aboutsummaryrefslogtreecommitdiffstats
path: root/docs/com/test/examples/math.html
diff options
context:
space:
mode:
authorMorgan Richomme <morgan.richomme@orange.com>2016-06-01 14:42:03 +0000
committerGerrit Code Review <gerrit@172.30.200.206>2016-06-01 14:42:03 +0000
commita574679f7b2636e74e6a262f4badad0445d10c3a (patch)
tree466429721c3454a9236b033a788ca72f9f4f4507 /docs/com/test/examples/math.html
parent70b96b8719b48c51b59182162fe8e018c55e7364 (diff)
parentbb522c6efd9a02e611014038566b15feb28da0c8 (diff)
Merge "Add framework for presentations"
Diffstat (limited to 'docs/com/test/examples/math.html')
-rwxr-xr-xdocs/com/test/examples/math.html185
1 files changed, 185 insertions, 0 deletions
diff --git a/docs/com/test/examples/math.html b/docs/com/test/examples/math.html
new file mode 100755
index 00000000..1b80e034
--- /dev/null
+++ b/docs/com/test/examples/math.html
@@ -0,0 +1,185 @@
+<!doctype html>
+<html lang="en">
+
+ <head>
+ <meta charset="utf-8">
+
+ <title>reveal.js - Math Plugin</title>
+
+ <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
+
+ <link rel="stylesheet" href="../../css/reveal.css">
+ <link rel="stylesheet" href="../../css/theme/night.css" id="theme">
+ </head>
+
+ <body>
+
+ <div class="reveal">
+
+ <div class="slides">
+
+ <section>
+ <h2>reveal.js Math Plugin</h2>
+ <p>A thin wrapper for MathJax</p>
+ </section>
+
+ <section>
+ <h3>The Lorenz Equations</h3>
+
+ \[\begin{aligned}
+ \dot{x} &amp; = \sigma(y-x) \\
+ \dot{y} &amp; = \rho x - y - xz \\
+ \dot{z} &amp; = -\beta z + xy
+ \end{aligned} \]
+ </section>
+
+ <section>
+ <h3>The Cauchy-Schwarz Inequality</h3>
+
+ <script type="math/tex; mode=display">
+ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
+ </script>
+ </section>
+
+ <section>
+ <h3>A Cross Product Formula</h3>
+
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
+ \mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
+ \frac{\partial X}{\partial u} &amp; \frac{\partial Y}{\partial u} &amp; 0 \\
+ \frac{\partial X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
+ \end{vmatrix} \]
+ </section>
+
+ <section>
+ <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
+
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+ </section>
+
+ <section>
+ <h3>An Identity of Ramanujan</h3>
+
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+ 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+ {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+ </section>
+
+ <section>
+ <h3>A Rogers-Ramanujan Identity</h3>
+
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+ </section>
+
+ <section>
+ <h3>Maxwell&#8217;s Equations</h3>
+
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
+ \]
+ </section>
+
+ <section>
+ <section>
+ <h3>The Lorenz Equations</h3>
+
+ <div class="fragment">
+ \[\begin{aligned}
+ \dot{x} &amp; = \sigma(y-x) \\
+ \dot{y} &amp; = \rho x - y - xz \\
+ \dot{z} &amp; = -\beta z + xy
+ \end{aligned} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>The Cauchy-Schwarz Inequality</h3>
+
+ <div class="fragment">
+ \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
+ </div>
+ </section>
+
+ <section>
+ <h3>A Cross Product Formula</h3>
+
+ <div class="fragment">
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
+ \mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
+ \frac{\partial X}{\partial u} &amp; \frac{\partial Y}{\partial u} &amp; 0 \\
+ \frac{\partial X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
+ \end{vmatrix} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
+
+ <div class="fragment">
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>An Identity of Ramanujan</h3>
+
+ <div class="fragment">
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+ 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+ {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+ </div>
+ </section>
+
+ <section>
+ <h3>A Rogers-Ramanujan Identity</h3>
+
+ <div class="fragment">
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+ </div>
+ </section>
+
+ <section>
+ <h3>Maxwell&#8217;s Equations</h3>
+
+ <div class="fragment">
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
+ \]
+ </div>
+ </section>
+ </section>
+
+ </div>
+
+ </div>
+
+ <script src="../../lib/js/head.min.js"></script>
+ <script src="../../js/reveal.js"></script>
+
+ <script>
+
+ Reveal.initialize({
+ history: true,
+ transition: 'linear',
+
+ math: {
+ // mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
+ config: 'TeX-AMS_HTML-full'
+ },
+
+ dependencies: [
+ { src: '../../lib/js/classList.js' },
+ { src: '../../plugin/math/math.js', async: true }
+ ]
+ });
+
+ </script>
+
+ </body>
+</html>