1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
|
#include <stdint.h>
#include <inttypes.h>
#include <signal.h>
#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_mbuf.h>
#include <rte_ring.h> // fifo's
#include <rte_errno.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "libcrypto.h"
// #include "zuc.h"
/* PDCP need the following cores: 1 x stat, 1 x libcrypt, min 1 x pdcp */
#define MIN_CORE_COUNT (4)
#define MAX_CORE_COUNT (8)
#define US_PER_SEC (1000000)
#define STAT_CORE_ID (0)
#define LIBCRYPT_CORE_ID (1)
#define DIST_CORE (2)
#define FIRST_PDCP_CORE (3)
/* Internal DPDK info */
#define PRIV_SIZE (0)
#define MBUF_SIZE (10000)
#define MBUF_CACHE_SIZE (250)
#define MBUF_COUNT (4096)
#define TX_QUEUE_ID (0)
#define RX_QUEUE_ID (0)
#define RX_RING_SIZE (1024)
#define TX_RING_SIZE (1024)
#define RX_BURST_SIZE (16)
/* Batch memory management system */
#define IN_FIFO_SIZE (4096*2)
#define OUT_FIFO_SIZE (4096*2)
#define CALLBACK_FIFO_SIZE (4096*2)
/* .'.--.'. */
volatile uint8_t quit_signal;
static void int_handler(int sig_num) {
printf("\nExiting on signal %d\n", sig_num);
quit_signal = 1;
}
static int stat_print(void);
int init_pdcp(void);
int callback(data_ctx_t data_ctx, data_out_t data_out[MAX_BURST_SIZE], uint16_t burst_count);
int dist_worker(void *p);
/* System variables */
typedef struct {
struct rte_mbuf *pkt;
void *last_address;
} return_batch_s;
typedef struct {
struct rte_ring *in_fifo;
struct rte_ring *out_fifo;
return_batch_s *current_return_batch;
} worker_s;
uint8_t worker_count;
worker_s workers[MAX_CORE_COUNT];
typedef struct {
volatile uint64_t start_time;
volatile uint64_t util_time;
volatile uint64_t pkts_in;
volatile uint64_t pkts_out;
volatile uint64_t data_out;
volatile uint64_t data_in;
} status_s;
volatile uint64_t init_time;
volatile status_s status[MAX_CORE_COUNT];
struct rte_mempool *mbuf_pool;
struct rte_ring *callback_fifo;
int init_pdcp(void) {
int retval = 0;
uint8_t pid;
mbuf_pool = rte_pktmbuf_pool_create( "MBUF_PDCP_POOL",
MBUF_COUNT,
MBUF_CACHE_SIZE,
PRIV_SIZE,
MBUF_SIZE + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (NULL == mbuf_pool)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
struct ether_addr addr;
const struct rte_eth_conf port_conf = {
.rxmode = {
.max_rx_pkt_len = ETHER_MAX_LEN,
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 1, /**< CRC stripped by hardware */
},
};
uint8_t nb_ports = rte_eth_dev_count();
/* Initialize all ports. */
for (pid = 0; pid < nb_ports; pid++){
/* Get and display the port MAC address. */
rte_eth_macaddr_get(pid, &addr);
if(0xff == addr.addr_bytes[3]){
// printf("Found libcrypto port at %d\n", pid);
continue;
}
/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(pid, 1, 1, &port_conf);
if (retval != 0) {
rte_exit(EXIT_FAILURE, "Error in rte_eth_dev_configure\n");
return retval;
}
retval = rte_eth_rx_queue_setup(pid, RX_QUEUE_ID, RX_RING_SIZE, rte_eth_dev_socket_id(pid), NULL, mbuf_pool);
if (retval < 0){
rte_exit(EXIT_FAILURE, "Error in rte_eth_rx_queue_setup\n");
return retval;
}
retval = rte_eth_tx_queue_setup(pid, TX_QUEUE_ID, TX_RING_SIZE, rte_eth_dev_socket_id(pid), NULL);
if (retval < 0){
rte_exit(EXIT_FAILURE, "Error in rte_eth_tx_queue_setup\n");
return retval;
}
/* Start the port. */
retval = rte_eth_dev_start(pid);
if (retval < 0){
rte_exit(EXIT_FAILURE, "Error in rte_eth_dev_start\n");
return retval;
}
printf("port %d has started\n", pid);
}
callback_fifo = rte_ring_create("callback_fifo_name", CALLBACK_FIFO_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
if (NULL == callback_fifo){
printf("Error creating callback_fifo!\n");
return -1;
}
return 0;
}
int callback(data_ctx_t data_ctx, data_out_t data_out[MAX_BURST_SIZE], uint16_t burst_count) {
uint8_t tx_port_id = 0;
int retval;
void *fifo_return_data[1];
uint64_t wid = (uint64_t)data_ctx;
// printf("callback for worker %ld\n", wid);
if (NULL == workers[wid].current_return_batch) {
while (rte_ring_empty(workers[wid].out_fifo)){
if ( unlikely(quit_signal) ) return 0;
}
retval = rte_ring_dequeue(workers[wid].out_fifo, fifo_return_data);
if( unlikely(retval) ){
rte_exit(EXIT_FAILURE, "Received batch with empty sequence FIFO !!!\n");
}
workers[wid].current_return_batch = (return_batch_s*)fifo_return_data[0];
}
// status[wid].pkts_out += burst_count;
int i;
for (i = 0; i < burst_count; ++i) {
// status[wid].data_out += data_out[i].length;
uint64_t *data = (uint64_t *)data_out[i].data;
/* If the data is the last pkt in a batch, Tx it out now! */
if( data == workers[wid].current_return_batch->last_address ){
// printf("Last address found - Tx time!!\n");
status[wid].pkts_out++;
/* Restore the batch header from the buffer. */
rte_pktmbuf_prepend(workers[wid].current_return_batch->pkt, sizeof(struct rte_mbuf_batch_pkt_hdr));
/* Store the data return address on the queue. */
while (rte_ring_full(callback_fifo)) {
printf("callback_fifo is full!!!\n");
if ( unlikely(quit_signal) ){
return -1;
}
}
retval = rte_ring_enqueue(callback_fifo, workers[wid].current_return_batch->pkt);
if( unlikely(0 != retval) ){
rte_exit(EXIT_FAILURE, "Error in rte_ring_enqueue into return_addr_fifo\n");
}
// uint16_t nb_tx = 0;
// do {
// if ( unlikely(quit_signal) ){
// return -1;
// }
// nb_tx = rte_eth_tx_burst(tx_port_id, TX_QUEUE_ID, &workers[wid].current_return_batch->pkt, 1);
// } while( unlikely(0 == nb_tx) );
// rte_pktmbuf_free(workers[wid].current_return_batch->pkt);
free(workers[wid].current_return_batch);
/* Get the next return batch. */
/*
If the traffic stop, this point can deadlock the system.
This loop will wait for new return batch, which will hold back all other sec_ctxs.
*/
while (rte_ring_empty(workers[wid].out_fifo)){
if(i == burst_count - 1){
// printf("Last batch wid: %d\n", wid);
workers[wid].current_return_batch = NULL;
return 0;
}
printf("No batch in fifo\n");
if ( unlikely(quit_signal) ) return 0;
}
retval = rte_ring_dequeue(workers[wid].out_fifo, fifo_return_data);
if( unlikely(retval) ){
rte_exit(EXIT_FAILURE, "Received batch with empty sequence FIFO !!!\n");
}
workers[wid].current_return_batch = (return_batch_s*)fifo_return_data[0];
}
}
return 0;
}
static int pdcp_worker(void *p) {
uint64_t wid = (uint64_t)p;
printf("Starting PDCP worker %ld\n", wid);
int retval;
struct rte_mbuf_batch_ctrl ctrl;
struct rte_mbuf pkt;
struct rte_mbuf *batch;
void *work_dequeue[1];
status[wid].start_time = 0;
status[wid].util_time = 0;
iv_t iv;
symmetric_key_t sym_key;
memset(sym_key, 0 , KEY_SIZE);
char in_fifo_name[32];
snprintf(in_fifo_name, 32, "in_fifo_name_%ld", wid);
workers[wid].in_fifo = rte_ring_create(in_fifo_name, IN_FIFO_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
if (NULL == workers[wid].in_fifo){
printf("Error creating in_fifo for worker %ld!\n", wid);
return -1;
}
char out_fifo_name[32];
snprintf(out_fifo_name, 32, "out_fifo_name_%ld", wid);
workers[wid].out_fifo = rte_ring_create(out_fifo_name, OUT_FIFO_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
if (NULL == workers[wid].out_fifo){
printf("Error creating out_fifo for worker %ld!\n", wid);
return -1;
}
/* Initialise the current return batch to none. */
workers[wid].current_return_batch = NULL;
data_ctx_t data_ctx = (data_ctx_t)wid;
sec_ctx_t sec_ctx = nt_crypto_new_security_context(LOOPBACK, sym_key, data_ctx);
if(NULL == sec_ctx){
printf("Error creating new security context!\n");
return -1;
}
while ( !quit_signal ) {
// status[wid].start_time = rte_rdtsc();
// printf("worker %ld looking for work\n", wid);
/* Wait for work in the queue. */
while (rte_ring_empty(workers[wid].in_fifo)){
if ( unlikely(quit_signal) ) return 0;
}
retval = rte_ring_dequeue(workers[wid].in_fifo, work_dequeue);
if( unlikely(retval) ){
rte_exit(EXIT_FAILURE, "rte_ring_dequeue error\n");
}
batch = (struct rte_mbuf *)work_dequeue[0];
// printf("worker %ld found work\n", wid);
batch->ol_flags |= PKT_BATCH;
return_batch_s *return_batch = malloc(sizeof(return_batch_s));
/* Store the mbuf on the fifo, when it returns from libcrypto, it is send back. */
return_batch->pkt = batch;
/* Remove the batch header from the buffer. */
rte_pktmbuf_adj(batch, sizeof(struct rte_mbuf_batch_pkt_hdr));
batch->batch_size = batch->pkt_len;
/* Store the data return address on the queue. */
while (rte_ring_full(workers[wid].out_fifo)) {
if ( unlikely(quit_signal) ){
return -1;
}
}
retval = rte_ring_enqueue(workers[wid].out_fifo, return_batch);
if( unlikely(0 != retval) ){
rte_exit(EXIT_FAILURE, "Error in rte_ring_enqueue into return_addr_fifo\n");
}
data_t data;
if (rte_pktmbuf_batch_get_first(batch, &pkt, &ctrl)) {
do {
// status[wid].data_in += pkt.data_len + 24;
status[wid].data_in += pkt.data_len;
status[wid].pkts_in++;
data = rte_pktmbuf_mtod(&pkt, data_t);
status[wid].start_time = rte_rdtsc();
/* Copy the ciphertext directly back into the RX mbuf at the same position. */
retval = nt_crypto_cipher(sec_ctx, &iv, data, data, pkt.data_len);
if( unlikely(retval) ){
printf("nt_crypto_cipher did not cipher!?!\n");
quit_signal = 1;
break;
}
status[wid].util_time += rte_rdtsc() - status[wid].start_time;
} while (rte_pktmbuf_batch_get_next(batch, &pkt, &ctrl));
/* Store the (last) data address of the batch => used to determine when a batch has returned. */
return_batch->last_address = data;
} // for each buffer
// status[wid].util_time += rte_rdtsc() - status[wid].start_time;
} // forever
printf("Ending PDCP worker %ld\n", wid);
return 0;
}
volatile uint32_t tx_count = 0;
volatile uint32_t try_counter = 0;
int dist_worker(void *p) {
uint64_t wid = (uint64_t)p;
printf("Starting DIST worker %ld\n", wid);
int retval;
uint8_t rx_port_id = 0;
uint8_t tx_port_id = 0;
uint8_t queue_id = 0;
uint8_t current_worker = 0;
void *tx_pkt_data[1];
struct rte_mbuf * tx_batch;
/* Ensure that all workers has started up! */
// sleep(1);
usleep(10000);
while ( !quit_signal ) {
/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[RX_BURST_SIZE];
status[wid].start_time = rte_rdtsc();
const uint32_t nb_rx = rte_eth_rx_burst(rx_port_id, queue_id, bufs, RX_BURST_SIZE);
if (likely(nb_rx)) {
uint16_t buf;
for (buf = 0; buf < nb_rx; buf++) {
// printf("Enqueue at worker %d\n", current_worker);
while (rte_ring_full(workers[current_worker].in_fifo)) {
if ( unlikely(quit_signal) ){
printf("workers[current_worker].in_fifo is full: %d\n", current_worker);
return -1;
}
}
retval = rte_ring_enqueue( workers[current_worker].in_fifo, bufs[buf] );
if( unlikely(0 != retval) ){
rte_exit(EXIT_FAILURE, "Error in rte_ring_enqueue into return_addr_fifo\n");
}
current_worker = (current_worker + 1) % (worker_count - FIRST_PDCP_CORE);
// status[wid].start_time = rte_rdtsc();
// if( !rte_ring_empty(callback_fifo) ){
// retval = rte_ring_dequeue(callback_fifo, tx_pkt_data);
// if( unlikely(retval) ){
// rte_exit(EXIT_FAILURE, "rte_ring_dequeue error\n");
// }
// tx_batch = (struct rte_mbuf *)tx_pkt_data[0];
// uint16_t nb_tx = 0;
// do {
// if ( unlikely(quit_signal) ){
// return -1;
// }
// nb_tx = rte_eth_tx_burst(tx_port_id, TX_QUEUE_ID, &tx_batch, 1);
// try_counter++;
// } while( unlikely(0 == nb_tx) );
// tx_count++;
// status[wid].util_time += (rte_rdtsc() - status[wid].start_time);
// }
}
}
// status[wid].util_time += rte_rdtsc() - status[wid].start_time;
// status[wid].start_time = rte_rdtsc();
int i;
for(i = 0; i < 8; ++i){
if(rte_ring_empty(callback_fifo) ){
break;
}
// printf("dist_worker Tx time!\n");
// status[wid].pkts_out++;
retval = rte_ring_dequeue(callback_fifo, tx_pkt_data);
if( unlikely(retval) ){
rte_exit(EXIT_FAILURE, "rte_ring_dequeue error\n");
}
tx_batch = (struct rte_mbuf *)tx_pkt_data[0];
// status[wid].start_time = rte_rdtsc();
uint16_t nb_tx = 0;
do {
if ( unlikely(quit_signal) ){
return -1;
}
nb_tx = rte_eth_tx_burst(tx_port_id, TX_QUEUE_ID, &tx_batch, 1);
} while( unlikely(0 == nb_tx) );
// status[wid].util_time += (rte_rdtsc() - status[wid].start_time);
} /*for Tx batch. */
status[wid].util_time += (rte_rdtsc() - status[wid].start_time);
} /* Forever */
printf("Ending DIST worker %ld\n", wid);
return 0;
}
int main(int argc, char *argv[]) {
printf("Welcome to PDCP\n");
uint8_t portid, worker_core, core;
quit_signal = 0;
/* Catch ctrl-c so we can print on exit. */
signal(SIGINT, int_handler);
// srand(4);
/* Initialize the Environment Abstraction Layer (EAL). */
int ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
argc -= ret;
argv += ret;
worker_count = rte_lcore_count();
if ( MIN_CORE_COUNT > worker_count ) {
printf("\nERROR: Need at least %i cores.\n", MIN_CORE_COUNT);
return -1;
}
printf("Launching libcrypto worker on core: %d\n", LIBCRYPT_CORE_ID);
ret = nt_crypto_init(callback, LIBCRYPT_CORE_ID);
if(ret){
printf("Error in nt_crypto_init\n");
return -1;
}
ret = init_pdcp();
// printf("Launching dist_worker worker on core: %d\n", DIST_CORE);
rte_eal_remote_launch((lcore_function_t *)dist_worker, (void*)DIST_CORE, DIST_CORE);
/* Start security contexts from the first free core - after the libcrypto thread. */
for (worker_core = FIRST_PDCP_CORE; worker_core < worker_count; ++worker_core) {
uint64_t idx = worker_core - FIRST_PDCP_CORE;
// printf("Launching PDCP worker on core: %d\n", worker_core);
rte_eal_remote_launch((lcore_function_t *)pdcp_worker, (void*)idx, worker_core);
// rte_eal_remote_launch((lcore_function_t *)pdcp_worker, (void*)worker_core, worker_core);
// usleep(10000);
}
stat_print();
nt_crypto_end();
RTE_LCORE_FOREACH_SLAVE(core) {
if (rte_eal_wait_lcore(core) < 0)
return -1;
}
uint8_t nb_ports = rte_eth_dev_count();
for (portid = 0; portid < nb_ports; portid++) {
printf("Closing port %i\n", portid);
rte_eth_dev_stop(portid);
rte_eth_dev_close(portid);
}
return 0;
}
static int stat_print(void) {
uint64_t total_pkt_out = 0;
uint64_t total_pkt_in;
uint64_t prev_total_pkt_in = 0;
uint64_t total_data_in;
uint64_t prev_total_data_in = 0;
uint64_t total_util_time = 0;
init_time = rte_rdtsc();
while ( !quit_signal ) {
total_pkt_in = 0;
total_data_in = 0;
total_pkt_out = 0;
total_util_time = 0;
uint8_t i;
for (i = 0; i < 2; ++i) {
total_data_in += status[i].data_in;
total_pkt_in += status[i].pkts_in;
total_pkt_out += status[i].pkts_out;
total_util_time += status[i].util_time;
// printf("status[%d].util_time = %d\n", i , status[i].util_time/1000000000);
}
uint64_t byte_per_sec = total_data_in - prev_total_data_in;
prev_total_data_in = total_data_in;
double mbps = (byte_per_sec * 8 ) / 1000.0 / 1000.0;
double mpps = (double)((total_pkt_in - prev_total_pkt_in) / 1000000.0);
prev_total_pkt_in = total_pkt_in;
double util = (double)total_util_time / (double)(rte_rdtsc() - init_time);
double dist_util = (double)status[DIST_CORE].util_time / (double)(rte_rdtsc() - init_time);
// printf("status[DIST_CORE].util_time = %0.2f\n", status[DIST_CORE].util_time / 1000000000.0);
// printf("rte_rdtsc() - init_time = %0.2f\n", (rte_rdtsc() - init_time)/1000000000.0 ) ;
printf("IN: %ld\tOUT: %ld\tinflight: %ld\tbw: %0.0f Mb/s\tmpps: %2.2f\tutil: %2.2f\tdutil: %2.2f\n", total_pkt_in, total_pkt_out, total_pkt_in - total_pkt_out, mbps, mpps, util, dist_util );
sleep(1);
}
return 0;
}
|