summaryrefslogtreecommitdiffstats
path: root/labconfig/labconfig.yaml
blob: 07a8a156e6a3d6eca7713b2ac24afa04469aaaff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
lab:
  location: intel
  racks:
  - rack: pod6
    nodes:
    - name: rack-6-m1
      architecture: x86_64
      roles: [network,control]
      nics:
      - ifname: eth1
        spaces: [admin]
        mac: ["00:1e:67:d8:ba:46"]
      - ifname: eth4
        spaces: [data]
        mac: ["90:E2:BA:83:FD:20"]
      power:
        type: ipmi
        address: 10.2.117.96
        user: root
        pass: root
    - name: rack-6-m2
      architecture: x86_64
      roles: [compute,control,storage]
      nics:
      - ifname: eth1
        spaces: [admin]
        mac: ["00:1e:67:e0:0b:72"]
      - ifname: eth4
        spaces: [data]
        mac: ["90:E2:BA:75:30:F4"]
      power:
        type: ipmi
        address: 10.2.117.97
        user: root
        pass: root
    - name: rack-6-m3
      architecture: x86_64
      roles: [compute,control,storage]
      nics:
      - ifname: eth1
        spaces: [admin]
        mac: ["00:1e:67:e0:09:33"]
      - ifname: eth4
        spaces: [data]
        mac: ["90:E2:BA:83:FE:74"]
      power:
        type: ipmi
        address: 10.2.117.98
        user: root
        pass: root
    - name: rack-6-m4
      architecture: x86_64
      roles: [compute,storage]
      nics:
      - ifname: eth1
        spaces: [admin]
        mac: ["00:1e:67:e0:09:fb"]
      - ifname: eth4
        spaces: [data]
        mac: ["90:E2:BA:84:15:7C"]
      power:
        type: ipmi
        address: 10.2.117.99
        user: root
        pass: root
    - name: rack-6-m5
      architecture: x86_64
      roles: [compute,storage]
      nics:
      - ifname: eth1
        spaces: [admin]
        mac: ["00:1e:67:cf:bc:f8"]
      - ifname: eth4
        spaces: [data]
        mac: ["90:E2:BA:84:08:F4"]
      power:
        type: ipmi
        address: 10.2.117.100
        user: root
        pass: root
    floating-ip-range: 10.6.15.6,10.6.15.250,10.6.15.254,10.6.15.0/24
    ext-port: "90:E2:BA:83:FD:21,90:E2:BA:75:30:F5,90:E2:BA:83:FE:75,90:E2:BA:84:15:7D,90:E2:BA:84:08:F5"
    dns: 8.8.8.8
opnfv:
  release: c
  distro: trusty
  type: noha
  openstack: liberty
  sdncontroller:
  - type: nosdn
  storage:
  - type: ceph
    disk: /srv
  feature: odl_l2
  spaces:
  - type: admin
    bridge: brAdm
    cidr: 10.6.1.0/24
    gateway: 10.6.1.1
    vlan:
  - type: data
    bridge: brData
    cidr: 10.6.12.0/24
    gateway:
    vlan:
  - type: public
    bridge: brPublic
    cidr: 10.6.15.0/24
    gateway: 10.6.15.254
    vlan:
  - type: external
    bridge: brExt
    cidr:
    gateway:
    ipaddress: 10.2.117.107
    vlan:
832' href='#n832'>832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/*
 * intel_pstate.c: Native P state management for Intel processors
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/acpi.h>
#include <linux/vmalloc.h>
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
#include <asm/cpufeature.h>

#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d

#define FRAC_BITS 8
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(s64 x, s64 y)
{
	return div64_s64((int64_t)x << FRAC_BITS, y);
}

static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

struct sample {
	int32_t core_pct_busy;
	u64 aperf;
	u64 mperf;
	u64 tsc;
	int freq;
	ktime_t time;
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	max_pstate_physical;
	int	scaling;
	int	turbo_pstate;
};

struct vid_data {
	int min;
	int max;
	int turbo;
	int32_t ratio;
};

struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
	int32_t last_err;
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
	struct vid_data vid;
	struct _pid pid;

	ktime_t last_sample_time;
	u64	prev_aperf;
	u64	prev_mperf;
	u64	prev_tsc;
	struct sample sample;
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

struct pstate_funcs {
	int (*get_max)(void);
	int (*get_max_physical)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
	int (*get_scaling)(void);
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
};

struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
};

static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
static int hwp_active;

struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			     int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static signed int pid_calc(struct _pid *pid, int32_t busy)
{
	signed int result;
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

	fp_error = int_tofp(pid->setpoint) - busy;

	if (abs(fp_error) <= int_tofp(pid->deadband))
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
	result = result + (1 << (FRAC_BITS-1));
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);

	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;

	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	limits->turbo_disabled =
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

static void intel_pstate_hwp_set(void)
{
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	get_online_cpus();

	for_each_online_cpu(cpu) {
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
		adj_range = limits->min_perf_pct * range / 100;
		min = hw_min + adj_range;
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		adj_range = limits->max_perf_pct * range / 100;
		max = hw_min + adj_range;
		if (limits->no_turbo) {
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}

	put_online_cpus();
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}

static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
	{NULL, NULL}
};

static void __init intel_pstate_debug_expose_params(void)
{
	struct dentry *debugfs_parent;
	int i = 0;

	if (hwp_active)
		return;
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits->object);		\
	}

static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
	else
		ret = sprintf(buf, "%u\n", limits->no_turbo);

	return ret;
}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
			      const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	update_turbo_state();
	if (limits->turbo_disabled) {
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
		return -EPERM;
	}

	limits->no_turbo = clamp_t(int, input, 0, 1);

	if (hwp_active)
		intel_pstate_hwp_set();

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));

	if (hwp_active)
		intel_pstate_hwp_set();
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));

	if (hwp_active)
		intel_pstate_hwp_set();
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
define_one_global_ro(turbo_pct);
define_one_global_ro(num_pstates);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	&turbo_pct.attr,
	&num_pstates.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

static void __init intel_pstate_sysfs_expose_params(void)
{
	struct kobject *intel_pstate_kobject;
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
	BUG_ON(rc);
}
/************************** sysfs end ************************/

static void intel_pstate_hwp_enable(struct cpudata *cpudata)
{
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
}

static int atom_get_min_pstate(void)
{
	u64 value;

	rdmsrl(ATOM_RATIOS, value);
	return (value >> 8) & 0x7F;
}

static int atom_get_max_pstate(void)
{
	u64 value;

	rdmsrl(ATOM_RATIOS, value);
	return (value >> 16) & 0x7F;
}

static int atom_get_turbo_pstate(void)
{
	u64 value;

	rdmsrl(ATOM_TURBO_RATIOS, value);
	return value & 0x7F;
}

static void atom_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = (u64)pstate << 8;
	if (limits->no_turbo && !limits->turbo_disabled)
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = ceiling_fp(vid_fp);

	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

	val |= vid;

	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
}

static int silvermont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0x7;
	WARN_ON(i > 4);

	return silvermont_freq_table[i];
}

static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
}

static void atom_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(ATOM_VIDS, value);
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));

	rdmsrl(ATOM_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
}

static int core_get_min_pstate(void)
{
	u64 value;

	rdmsrl(MSR_PLATFORM_INFO, value);
	return (value >> 40) & 0xFF;
}

static int core_get_max_pstate_physical(void)
{
	u64 value;

	rdmsrl(MSR_PLATFORM_INFO, value);
	return (value >> 8) & 0xFF;
}

static int core_get_max_pstate(void)
{
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}

skip_tar:
	return max_pstate;
}

static int core_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (value) & 255;
	if (ret <= nont)
		ret = nont;
	return ret;
}

static inline int core_get_scaling(void)
{
	return 100000;
}

static void core_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;

	val = (u64)pstate << 8;
	if (limits->no_turbo && !limits->turbo_disabled)
		val |= (u64)1 << 32;

	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
}

static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.set = core_set_pstate,
	},
};

static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
		.set = atom_set_pstate,
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
	},
};

static struct cpu_defaults airmont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
		.set = atom_set_pstate,
		.get_scaling = airmont_get_scaling,
		.get_vid = atom_get_vid,
	},
};

static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.set = core_set_pstate,
	},
};

static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
	int max_perf_adj;
	int min_perf;

	if (limits->no_turbo || limits->turbo_disabled)
		max_perf = cpu->pstate.max_pstate;

	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
{
	int max_perf, min_perf;

	if (force) {
		update_turbo_state();

		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

		pstate = clamp_t(int, pstate, min_perf, max_perf);

		if (pstate == cpu->pstate.current_pstate)
			return;
	}
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);

	cpu->pstate.current_pstate = pstate;

	pstate_funcs.set(cpu, pstate);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
	cpu->pstate.scaling = pstate_funcs.get_scaling();

	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
}

static inline void intel_pstate_calc_busy(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
	int64_t core_pct;

	core_pct = int_tofp(sample->aperf) * int_tofp(100);
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));

	sample->freq = fp_toint(
		mul_fp(int_tofp(
			cpu->pstate.max_pstate_physical *
			cpu->pstate.scaling / 100),
			core_pct));

	sample->core_pct_busy = (int32_t)core_pct;
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
	unsigned long flags;
	u64 tsc;

	local_irq_save(flags);
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
	if (cpu->prev_mperf == mperf) {
		local_irq_restore(flags);
		return;
	}

	tsc = rdtsc();
	local_irq_restore(flags);

	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.tsc =  tsc;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
	cpu->sample.tsc -= cpu->prev_tsc;

	intel_pstate_calc_busy(cpu);

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
	cpu->prev_tsc = tsc;
}

static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
{
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
	s64 duration_us;
	u32 sample_time;

	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
	core_busy = cpu->sample.core_pct_busy;
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
	current_pstate = int_tofp(cpu->pstate.current_pstate);
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));

	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
				      int_tofp(duration_us));
		core_busy = mul_fp(core_busy, sample_ratio);
	}

	return core_busy;
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
	int32_t busy_scaled;
	struct _pid *pid;
	signed int ctl;
	int from;
	struct sample *sample;

	from = cpu->pstate.current_pstate;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	/* Negative values of ctl increase the pstate and vice versa */
	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
		fp_toint(busy_scaled),
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
}

static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);

	intel_pstate_adjust_busy_pstate(cpu);

	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
	ICPU(0x37, silvermont_params),
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
	ICPU(0x3d, core_params),
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
	ICPU(0x47, core_params),
	ICPU(0x4c, airmont_params),
	ICPU(0x4e, core_params),
	ICPU(0x4f, core_params),
	ICPU(0x5e, core_params),
	ICPU(0x56, core_params),
	ICPU(0x57, knl_params),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

	intel_pstate_get_cpu_pstates(cpu);

	init_timer_deferrable(&cpu->timer);
	cpu->timer.data = (unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
	sample = &cpu->sample;
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
		pr_debug("intel_pstate: set performance\n");
		limits = &performance_limits;
		if (hwp_active)
			intel_pstate_hwp_set();
		return 0;
	}

	pr_debug("intel_pstate: set powersave\n");
	limits = &powersave_limits;
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));

	if (hwp_active)
		intel_pstate_hwp_set();

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
	cpufreq_verify_within_cpu_limits(policy);

	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
		return -EINVAL;

	return 0;
}

static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
{
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];

	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);

	del_timer_sync(&all_cpu_data[cpu_num]->timer);
	if (hwp_active)
		return;

	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
}

static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int rc;

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
	.stop_cpu	= intel_pstate_stop_cpu,
	.name		= "intel_pstate",
};

static int __initdata no_load;
static int __initdata no_hwp;
static int __initdata hwp_only;
static unsigned int force_load;

static int intel_pstate_msrs_not_valid(void)
{
	if (!pstate_funcs.get_max() ||
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
		return -ENODEV;

	return 0;
}

static void copy_pid_params(struct pstate_adjust_policy *policy)
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

static void copy_cpu_funcs(struct pstate_funcs *funcs)
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_max_physical = funcs->get_max_physical;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.get_scaling = funcs->get_scaling;
	pstate_funcs.set       = funcs->set;
	pstate_funcs.get_vid   = funcs->get_vid;
}

#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
	int  oem_pwr_table;
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}

	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
			}
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
#endif /* CONFIG_ACPI */

static int __init intel_pstate_init(void)
{
	int cpu, rc = 0;
	const struct x86_cpu_id *id;
	struct cpu_defaults *cpu_def;

	if (no_load)
		return -ENODEV;

	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

	cpu_def = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);

	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

	pr_info("Intel P-state driver initializing.\n");

	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
	if (!all_cpu_data)
		return -ENOMEM;

	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
		pr_info("intel_pstate: HWP enabled\n");
		hwp_active++;
	}

	if (!hwp_active && hwp_only)
		goto out;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();

	return rc;
out:
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
	return -ENODEV;
}
device_initcall(intel_pstate_init);

static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
		no_hwp = 1;
	}
	if (!strcmp(str, "force"))
		force_load = 1;
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");