summaryrefslogtreecommitdiffstats
path: root/qemu/docs/memory.txt
diff options
context:
space:
mode:
authorRajithaY <rajithax.yerrumsetty@intel.com>2017-04-25 03:31:15 -0700
committerRajitha Yerrumchetty <rajithax.yerrumsetty@intel.com>2017-05-22 06:48:08 +0000
commitbb756eebdac6fd24e8919e2c43f7d2c8c4091f59 (patch)
treeca11e03542edf2d8f631efeca5e1626d211107e3 /qemu/docs/memory.txt
parenta14b48d18a9ed03ec191cf16b162206998a895ce (diff)
Adding qemu as a submodule of KVMFORNFV
This Patch includes the changes to add qemu as a submodule to kvmfornfv repo and make use of the updated latest qemu for the execution of all testcase Change-Id: I1280af507a857675c7f81d30c95255635667bdd7 Signed-off-by:RajithaY<rajithax.yerrumsetty@intel.com>
Diffstat (limited to 'qemu/docs/memory.txt')
-rw-r--r--qemu/docs/memory.txt311
1 files changed, 0 insertions, 311 deletions
diff --git a/qemu/docs/memory.txt b/qemu/docs/memory.txt
deleted file mode 100644
index 431d9ca88..000000000
--- a/qemu/docs/memory.txt
+++ /dev/null
@@ -1,311 +0,0 @@
-The memory API
-==============
-
-The memory API models the memory and I/O buses and controllers of a QEMU
-machine. It attempts to allow modelling of:
-
- - ordinary RAM
- - memory-mapped I/O (MMIO)
- - memory controllers that can dynamically reroute physical memory regions
- to different destinations
-
-The memory model provides support for
-
- - tracking RAM changes by the guest
- - setting up coalesced memory for kvm
- - setting up ioeventfd regions for kvm
-
-Memory is modelled as an acyclic graph of MemoryRegion objects. Sinks
-(leaves) are RAM and MMIO regions, while other nodes represent
-buses, memory controllers, and memory regions that have been rerouted.
-
-In addition to MemoryRegion objects, the memory API provides AddressSpace
-objects for every root and possibly for intermediate MemoryRegions too.
-These represent memory as seen from the CPU or a device's viewpoint.
-
-Types of regions
-----------------
-
-There are multiple types of memory regions (all represented by a single C type
-MemoryRegion):
-
-- RAM: a RAM region is simply a range of host memory that can be made available
- to the guest.
- You typically initialize these with memory_region_init_ram(). Some special
- purposes require the variants memory_region_init_resizeable_ram(),
- memory_region_init_ram_from_file(), or memory_region_init_ram_ptr().
-
-- MMIO: a range of guest memory that is implemented by host callbacks;
- each read or write causes a callback to be called on the host.
- You initialize these with memory_region_init_io(), passing it a
- MemoryRegionOps structure describing the callbacks.
-
-- ROM: a ROM memory region works like RAM for reads (directly accessing
- a region of host memory), but like MMIO for writes (invoking a callback).
- You initialize these with memory_region_init_rom_device().
-
-- IOMMU region: an IOMMU region translates addresses of accesses made to it
- and forwards them to some other target memory region. As the name suggests,
- these are only needed for modelling an IOMMU, not for simple devices.
- You initialize these with memory_region_init_iommu().
-
-- container: a container simply includes other memory regions, each at
- a different offset. Containers are useful for grouping several regions
- into one unit. For example, a PCI BAR may be composed of a RAM region
- and an MMIO region.
-
- A container's subregions are usually non-overlapping. In some cases it is
- useful to have overlapping regions; for example a memory controller that
- can overlay a subregion of RAM with MMIO or ROM, or a PCI controller
- that does not prevent card from claiming overlapping BARs.
-
- You initialize a pure container with memory_region_init().
-
-- alias: a subsection of another region. Aliases allow a region to be
- split apart into discontiguous regions. Examples of uses are memory banks
- used when the guest address space is smaller than the amount of RAM
- addressed, or a memory controller that splits main memory to expose a "PCI
- hole". Aliases may point to any type of region, including other aliases,
- but an alias may not point back to itself, directly or indirectly.
- You initialize these with memory_region_init_alias().
-
-- reservation region: a reservation region is primarily for debugging.
- It claims I/O space that is not supposed to be handled by QEMU itself.
- The typical use is to track parts of the address space which will be
- handled by the host kernel when KVM is enabled.
- You initialize these with memory_region_init_reservation(), or by
- passing a NULL callback parameter to memory_region_init_io().
-
-It is valid to add subregions to a region which is not a pure container
-(that is, to an MMIO, RAM or ROM region). This means that the region
-will act like a container, except that any addresses within the container's
-region which are not claimed by any subregion are handled by the
-container itself (ie by its MMIO callbacks or RAM backing). However
-it is generally possible to achieve the same effect with a pure container
-one of whose subregions is a low priority "background" region covering
-the whole address range; this is often clearer and is preferred.
-Subregions cannot be added to an alias region.
-
-Region names
-------------
-
-Regions are assigned names by the constructor. For most regions these are
-only used for debugging purposes, but RAM regions also use the name to identify
-live migration sections. This means that RAM region names need to have ABI
-stability.
-
-Region lifecycle
-----------------
-
-A region is created by one of the memory_region_init*() functions and
-attached to an object, which acts as its owner or parent. QEMU ensures
-that the owner object remains alive as long as the region is visible to
-the guest, or as long as the region is in use by a virtual CPU or another
-device. For example, the owner object will not die between an
-address_space_map operation and the corresponding address_space_unmap.
-
-After creation, a region can be added to an address space or a
-container with memory_region_add_subregion(), and removed using
-memory_region_del_subregion().
-
-Various region attributes (read-only, dirty logging, coalesced mmio,
-ioeventfd) can be changed during the region lifecycle. They take effect
-as soon as the region is made visible. This can be immediately, later,
-or never.
-
-Destruction of a memory region happens automatically when the owner
-object dies.
-
-If however the memory region is part of a dynamically allocated data
-structure, you should call object_unparent() to destroy the memory region
-before the data structure is freed. For an example see VFIOMSIXInfo
-and VFIOQuirk in hw/vfio/pci.c.
-
-You must not destroy a memory region as long as it may be in use by a
-device or CPU. In order to do this, as a general rule do not create or
-destroy memory regions dynamically during a device's lifetime, and only
-call object_unparent() in the memory region owner's instance_finalize
-callback. The dynamically allocated data structure that contains the
-memory region then should obviously be freed in the instance_finalize
-callback as well.
-
-If you break this rule, the following situation can happen:
-
-- the memory region's owner had a reference taken via memory_region_ref
- (for example by address_space_map)
-
-- the region is unparented, and has no owner anymore
-
-- when address_space_unmap is called, the reference to the memory region's
- owner is leaked.
-
-
-There is an exception to the above rule: it is okay to call
-object_unparent at any time for an alias or a container region. It is
-therefore also okay to create or destroy alias and container regions
-dynamically during a device's lifetime.
-
-This exceptional usage is valid because aliases and containers only help
-QEMU building the guest's memory map; they are never accessed directly.
-memory_region_ref and memory_region_unref are never called on aliases
-or containers, and the above situation then cannot happen. Exploiting
-this exception is rarely necessary, and therefore it is discouraged,
-but nevertheless it is used in a few places.
-
-For regions that "have no owner" (NULL is passed at creation time), the
-machine object is actually used as the owner. Since instance_finalize is
-never called for the machine object, you must never call object_unparent
-on regions that have no owner, unless they are aliases or containers.
-
-
-Overlapping regions and priority
---------------------------------
-Usually, regions may not overlap each other; a memory address decodes into
-exactly one target. In some cases it is useful to allow regions to overlap,
-and sometimes to control which of an overlapping regions is visible to the
-guest. This is done with memory_region_add_subregion_overlap(), which
-allows the region to overlap any other region in the same container, and
-specifies a priority that allows the core to decide which of two regions at
-the same address are visible (highest wins).
-Priority values are signed, and the default value is zero. This means that
-you can use memory_region_add_subregion_overlap() both to specify a region
-that must sit 'above' any others (with a positive priority) and also a
-background region that sits 'below' others (with a negative priority).
-
-If the higher priority region in an overlap is a container or alias, then
-the lower priority region will appear in any "holes" that the higher priority
-region has left by not mapping subregions to that area of its address range.
-(This applies recursively -- if the subregions are themselves containers or
-aliases that leave holes then the lower priority region will appear in these
-holes too.)
-
-For example, suppose we have a container A of size 0x8000 with two subregions
-B and C. B is a container mapped at 0x2000, size 0x4000, priority 2; C is
-an MMIO region mapped at 0x0, size 0x6000, priority 1. B currently has two
-of its own subregions: D of size 0x1000 at offset 0 and E of size 0x1000 at
-offset 0x2000. As a diagram:
-
- 0 1000 2000 3000 4000 5000 6000 7000 8000
- |------|------|------|------|------|------|------|------|
- A: [ ]
- C: [CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC]
- B: [ ]
- D: [DDDDD]
- E: [EEEEE]
-
-The regions that will be seen within this address range then are:
- [CCCCCCCCCCCC][DDDDD][CCCCC][EEEEE][CCCCC]
-
-Since B has higher priority than C, its subregions appear in the flat map
-even where they overlap with C. In ranges where B has not mapped anything
-C's region appears.
-
-If B had provided its own MMIO operations (ie it was not a pure container)
-then these would be used for any addresses in its range not handled by
-D or E, and the result would be:
- [CCCCCCCCCCCC][DDDDD][BBBBB][EEEEE][BBBBB]
-
-Priority values are local to a container, because the priorities of two
-regions are only compared when they are both children of the same container.
-This means that the device in charge of the container (typically modelling
-a bus or a memory controller) can use them to manage the interaction of
-its child regions without any side effects on other parts of the system.
-In the example above, the priorities of D and E are unimportant because
-they do not overlap each other. It is the relative priority of B and C
-that causes D and E to appear on top of C: D and E's priorities are never
-compared against the priority of C.
-
-Visibility
-----------
-The memory core uses the following rules to select a memory region when the
-guest accesses an address:
-
-- all direct subregions of the root region are matched against the address, in
- descending priority order
- - if the address lies outside the region offset/size, the subregion is
- discarded
- - if the subregion is a leaf (RAM or MMIO), the search terminates, returning
- this leaf region
- - if the subregion is a container, the same algorithm is used within the
- subregion (after the address is adjusted by the subregion offset)
- - if the subregion is an alias, the search is continued at the alias target
- (after the address is adjusted by the subregion offset and alias offset)
- - if a recursive search within a container or alias subregion does not
- find a match (because of a "hole" in the container's coverage of its
- address range), then if this is a container with its own MMIO or RAM
- backing the search terminates, returning the container itself. Otherwise
- we continue with the next subregion in priority order
-- if none of the subregions match the address then the search terminates
- with no match found
-
-Example memory map
-------------------
-
-system_memory: container@0-2^48-1
- |
- +---- lomem: alias@0-0xdfffffff ---> #ram (0-0xdfffffff)
- |
- +---- himem: alias@0x100000000-0x11fffffff ---> #ram (0xe0000000-0xffffffff)
- |
- +---- vga-window: alias@0xa0000-0xbffff ---> #pci (0xa0000-0xbffff)
- | (prio 1)
- |
- +---- pci-hole: alias@0xe0000000-0xffffffff ---> #pci (0xe0000000-0xffffffff)
-
-pci (0-2^32-1)
- |
- +--- vga-area: container@0xa0000-0xbffff
- | |
- | +--- alias@0x00000-0x7fff ---> #vram (0x010000-0x017fff)
- | |
- | +--- alias@0x08000-0xffff ---> #vram (0x020000-0x027fff)
- |
- +---- vram: ram@0xe1000000-0xe1ffffff
- |
- +---- vga-mmio: mmio@0xe2000000-0xe200ffff
-
-ram: ram@0x00000000-0xffffffff
-
-This is a (simplified) PC memory map. The 4GB RAM block is mapped into the
-system address space via two aliases: "lomem" is a 1:1 mapping of the first
-3.5GB; "himem" maps the last 0.5GB at address 4GB. This leaves 0.5GB for the
-so-called PCI hole, that allows a 32-bit PCI bus to exist in a system with
-4GB of memory.
-
-The memory controller diverts addresses in the range 640K-768K to the PCI
-address space. This is modelled using the "vga-window" alias, mapped at a
-higher priority so it obscures the RAM at the same addresses. The vga window
-can be removed by programming the memory controller; this is modelled by
-removing the alias and exposing the RAM underneath.
-
-The pci address space is not a direct child of the system address space, since
-we only want parts of it to be visible (we accomplish this using aliases).
-It has two subregions: vga-area models the legacy vga window and is occupied
-by two 32K memory banks pointing at two sections of the framebuffer.
-In addition the vram is mapped as a BAR at address e1000000, and an additional
-BAR containing MMIO registers is mapped after it.
-
-Note that if the guest maps a BAR outside the PCI hole, it would not be
-visible as the pci-hole alias clips it to a 0.5GB range.
-
-MMIO Operations
----------------
-
-MMIO regions are provided with ->read() and ->write() callbacks; in addition
-various constraints can be supplied to control how these callbacks are called:
-
- - .valid.min_access_size, .valid.max_access_size define the access sizes
- (in bytes) which the device accepts; accesses outside this range will
- have device and bus specific behaviour (ignored, or machine check)
- - .valid.unaligned specifies that the *device being modelled* supports
- unaligned accesses; if false, unaligned accesses will invoke the
- appropriate bus or CPU specific behaviour.
- - .impl.min_access_size, .impl.max_access_size define the access sizes
- (in bytes) supported by the *implementation*; other access sizes will be
- emulated using the ones available. For example a 4-byte write will be
- emulated using four 1-byte writes, if .impl.max_access_size = 1.
- - .impl.unaligned specifies that the *implementation* supports unaligned
- accesses; if false, unaligned accesses will be emulated by two aligned
- accesses.
- - .old_mmio eases the porting of code that was formerly using
- cpu_register_io_memory(). It should not be used in new code.