summaryrefslogtreecommitdiffstats
path: root/docs/testing/user/testspecification/tempest_ipv6/ipv6_scenario.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/testing/user/testspecification/tempest_ipv6/ipv6_scenario.rst')
-rw-r--r--docs/testing/user/testspecification/tempest_ipv6/ipv6_scenario.rst624
1 files changed, 624 insertions, 0 deletions
diff --git a/docs/testing/user/testspecification/tempest_ipv6/ipv6_scenario.rst b/docs/testing/user/testspecification/tempest_ipv6/ipv6_scenario.rst
new file mode 100644
index 00000000..f3a279f0
--- /dev/null
+++ b/docs/testing/user/testspecification/tempest_ipv6/ipv6_scenario.rst
@@ -0,0 +1,624 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+.. http://creativecommons.org/licenses/by/4.0
+.. (c) OPNFV
+
+----------------------------------------------------------------------------
+Test Case 1 - IPv6 Address Assignment - Dual Stack, SLAAC, DHCPv6 Stateless
+----------------------------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.dhcpv6_stateless
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'dhcpv6_stateless'
+and ipv6_address_mode 'dhcpv6_stateless'.
+In this case, guest instance obtains IPv6 address from OpenStack managed radvd
+using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
+verifies the ping6 available VM can ping the other VM's v4 and v6 addresses
+as well as the v6 subnet's gateway ip in the same network, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_dhcp6_stateless_from_os
+
+Test preconditions
+------------------
+
+There should exist a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id"
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create one IPv6 subnet of the network created in test action 1 in
+ ipv6_ra_mode 'dhcpv6_stateless' and ipv6_address_mode 'dhcpv6_stateless',
+ storing the "id" parameter returned in the response
+* Test action 6: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id
+* Test action 7: Boot two VMs on this network, storing the "id" parameters returned in the response
+* **Test assertion 1:** The vNIC of each VM gets one v4 address and one v6 address actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 address
+ as well as the v6 subnet's gateway ip
+* Test action 8: Delete the 2 VMs created in test action 7, using the stored ids
+* Test action 9: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 11: Delete the IPv6 subnet created in test action 5, using the stored id
+* Test action 12: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 13: Delete the network created in test action 1, using the stored id
+* Test action 14: List all networks, verifying the id is no longer present
+* **Test assertion 6:** The "id" parameter is not present in the network list
+
+Pass / fail criteria
+'''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode
+'dhcpv6_stateless' and ipv6_address_mode 'dhcpv6_stateless',
+and verify the ping6 available VM can ping the other VM's v4 and v6 addresses as well as
+the v6 subnet's gateway ip in the same network. Specifically it verifies that:
+
+* The IPv6 addresses in mode 'dhcpv6_stateless' assigned successfully
+* The VM can ping the other VM's IPv4 and IPv6 private addresses as well as the v6 subnet's gateway ip
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+--------------------------------------------------------------------------------------
+Test Case 2 - IPv6 Address Assignment - Dual Net, Dual Stack, SLAAC, DHCPv6 Stateless
+--------------------------------------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.dualnet_dhcpv6_stateless
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'dhcpv6_stateless'
+and ipv6_address_mode 'dhcpv6_stateless'.
+In this case, guest instance obtains IPv6 address from OpenStack managed radvd
+using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
+verifies the ping6 available VM can ping the other VM's v4 address in one network
+and v6 address in another network as well as the v6 subnet's gateway ip, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_dhcp6_stateless_from_os
+
+Test preconditions
+------------------
+
+There should exists a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id"
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create another network, storing the "id" parameter returned in the response
+* Test action 6: Create one IPv6 subnet of network created in test action 5 in
+ ipv6_ra_mode 'dhcpv6_stateless' and ipv6_address_mode 'dhcpv6_stateless',
+ storing the "id" parameter returned in the response
+* Test action 7: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id
+* Test action 8: Boot two VMs on these two networks, storing the "id" parameters returned in the response
+* Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5
+* **Test assertion 1:** The 1st vNIC of each VM gets one v4 address assigned and
+ the 2nd vNIC of each VM gets one v6 address actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 address
+ as well as the v6 subnet's gateway ip
+* Test action 10: Delete the 2 VMs created in test action 8, using the stored ids
+* Test action 11: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 13: Delete the IPv6 subnet created in test action 6, using the stored id
+* Test action 14: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids
+* Test action 16: List all networks, verifying the ids are no longer present
+* **Test assertion 6:** The two "id" parameters are not present in the network list
+
+Pass / fail criteria
+''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode 'dhcpv6_stateless'
+and ipv6_address_mode 'dhcpv6_stateless', and verify the ping6 available VM can ping
+the other VM's v4 address in one network and v6 address in another network as well as
+the v6 subnet's gateway ip. Specifically it verifies that:
+
+* The IPv6 addresses in mode 'dhcpv6_stateless' assigned successfully
+* The VM can ping the other VM's IPv4 address in one network and IPv6 address in another
+ network as well as the v6 subnet's gateway ip
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+-----------------------------------------------------------------------------------------------
+Test Case 3 - IPv6 Address Assignment - Multiple Prefixes, Dual Stack, SLAAC, DHCPv6 Stateless
+-----------------------------------------------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.multiple_prefixes_dhcpv6_stateless
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'dhcpv6_stateless'
+and ipv6_address_mode 'dhcpv6_stateless'.
+In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
+using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
+verifies the ping6 available VM can ping the other VM's one v4 address and two v6
+addresses with different prefixes as well as the v6 subnets' gateway ips in the
+same network, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_dhcpv6_stateless
+
+Test preconditions
+------------------
+
+There should exist a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id"
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create two IPv6 subnets of the network created in test action 1 in
+ ipv6_ra_mode 'dhcpv6_stateless' and ipv6_address_mode 'dhcpv6_stateless',
+ storing the "id" parameters returned in the response
+* Test action 6: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids
+* Test action 7: Boot two VMs on this network, storing the "id" parameters returned in the response
+* **Test assertion 1:** The vNIC of each VM gets one v4 address and two v6 addresses with
+ different prefixes actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 addresses
+ as well as the v6 subnets' gateway ips
+* Test action 8: Delete the 2 VMs created in test action 7, using the stored ids
+* Test action 9: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 11: Delete two IPv6 subnets created in test action 5, using the stored ids
+* Test action 12: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 13: Delete the network created in test action 1, using the stored id
+* Test action 14: List all networks, verifying the id is no longer present
+* **Test assertion 6:** The "id" parameter is not present in the network list
+
+Pass / fail criteria
+'''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode 'dhcpv6_stateless'
+and ipv6_address_mode 'dhcpv6_stateless',
+and verify the ping6 available VM can ping the other VM's v4 address and two
+v6 addresses with different prefixes as well as the v6 subnets' gateway ips in the same network.
+Specifically it verifies that:
+
+* The different prefixes IPv6 addresses in mode 'dhcpv6_stateless' assigned successfully
+* The VM can ping the other VM's IPv4 and IPv6 private addresses as well as the v6 subnets' gateway ips
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+---------------------------------------------------------------------------------------------------------
+Test Case 4 - IPv6 Address Assignment - Dual Net, Multiple Prefixes, Dual Stack, SLAAC, DHCPv6 Stateless
+---------------------------------------------------------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.dualnet_multiple_prefixes_dhcpv6_stateless
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'dhcpv6_stateless'
+and ipv6_address_mode 'dhcpv6_stateless'.
+In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
+using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
+verifies the ping6 available VM can ping the other VM's v4 address in one network
+and two v6 addresses with different prefixes in another network as well as the
+v6 subnets' gateway ips, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_dhcpv6_stateless
+
+Test preconditions
+------------------
+
+There should exist a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id"
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create another network, storing the "id" parameter returned in the response
+* Test action 6: Create two IPv6 subnets of network created in test action 5 in
+ ipv6_ra_mode 'dhcpv6_stateless' and ipv6_address_mode 'dhcpv6_stateless',
+ storing the "id" parameters returned in the response
+* Test action 7: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids
+* Test action 8: Boot two VMs on these two networks, storing the "id" parameters returned in the response
+* Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5
+* **Test assertion 1:** The vNIC of each VM gets one v4 address and two v6 addresses
+ with different prefixes actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 addresses
+ as well as the v6 subnets' gateway ips
+* Test action 10: Delete the 2 VMs created in test action 8, using the stored ids
+* Test action 11: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 13: Delete two IPv6 subnets created in test action 6, using the stored ids
+* Test action 14: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids
+* Test action 16: List all networks, verifying the ids are no longer present
+* **Test assertion 6:** The two "id" parameters are not present in the network list
+
+Pass / fail criteria
+'''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode 'dhcpv6_stateless'
+and ipv6_address_mode 'dhcpv6_stateless',
+and verify the ping6 available VM can ping the other VM's v4 address in one network and two
+v6 addresses with different prefixes in another network as well as the v6 subnets'
+gateway ips. Specifically it verifies that:
+
+* The IPv6 addresses in mode 'dhcpv6_stateless' assigned successfully
+* The VM can ping the other VM's IPv4 and IPv6 private addresses as well as the v6 subnets' gateway ips
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+----------------------------------------------------------
+Test Case 5 - IPv6 Address Assignment - Dual Stack, SLAAC
+----------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.slaac
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'slaac' and
+ipv6_address_mode 'slaac'.
+In this case, guest instance obtains IPv6 address from OpenStack managed radvd
+using SLAAC. This test case then verifies the ping6 available VM can ping the other
+VM's v4 and v6 addresses as well as the v6 subnet's gateway ip in the
+same network, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_slaac_from_os
+
+Test preconditions
+------------------
+
+There should exist a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id"
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create one IPv6 subnet of the network created in test action 1 in
+ ipv6_ra_mode 'slaac' and ipv6_address_mode 'slaac', storing the "id" parameter returned in the response
+* Test action 6: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id
+* Test action 7: Boot two VMs on this network, storing the "id" parameters returned in the response
+* **Test assertion 1:** The vNIC of each VM gets one v4 address and one v6 address actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 address
+ as well as the v6 subnet's gateway ip
+* Test action 8: Delete the 2 VMs created in test action 7, using the stored ids
+* Test action 9: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 11: Delete the IPv6 subnet created in test action 5, using the stored id
+* Test action 12: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 13: Delete the network created in test action 1, using the stored id
+* Test action 14: List all networks, verifying the id is no longer present
+* **Test assertion 6:** The "id" parameter is not present in the network list
+
+Pass / fail criteria
+'''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode 'slaac'
+and ipv6_address_mode 'slaac',
+and verify the ping6 available VM can ping the other VM's v4 and v6 addresses as well as
+the v6 subnet's gateway ip in the same network. Specifically it verifies that:
+
+* The IPv6 addresses in mode 'slaac' assigned successfully
+* The VM can ping the other VM's IPv4 and IPv6 private addresses as well as the v6 subnet's gateway ip
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+--------------------------------------------------------------------
+Test Case 6 - IPv6 Address Assignment - Dual Net, Dual Stack, SLAAC
+--------------------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.dualnet_slaac
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'slaac' and
+ipv6_address_mode 'slaac'.
+In this case, guest instance obtains IPv6 address from OpenStack managed radvd
+using SLAAC. This test case then verifies the ping6 available VM can ping the other
+VM's v4 address in one network and v6 address in another network as well as the
+v6 subnet's gateway ip, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_slaac_from_os
+
+Test preconditions
+------------------
+
+There should exist a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id"
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create another network, storing the "id" parameter returned in the response
+* Test action 6: Create one IPv6 subnet of network created in test action 5 in
+ ipv6_ra_mode 'slaac' and ipv6_address_mode 'slaac', storing the "id" parameter returned in the response
+* Test action 7: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id
+* Test action 8: Boot two VMs on these two networks, storing the "id" parameters returned in the response
+* Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5
+* **Test assertion 1:** The 1st vNIC of each VM gets one v4 address assigned and
+ the 2nd vNIC of each VM gets one v6 address actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 address
+ as well as the v6 subnet's gateway ip
+* Test action 10: Delete the 2 VMs created in test action 8, using the stored ids
+* Test action 11: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 13: Delete the IPv6 subnet created in test action 6, using the stored id
+* Test action 14: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids
+* Test action 16: List all networks, verifying the ids are no longer present
+* **Test assertion 6:** The two "id" parameters are not present in the network list
+
+Pass / fail criteria
+'''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode 'slaac'
+and ipv6_address_mode 'slaac',
+and verify the ping6 available VM can ping the other VM's v4 address in one network and
+v6 address in another network as well as the v6 subnet's gateway ip. Specifically it verifies that:
+
+* The IPv6 addresses in mode 'slaac' assigned successfully
+* The VM can ping the other VM's IPv4 address in one network and IPv6 address
+ in another network as well as the v6 subnet's gateway ip
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+-----------------------------------------------------------------------------
+Test Case 7 - IPv6 Address Assignment - Multiple Prefixes, Dual Stack, SLAAC
+-----------------------------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.multiple_prefixes_slaac
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'slaac' and
+ipv6_address_mode 'slaac'.
+In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
+using SLAAC. This test case then verifies the ping6 available VM can ping the other
+VM's one v4 address and two v6 addresses with different prefixes as well as the v6
+subnets' gateway ips in the same network, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_slaac
+
+Test preconditions
+------------------
+
+There should exists a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create two IPv6 subnets of the network created in test action 1 in
+ ipv6_ra_mode 'slaac' and ipv6_address_mode 'slaac', storing the "id" parameters returned in the response
+* Test action 6: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids
+* Test action 7: Boot two VMs on this network, storing the "id" parameters returned in the response
+* **Test assertion 1:** The vNIC of each VM gets one v4 address and two v6 addresses with
+ different prefixes actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 addresses
+ as well as the v6 subnets' gateway ips
+* Test action 8: Delete the 2 VMs created in test action 7, using the stored ids
+* Test action 9: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 11: Delete two IPv6 subnets created in test action 5, using the stored ids
+* Test action 12: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 13: Delete the network created in test action 1, using the stored id
+* Test action 14: List all networks, verifying the id is no longer present
+* **Test assertion 6:** The "id" parameter is not present in the network list
+
+Pass / fail criteria
+'''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode 'slaac'
+and ipv6_address_mode 'slaac',
+and verify the ping6 available VM can ping the other VM's v4 address and two
+v6 addresses with different prefixes as well as the v6 subnets' gateway ips in the same network.
+Specifically it verifies that:
+
+* The different prefixes IPv6 addresses in mode 'slaac' assigned successfully
+* The VM can ping the other VM's IPv4 and IPv6 private addresses as well as the v6 subnets' gateway ips
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+---------------------------------------------------------------------------------------
+Test Case 8 - IPv6 Address Assignment - Dual Net, Dual Stack, Multiple Prefixes, SLAAC
+---------------------------------------------------------------------------------------
+
+Short name
+----------
+
+dovetail.tempest.ipv6_scenario.dualnet_multiple_prefixes_slaac
+
+Use case specification
+----------------------
+
+This test case evaluates IPv6 address assignment in ipv6_ra_mode 'slaac' and
+ipv6_address_mode 'slaac'.
+In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
+using SLAAC. This test case then verifies the ping6 available VM can ping the other
+VM's v4 address in one network and two v6 addresses with different prefixes in another
+network as well as the v6 subnets' gateway ips, the reference is
+
+tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_slaac
+
+Test preconditions
+------------------
+
+There should exist a public router or a public network.
+
+Basic test flow execution description and pass/fail criteria
+------------------------------------------------------------
+
+Test execution
+'''''''''''''''
+
+* Test action 1: Create one network, storing the "id" parameter returned in the response
+* Test action 2: Create one IPv4 subnet of the created network, storing the "id"
+ parameter returned in the response
+* Test action 3: If there exists a public router, use it as the router. Otherwise,
+ use the public network to create a router
+* Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id
+* Test action 5: Create another network, storing the "id" parameter returned in the response
+* Test action 6: Create two IPv6 subnets of network created in test action 5 in
+ ipv6_ra_mode 'slaac' and ipv6_address_mode 'slaac', storing the "id" parameters returned in the response
+* Test action 7: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids
+* Test action 8: Boot two VMs on these two networks, storing the "id" parameters returned in the response
+* Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5
+* **Test assertion 1:** The vNIC of each VM gets one v4 address and two v6 addresses
+ with different prefixes actually assigned
+* **Test assertion 2:** Each VM can ping the other's v4 private address
+* **Test assertion 3:** The ping6 available VM can ping the other's v6 addresses
+ as well as the v6 subnets' gateway ips
+* Test action 10: Delete the 2 VMs created in test action 8, using the stored ids
+* Test action 11: List all VMs, verifying the ids are no longer present
+* **Test assertion 4:** The two "id" parameters are not present in the VM list
+* Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id
+* Test action 13: Delete two IPv6 subnets created in test action 6, using the stored ids
+* Test action 14: List all subnets, verifying the ids are no longer present
+* **Test assertion 5:** The "id" parameters of IPv4 and IPv6 are not present in the list
+* Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids
+* Test action 16: List all networks, verifying the ids are no longer present
+* **Test assertion 6:** The two "id" parameters are not present in the network list
+
+Pass / fail criteria
+'''''''''''''''''''''
+
+This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode 'slaac'
+and ipv6_address_mode 'slaac',
+and verify the ping6 available VM can ping the other VM's v4 address in one network and two
+v6 addresses with different prefixes in another network as well as the v6 subnets' gateway ips.
+Specifically it verifies that:
+
+* The IPv6 addresses in mode 'slaac' assigned successfully
+* The VM can ping the other VM's IPv4 and IPv6 private addresses as well as the v6 subnets' gateway ips
+* All items created using create commands are able to be removed using the returned identifiers
+
+Post conditions
+---------------
+
+None
+
+
+