); - WRITE_WORD(p, 0x1000); - WRITE_WORD(p, 0); - /* ATAG_MEM */ - /* TODO: handle multiple chips on one ATAG list */ - WRITE_WORD(p, 4); - WRITE_WORD(p, 0x54410002); - WRITE_WORD(p, info->ram_size); - WRITE_WORD(p, info->loader_start); - if (initrd_size) { - /* ATAG_INITRD2 */ - WRITE_WORD(p, 4); - WRITE_WORD(p, 0x54420005); - WRITE_WORD(p, info->initrd_start); - WRITE_WORD(p, initrd_size); - } - if (info->kernel_cmdline && *info->kernel_cmdline) { - /* ATAG_CMDLINE */ - int cmdline_size; - - cmdline_size = strlen(info->kernel_cmdline); - cpu_physical_memory_write(p + 8, info->kernel_cmdline, - cmdline_size + 1); - cmdline_size = (cmdline_size >> 2) + 1; - WRITE_WORD(p, cmdline_size + 2); - WRITE_WORD(p, 0x54410009); - p += cmdline_size * 4; - } - if (info->atag_board) { - /* ATAG_BOARD */ - int atag_board_len; - uint8_t atag_board_buf[0x1000]; - - atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; - WRITE_WORD(p, (atag_board_len + 8) >> 2); - WRITE_WORD(p, 0x414f4d50); - cpu_physical_memory_write(p, atag_board_buf, atag_board_len); - p += atag_board_len; - } - /* ATAG_END */ - WRITE_WORD(p, 0); - WRITE_WORD(p, 0); -} - -static void set_kernel_args_old(const struct arm_boot_info *info) -{ - hwaddr p; - const char *s; - int initrd_size = info->initrd_size; - hwaddr base = info->loader_start; - - /* see linux/include/asm-arm/setup.h */ - p = base + KERNEL_ARGS_ADDR; - /* page_size */ - WRITE_WORD(p, 4096); - /* nr_pages */ - WRITE_WORD(p, info->ram_size / 4096); - /* ramdisk_size */ - WRITE_WORD(p, 0); -#define FLAG_READONLY 1 -#define FLAG_RDLOAD 4 -#define FLAG_RDPROMPT 8 - /* flags */ - WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); - /* rootdev */ - WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ - /* video_num_cols */ - WRITE_WORD(p, 0); - /* video_num_rows */ - WRITE_WORD(p, 0); - /* video_x */ - WRITE_WORD(p, 0); - /* video_y */ - WRITE_WORD(p, 0); - /* memc_control_reg */ - WRITE_WORD(p, 0); - /* unsigned char sounddefault */ - /* unsigned char adfsdrives */ - /* unsigned char bytes_per_char_h */ - /* unsigned char bytes_per_char_v */ - WRITE_WORD(p, 0); - /* pages_in_bank[4] */ - WRITE_WORD(p, 0); - WRITE_WORD(p, 0); - WRITE_WORD(p, 0); - WRITE_WORD(p, 0); - /* pages_in_vram */ - WRITE_WORD(p, 0); - /* initrd_start */ - if (initrd_size) { - WRITE_WORD(p, info->initrd_start); - } else { - WRITE_WORD(p, 0); - } - /* initrd_size */ - WRITE_WORD(p, initrd_size); - /* rd_start */ - WRITE_WORD(p, 0); - /* system_rev */ - WRITE_WORD(p, 0); - /* system_serial_low */ - WRITE_WORD(p, 0); - /* system_serial_high */ - WRITE_WORD(p, 0); - /* mem_fclk_21285 */ - WRITE_WORD(p, 0); - /* zero unused fields */ - while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { - WRITE_WORD(p, 0); - } - s = info->kernel_cmdline; - if (s) { - cpu_physical_memory_write(p, s, strlen(s) + 1); - } else { - WRITE_WORD(p, 0); - } -} - -/** - * load_dtb() - load a device tree binary image into memory - * @addr: the address to load the image at - * @binfo: struct describing the boot environment - * @addr_limit: upper limit of the available memory area at @addr - * - * Load a device tree supplied by the machine or by the user with the - * '-dtb' command line option, and put it at offset @addr in target - * memory. - * - * If @addr_limit contains a meaningful value (i.e., it is strictly greater - * than @addr), the device tree is only loaded if its size does not exceed - * the limit. - * - * Returns: the size of the device tree image on success, - * 0 if the image size exceeds the limit, - * -1 on errors. - * - * Note: Must not be called unless have_dtb(binfo) is true. - */ -static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, - hwaddr addr_limit) -{ - void *fdt = NULL; - int size, rc; - uint32_t acells, scells; - - if (binfo->dtb_filename) { - char *filename; - filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); - if (!filename) { - fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); - goto fail; - } - - fdt = load_device_tree(filename, &size); - if (!fdt) { - fprintf(stderr, "Couldn't open dtb file %s\n", filename); - g_free(filename); - goto fail; - } - g_free(filename); - } else { - fdt = binfo->get_dtb(binfo, &size); - if (!fdt) { - fprintf(stderr, "Board was unable to create a dtb blob\n"); - goto fail; - } - } - - if (addr_limit > addr && size > (addr_limit - addr)) { - /* Installing the device tree blob at addr would exceed addr_limit. - * Whether this constitutes failure is up to the caller to decide, - * so just return 0 as size, i.e., no error. - */ - g_free(fdt); - return 0; - } - - acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", - NULL, &error_fatal); - scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", - NULL, &error_fatal); - if (acells == 0 || scells == 0) { - fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); - goto fail; - } - - if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { - /* This is user error so deserves a friendlier error message - * than the failure of setprop_sized_cells would provide - */ - fprintf(stderr, "qemu: dtb file not compatible with " - "RAM size > 4GB\n"); - goto fail; - } - - rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", - acells, binfo->loader_start, - scells, binfo->ram_size); - if (rc < 0) { - fprintf(stderr, "couldn't set /memory/reg\n"); - goto fail; - } - - if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { - rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", - binfo->kernel_cmdline); - if (rc < 0) { - fprintf(stderr, "couldn't set /chosen/bootargs\n"); - goto fail; - } - } - - if (binfo->initrd_size) { - rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", - binfo->initrd_start); - if (rc < 0) { - fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); - goto fail; - } - - rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", - binfo->initrd_start + binfo->initrd_size); - if (rc < 0) { - fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); - goto fail; - } - } - - if (binfo->modify_dtb) { - binfo->modify_dtb(binfo, fdt); - } - - qemu_fdt_dumpdtb(fdt, size); - - /* Put the DTB into the memory map as a ROM image: this will ensure - * the DTB is copied again upon reset, even if addr points into RAM. - */ - rom_add_blob_fixed("dtb", fdt, size, addr); - - g_free(fdt); - - return size; - -fail: - g_free(fdt); - return -1; -} - -static void do_cpu_reset(void *opaque) -{ - ARMCPU *cpu = opaque; - CPUState *cs = CPU(cpu); - CPUARMState *env = &cpu->env; - const struct arm_boot_info *info = env->boot_info; - - cpu_reset(cs); - if (info) { - if (!info->is_linux) { - int i; - /* Jump to the entry point. */ - uint64_t entry = info->entry; - - switch (info->endianness) { - case ARM_ENDIANNESS_LE: - env->cp15.sctlr_el[1] &= ~SCTLR_E0E; - for (i = 1; i < 4; ++i) { - env->cp15.sctlr_el[i] &= ~SCTLR_EE; - } - env->uncached_cpsr &= ~CPSR_E; - break; - case ARM_ENDIANNESS_BE8: - env->cp15.sctlr_el[1] |= SCTLR_E0E; - for (i = 1; i < 4; ++i) { - env->cp15.sctlr_el[i] |= SCTLR_EE; - } - env->uncached_cpsr |= CPSR_E; - break; - case ARM_ENDIANNESS_BE32: - env->cp15.sctlr_el[1] |= SCTLR_B; - break; - case ARM_ENDIANNESS_UNKNOWN: - break; /* Board's decision */ - default: - g_assert_not_reached(); - } - - if (!env->aarch64) { - env->thumb = info->entry & 1; - entry &= 0xfffffffe; - } - cpu_set_pc(cs, entry); - } else { - /* If we are booting Linux then we need to check whether we are - * booting into secure or non-secure state and adjust the state - * accordingly. Out of reset, ARM is defined to be in secure state - * (SCR.NS = 0), we change that here if non-secure boot has been - * requested. - */ - if (arm_feature(env, ARM_FEATURE_EL3)) { - /* AArch64 is defined to come out of reset into EL3 if enabled. - * If we are booting Linux then we need to adjust our EL as - * Linux expects us to be in EL2 or EL1. AArch32 resets into - * SVC, which Linux expects, so no privilege/exception level to - * adjust. - */ - if (env->aarch64) { - env->cp15.scr_el3 |= SCR_RW; - if (arm_feature(env, ARM_FEATURE_EL2)) { - env->cp15.hcr_el2 |= HCR_RW; - env->pstate = PSTATE_MODE_EL2h; - } else { - env->pstate = PSTATE_MODE_EL1h; - } - } - - /* Set to non-secure if not a secure boot */ - if (!info->secure_boot && - (cs != first_cpu || !info->secure_board_setup)) { - /* Linux expects non-secure state */ - env->cp15.scr_el3 |= SCR_NS; - } - } - - if (cs == first_cpu) { - cpu_set_pc(cs, info->loader_start); - - if (!have_dtb(info)) { - if (old_param) { - set_kernel_args_old(info); - } else { - set_kernel_args(info); - } - } - } else { - info->secondary_cpu_reset_hook(cpu, info); - } - } - } -} - -/** - * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified - * by key. - * @fw_cfg: The firmware config instance to store the data in. - * @size_key: The firmware config key to store the size of the loaded - * data under, with fw_cfg_add_i32(). - * @data_key: The firmware config key to store the loaded data under, - * with fw_cfg_add_bytes(). - * @image_name: The name of the image file to load. If it is NULL, the - * function returns without doing anything. - * @try_decompress: Whether the image should be decompressed (gunzipped) before - * adding it to fw_cfg. If decompression fails, the image is - * loaded as-is. - * - * In case of failure, the function prints an error message to stderr and the - * process exits with status 1. - */ -static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, - uint16_t data_key, const char *image_name, - bool try_decompress) -{ - size_t size = -1; - uint8_t *data; - - if (image_name == NULL) { - return; - } - - if (try_decompress) { - size = load_image_gzipped_buffer(image_name, - LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); - } - - if (size == (size_t)-1) { - gchar *contents; - gsize length; - - if (!g_file_get_contents(image_name, &contents, &length, NULL)) { - fprintf(stderr, "failed to load \"%s\"\n", image_name); - exit(1); - } - size = length; - data = (uint8_t *)contents; - } - - fw_cfg_add_i32(fw_cfg, size_key, size); - fw_cfg_add_bytes(fw_cfg, data_key, data, size); -} - -static int do_arm_linux_init(Object *obj, void *opaque) -{ - if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { - ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); - ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); - struct arm_boot_info *info = opaque; - - if (albifc->arm_linux_init) { - albifc->arm_linux_init(albif, info->secure_boot); - } - } - return 0; -} - -static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, - uint64_t *lowaddr, uint64_t *highaddr, - int elf_machine) -{ - bool elf_is64; - union { - Elf32_Ehdr h32; - Elf64_Ehdr h64; - } elf_header; - int data_swab = 0; - bool big_endian; - uint64_t ret = -1; - Error *err = NULL; - - - load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); - if (err) { - return ret; - } - - if (elf_is64) { - big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; - info->endianness = big_endian ? ARM_ENDIANNESS_BE8 - : ARM_ENDIANNESS_LE; - } else { - big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; - if (big_endian) { - if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { - info->endianness = ARM_ENDIANNESS_BE8; - } else { - info->endianness = ARM_ENDIANNESS_BE32; - /* In BE32, the CPU has a different view of the per-byte - * address map than the rest of the system. BE32 ELF files - * are organised such that they can be programmed through - * the CPU's per-word byte-reversed view of the world. QEMU - * however loads ELF files independently of the CPU. So - * tell the ELF loader to byte reverse the data for us. - */ - data_swab = 2; - } - } else { - info->endianness = ARM_ENDIANNESS_LE; - } - } - - ret = load_elf(info->kernel_filename, NULL, NULL, - pentry, lowaddr, highaddr, big_endian, elf_machine, - 1, data_swab); - if (ret <= 0) { - /* The header loaded but the image didn't */ - exit(1); - } - - return ret; -} - -static void arm_load_kernel_notify(Notifier *notifier, void *data) -{ - CPUState *cs; - int kernel_size; - int initrd_size; - int is_linux = 0; - uint64_t elf_entry, elf_low_addr, elf_high_addr; - int elf_machine; - hwaddr entry, kernel_load_offset; - static const ARMInsnFixup *primary_loader; - ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, - notifier, notifier); - ARMCPU *cpu = n->cpu; - struct arm_boot_info *info = - container_of(n, struct arm_boot_info, load_kernel_notifier); - - /* The board code is not supposed to set secure_board_setup unless - * running its code in secure mode is actually possible, and KVM - * doesn't support secure. - */ - assert(!(info->secure_board_setup && kvm_enabled())); - - /* Load the kernel. */ - if (!info->kernel_filename || info->firmware_loaded) { - - if (have_dtb(info)) { - /* If we have a device tree blob, but no kernel to supply it to (or - * the kernel is supposed to be loaded by the bootloader), copy the - * DTB to the base of RAM for the bootloader to pick up. - */ - if (load_dtb(info->loader_start, info, 0) < 0) { - exit(1); - } - } - - if (info->kernel_filename) { - FWCfgState *fw_cfg; - bool try_decompressing_kernel; - - fw_cfg = fw_cfg_find(); - try_decompressing_kernel = arm_feature(&cpu->env, - ARM_FEATURE_AARCH64); - - /* Expose the kernel, the command line, and the initrd in fw_cfg. - * We don't process them here at all, it's all left to the - * firmware. - */ - load_image_to_fw_cfg(fw_cfg, - FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, - info->kernel_filename, - try_decompressing_kernel); - load_image_to_fw_cfg(fw_cfg, - FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, - info->initrd_filename, false); - - if (info->kernel_cmdline) { - fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, - strlen(info->kernel_cmdline) + 1); - fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, - info->kernel_cmdline); - } - } - - /* We will start from address 0 (typically a boot ROM image) in the - * same way as hardware. - */ - return; - } - - if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - primary_loader = bootloader_aarch64; - kernel_load_offset = KERNEL64_LOAD_ADDR; - elf_machine = EM_AARCH64; - } else { - primary_loader = bootloader; - if (!info->write_board_setup) { - primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; - } - kernel_load_offset = KERNEL_LOAD_ADDR; - elf_machine = EM_ARM; - } - - info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); - - if (!info->secondary_cpu_reset_hook) { - info->secondary_cpu_reset_hook = default_reset_secondary; - } - if (!info->write_secondary_boot) { - info->write_secondary_boot = default_write_secondary; - } - - if (info->nb_cpus == 0) - info->nb_cpus = 1; - - /* We want to put the initrd far enough into RAM that when the - * kernel is uncompressed it will not clobber the initrd. However - * on boards without much RAM we must ensure that we still leave - * enough room for a decent sized initrd, and on boards with large - * amounts of RAM we must avoid the initrd being so far up in RAM - * that it is outside lowmem and inaccessible to the kernel. - * So for boards with less than 256MB of RAM we put the initrd - * halfway into RAM, and for boards with 256MB of RAM or more we put - * the initrd at 128MB. - */ - info->initrd_start = info->loader_start + - MIN(info->ram_size / 2, 128 * 1024 * 1024); - - /* Assume that raw images are linux kernels, and ELF images are not. */ - kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr, - &elf_high_addr, elf_machine); - if (kernel_size > 0 && have_dtb(info)) { - /* If there is still some room left at the base of RAM, try and put - * the DTB there like we do for images loaded with -bios or -pflash. - */ - if (elf_low_addr > info->loader_start - || elf_high_addr < info->loader_start) { - /* Pass elf_low_addr as address limit to load_dtb if it may be - * pointing into RAM, otherwise pass '0' (no limit) - */ - if (elf_low_addr < info->loader_start) { - elf_low_addr = 0; - } - if (load_dtb(info->loader_start, info, elf_low_addr) < 0) { - exit(1); - } - } - } - entry = elf_entry; - if (kernel_size < 0) { - kernel_size = load_uimage(info->kernel_filename, &entry, NULL, - &is_linux, NULL, NULL); - } - /* On aarch64, it's the bootloader's job to uncompress the kernel. */ - if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { - entry = info->loader_start + kernel_load_offset; - kernel_size = load_image_gzipped(info->kernel_filename, entry, - info->ram_size - kernel_load_offset); - is_linux = 1; - } - if (kernel_size < 0) { - entry = info->loader_start + kernel_load_offset; - kernel_size = load_image_targphys(info->kernel_filename, entry, - info->ram_size - kernel_load_offset); - is_linux = 1; - } - if (kernel_size < 0) { - fprintf(stderr, "qemu: could not load kernel '%s'\n", - info->kernel_filename); - exit(1); - } - info->entry = entry; - if (is_linux) { - uint32_t fixupcontext[FIXUP_MAX]; - - if (info->initrd_filename) { - initrd_size = load_ramdisk(info->initrd_filename, - info->initrd_start, - info->ram_size - - info->initrd_start); - if (initrd_size < 0) { - initrd_size = load_image_targphys(info->initrd_filename, - info->initrd_start, - info->ram_size - - info->initrd_start); - } - if (initrd_size < 0) { - fprintf(stderr, "qemu: could not load initrd '%s'\n", - info->initrd_filename); - exit(1); - } - } else { - initrd_size = 0; - } - info->initrd_size = initrd_size; - - fixupcontext[FIXUP_BOARDID] = info->board_id; - fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; - - /* for device tree boot, we pass the DTB directly in r2. Otherwise - * we point to the kernel args. - */ - if (have_dtb(info)) { - hwaddr align; - hwaddr dtb_start; - - if (elf_machine == EM_AARCH64) { - /* - * Some AArch64 kernels on early bootup map the fdt region as - * - * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] - * - * Let's play safe and prealign it to 2MB to give us some space. - */ - align = 2 * 1024 * 1024; - } else { - /* - * Some 32bit kernels will trash anything in the 4K page the - * initrd ends in, so make sure the DTB isn't caught up in that. - */ - align = 4096; - } - - /* Place the DTB after the initrd in memory with alignment. */ - dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); - if (load_dtb(dtb_start, info, 0) < 0) { - exit(1); - } - fixupcontext[FIXUP_ARGPTR] = dtb_start; - } else { - fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; - if (info->ram_size >= (1ULL << 32)) { - fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" - " Linux kernel using ATAGS (try passing a device tree" - " using -dtb)\n"); - exit(1); - } - } - fixupcontext[FIXUP_ENTRYPOINT] = entry; - - write_bootloader("bootloader", info->loader_start, - primary_loader, fixupcontext); - - if (info->nb_cpus > 1) { - info->write_secondary_boot(cpu, info); - } - if (info->write_board_setup) { - info->write_board_setup(cpu, info); - } - - /* Notify devices which need to fake up firmware initialization - * that we're doing a direct kernel boot. - */ - object_child_foreach_recursive(object_get_root(), - do_arm_linux_init, info); - } - info->is_linux = is_linux; - - for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { - ARM_CPU(cs)->env.boot_info = info; - } -} - -void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) -{ - CPUState *cs; - - info->load_kernel_notifier.cpu = cpu; - info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; - qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); - - /* CPU objects (unlike devices) are not automatically reset on system - * reset, so we must always register a handler to do so. If we're - * actually loading a kernel, the handler is also responsible for - * arranging that we start it correctly. - */ - for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { - qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); - } -} - -static const TypeInfo arm_linux_boot_if_info = { - .name = TYPE_ARM_LINUX_BOOT_IF, - .parent = TYPE_INTERFACE, - .class_size = sizeof(ARMLinuxBootIfClass), -}; - -static void arm_linux_boot_register_types(void) -{ - type_register_static(&arm_linux_boot_if_info); -} - -type_init(arm_linux_boot_register_types) |