summaryrefslogtreecommitdiffstats
path: root/kernel/Documentation/thermal/cpu-cooling-api.txt
diff options
context:
space:
mode:
authorJosé Pekkarinen <jose.pekkarinen@nokia.com>2016-04-11 10:41:07 +0300
committerJosé Pekkarinen <jose.pekkarinen@nokia.com>2016-04-13 08:17:18 +0300
commite09b41010ba33a20a87472ee821fa407a5b8da36 (patch)
treed10dc367189862e7ca5c592f033dc3726e1df4e3 /kernel/Documentation/thermal/cpu-cooling-api.txt
parentf93b97fd65072de626c074dbe099a1fff05ce060 (diff)
These changes are the raw update to linux-4.4.6-rt14. Kernel sources
are taken from kernel.org, and rt patch from the rt wiki download page. During the rebasing, the following patch collided: Force tick interrupt and get rid of softirq magic(I70131fb85). Collisions have been removed because its logic was found on the source already. Change-Id: I7f57a4081d9deaa0d9ccfc41a6c8daccdee3b769 Signed-off-by: José Pekkarinen <jose.pekkarinen@nokia.com>
Diffstat (limited to 'kernel/Documentation/thermal/cpu-cooling-api.txt')
-rw-r--r--kernel/Documentation/thermal/cpu-cooling-api.txt156
1 files changed, 155 insertions, 1 deletions
diff --git a/kernel/Documentation/thermal/cpu-cooling-api.txt b/kernel/Documentation/thermal/cpu-cooling-api.txt
index 753e47cc2..71653584c 100644
--- a/kernel/Documentation/thermal/cpu-cooling-api.txt
+++ b/kernel/Documentation/thermal/cpu-cooling-api.txt
@@ -36,8 +36,162 @@ the user. The registration APIs returns the cooling device pointer.
np: pointer to the cooling device device tree node
clip_cpus: cpumask of cpus where the frequency constraints will happen.
-1.1.3 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
+1.1.3 struct thermal_cooling_device *cpufreq_power_cooling_register(
+ const struct cpumask *clip_cpus, u32 capacitance,
+ get_static_t plat_static_func)
+
+Similar to cpufreq_cooling_register, this function registers a cpufreq
+cooling device. Using this function, the cooling device will
+implement the power extensions by using a simple cpu power model. The
+cpus must have registered their OPPs using the OPP library.
+
+The additional parameters are needed for the power model (See 2. Power
+models). "capacitance" is the dynamic power coefficient (See 2.1
+Dynamic power). "plat_static_func" is a function to calculate the
+static power consumed by these cpus (See 2.2 Static power).
+
+1.1.4 struct thermal_cooling_device *of_cpufreq_power_cooling_register(
+ struct device_node *np, const struct cpumask *clip_cpus, u32 capacitance,
+ get_static_t plat_static_func)
+
+Similar to cpufreq_power_cooling_register, this function register a
+cpufreq cooling device with power extensions using the device tree
+information supplied by the np parameter.
+
+1.1.5 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
This interface function unregisters the "thermal-cpufreq-%x" cooling device.
cdev: Cooling device pointer which has to be unregistered.
+
+2. Power models
+
+The power API registration functions provide a simple power model for
+CPUs. The current power is calculated as dynamic + (optionally)
+static power. This power model requires that the operating-points of
+the CPUs are registered using the kernel's opp library and the
+`cpufreq_frequency_table` is assigned to the `struct device` of the
+cpu. If you are using CONFIG_CPUFREQ_DT then the
+`cpufreq_frequency_table` should already be assigned to the cpu
+device.
+
+The `plat_static_func` parameter of `cpufreq_power_cooling_register()`
+and `of_cpufreq_power_cooling_register()` is optional. If you don't
+provide it, only dynamic power will be considered.
+
+2.1 Dynamic power
+
+The dynamic power consumption of a processor depends on many factors.
+For a given processor implementation the primary factors are:
+
+- The time the processor spends running, consuming dynamic power, as
+ compared to the time in idle states where dynamic consumption is
+ negligible. Herein we refer to this as 'utilisation'.
+- The voltage and frequency levels as a result of DVFS. The DVFS
+ level is a dominant factor governing power consumption.
+- In running time the 'execution' behaviour (instruction types, memory
+ access patterns and so forth) causes, in most cases, a second order
+ variation. In pathological cases this variation can be significant,
+ but typically it is of a much lesser impact than the factors above.
+
+A high level dynamic power consumption model may then be represented as:
+
+Pdyn = f(run) * Voltage^2 * Frequency * Utilisation
+
+f(run) here represents the described execution behaviour and its
+result has a units of Watts/Hz/Volt^2 (this often expressed in
+mW/MHz/uVolt^2)
+
+The detailed behaviour for f(run) could be modelled on-line. However,
+in practice, such an on-line model has dependencies on a number of
+implementation specific processor support and characterisation
+factors. Therefore, in initial implementation that contribution is
+represented as a constant coefficient. This is a simplification
+consistent with the relative contribution to overall power variation.
+
+In this simplified representation our model becomes:
+
+Pdyn = Capacitance * Voltage^2 * Frequency * Utilisation
+
+Where `capacitance` is a constant that represents an indicative
+running time dynamic power coefficient in fundamental units of
+mW/MHz/uVolt^2. Typical values for mobile CPUs might lie in range
+from 100 to 500. For reference, the approximate values for the SoC in
+ARM's Juno Development Platform are 530 for the Cortex-A57 cluster and
+140 for the Cortex-A53 cluster.
+
+
+2.2 Static power
+
+Static leakage power consumption depends on a number of factors. For a
+given circuit implementation the primary factors are:
+
+- Time the circuit spends in each 'power state'
+- Temperature
+- Operating voltage
+- Process grade
+
+The time the circuit spends in each 'power state' for a given
+evaluation period at first order means OFF or ON. However,
+'retention' states can also be supported that reduce power during
+inactive periods without loss of context.
+
+Note: The visibility of state entries to the OS can vary, according to
+platform specifics, and this can then impact the accuracy of a model
+based on OS state information alone. It might be possible in some
+cases to extract more accurate information from system resources.
+
+The temperature, operating voltage and process 'grade' (slow to fast)
+of the circuit are all significant factors in static leakage power
+consumption. All of these have complex relationships to static power.
+
+Circuit implementation specific factors include the chosen silicon
+process as well as the type, number and size of transistors in both
+the logic gates and any RAM elements included.
+
+The static power consumption modelling must take into account the
+power managed regions that are implemented. Taking the example of an
+ARM processor cluster, the modelling would take into account whether
+each CPU can be powered OFF separately or if only a single power
+region is implemented for the complete cluster.
+
+In one view, there are others, a static power consumption model can
+then start from a set of reference values for each power managed
+region (e.g. CPU, Cluster/L2) in each state (e.g. ON, OFF) at an
+arbitrary process grade, voltage and temperature point. These values
+are then scaled for all of the following: the time in each state, the
+process grade, the current temperature and the operating voltage.
+However, since both implementation specific and complex relationships
+dominate the estimate, the appropriate interface to the model from the
+cpu cooling device is to provide a function callback that calculates
+the static power in this platform. When registering the cpu cooling
+device pass a function pointer that follows the `get_static_t`
+prototype:
+
+ int plat_get_static(cpumask_t *cpumask, int interval,
+ unsigned long voltage, u32 &power);
+
+`cpumask` is the cpumask of the cpus involved in the calculation.
+`voltage` is the voltage at which they are operating. The function
+should calculate the average static power for the last `interval`
+milliseconds. It returns 0 on success, -E* on error. If it
+succeeds, it should store the static power in `power`. Reading the
+temperature of the cpus described by `cpumask` is left for
+plat_get_static() to do as the platform knows best which thermal
+sensor is closest to the cpu.
+
+If `plat_static_func` is NULL, static power is considered to be
+negligible for this platform and only dynamic power is considered.
+
+The platform specific callback can then use any combination of tables
+and/or equations to permute the estimated value. Process grade
+information is not passed to the model since access to such data, from
+on-chip measurement capability or manufacture time data, is platform
+specific.
+
+Note: the significance of static power for CPUs in comparison to
+dynamic power is highly dependent on implementation. Given the
+potential complexity in implementation, the importance and accuracy of
+its inclusion when using cpu cooling devices should be assessed on a
+case by case basis.
+