/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <rte_lpm.h>
#include <rte_cycles.h>
#include <string.h>
#include <rte_version.h>
#include <rte_ip.h>
#include <rte_byteorder.h>
#include "prox_lua.h"
#include "prox_lua_types.h"
#include "quit.h"
#include "log.h"
#include "handle_routing.h"
#include "tx_pkt.h"
#include "gre.h"
#include "lconf.h"
#include "prox_port_cfg.h"
#include "etypes.h"
#include "prefetch.h"
#include "hash_entry_types.h"
#include "mpls.h"
#include "qinq.h"
#include "prox_cfg.h"
#include "prox_shared.h"
#include "prox_cksum.h"
#include "mbuf_utils.h"
#include "prox_compat.h"
struct task_routing {
struct task_base base;
uint8_t runtime_flags;
struct lcore_cfg *lconf;
struct rte_lpm *ipv4_lpm;
struct next_hop *next_hops;
uint32_t number_free_rules;
uint16_t qinq_tag;
uint32_t marking[4];
uint64_t src_mac[PROX_MAX_PORTS];
};
static void routing_update(struct task_base *tbase, void **data, uint16_t n_msgs)
{
struct task_routing *task = (struct task_routing *)tbase;
struct route_msg *msg;
for (uint16_t i = 0; i < n_msgs; ++i) {
msg = (struct route_msg *)data[i];
if (task->number_free_rules == 0) {
plog_warn("Failed adding route: %u.%u.%u.%u/%u: lpm table full\n",
msg->ip_bytes[0], msg->ip_bytes[1], msg->ip_bytes[2],
msg->ip_bytes[3], msg->prefix);
} else {
if (rte_lpm_add(task->ipv4_lpm, rte_bswap32(msg->ip), msg->prefix, msg->nh)) {
plog_warn("Failed adding route: %u.%u.%u.%u/%u\n",
msg->ip_bytes[0], msg->ip_bytes[1], msg->ip_bytes[2],
msg->ip_bytes[3], msg->prefix);
} else {
task->number_free_rules--;
}
}
}
}
static void init_task_routing(struct task_base *tbase, struct task_args *targ)
{
struct task_routing *task = (struct task_routing *)tbase;
const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
struct lpm4 *lpm;
task->lconf = targ->lconf;
task->qinq_tag = targ->qinq_tag;
task->runtime_flags = targ->runtime_flags;
PROX_PANIC(!strcmp(targ->route_table, ""), "route table not specified\n");
if (targ->flags & TASK_ARG_LOCAL_LPM) {
int ret = lua_to_lpm4(prox_lua(), GLOBAL, targ->route_table, socket_id, &lpm);
PROX_PANIC(ret, "Failed to load IPv4 LPM:\n%s\n", get_lua_to_errors());
prox_sh_add_socket(socket_id, targ->route_table, lpm);
task->number_free_rules = lpm->n_free_rules;
}
else {
lpm = prox_sh_find_socket(socket_id, targ->route_table);
if (!lpm) {
int ret = lua_to_lpm4(prox_lua(), GLOBAL, targ->route_table, socket_id, &lpm);
PROX_PANIC(ret, "Failed to load IPv4 LPM:\n%s\n", get_lua_to_errors());
prox_sh_add_socket(socket_id, targ->route_table, lpm);
}
}
task->ipv4_lpm = lpm->rte_lpm;
task->next_hops = lpm->next_hops;
task->number_free_rules = lpm->n_free_rules;
for (uint32_t i = 0; i < MAX_HOP_INDEX; i++) {
int tx_port = task->next_hops[i].mac_port.out_idx;
if ((tx_port > targ->nb_txports - 1) && (tx_port > targ->nb_txrings - 1)) {
PROX_PANIC(1, "Routing Table contains port %d but only %d tx port/ %d ring:\n", tx_port, targ->nb_txports, targ->nb_txrings);
}
}
if (targ->nb_txrings) {
struct task_args *dtarg;
struct core_task ct;
for (uint32_t i = 0; i < targ->nb_txrings; ++i) {
ct = targ->core_task_set[0].core_task[i];
dtarg = core_targ_get(ct.core, ct.task);
dtarg = find_reachable_task_sending_to_port(dtarg);
if (task->runtime_flags & TASK_MPLS_TAGGING) {
task->src_mac[i] = (0x0000ffffffffffff & ((*(uint64_t*)&prox_port_cfg[dtarg->tx_port_queue[0].port].eth_addr))) | ((uint64_t)ETYPE_MPLSU << (64 - 16));
} else {
task->src_mac[i] = (0x0000ffffffffffff & ((*(uint64_t*)&prox_port_cfg[dtarg->tx_port_queue[0].port].eth_addr))) | ((uint64_t)ETYPE_IPv4 << (64 - 16));
}
}
} else {
for (uint32_t i = 0; i < targ->nb_txports; ++i) {
if (task->runtime_flags & TASK_MPLS_TAGGING) {
task->src_mac[i] = (0x0000ffffffffffff & ((*(uint64_t*)&prox_port_cfg[targ->tx_port_queue[i].port].eth_addr))) | ((uint64_t)ETYPE_MPLSU << (64 - 16));
} else {
task->src_mac[i] = (0x0000ffffffffffff & ((*(uint64_t*)&prox_port_cfg[targ->tx_port_queue[i].port].eth_addr))) | ((uint64_t)ETYPE_IPv4 << (64 - 16));
}
}
}
for (uint32_t i = 0; i < 4; ++i) {
task->marking[i] = rte_bswap32(targ->marking[i] << 9);
}
struct prox_port_cfg *port = find_reachable_port(targ);
targ->lconf->ctrl_func_m[targ->task] = routing_update;
targ->lconf->ctrl_timeout = freq_to_tsc(20);
}
static inline uint8_t handle_routing(struct task_routing *task, struct rte_mbuf *mbuf);
static int handle_routing_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
struct task_routing *task = (struct task_routing *)tbase;
uint8_t out[MAX_PKT_BURST];
uint16_t j;
prefetch_first(mbufs, n_pkts);
for (j = 0; j + PREFETCH_OFFSET < n_pkts; ++j) {
#ifdef PROX_PREFETCH_OFFSET
PREFETCH0(mbufs[j + PREFETCH_OFFSET]);
PREFETCH0(rte_pktmbuf_mtod(mbufs[j + PREFETCH_OFFSET - 1], void *));
#endif
out[j] = handle_routing(task, mbufs[j]);
}
#ifdef PROX_PREFETCH_OFFSET
PREFETCH0(rte_pktmbuf_mtod(mbufs[n_pkts - 1], void *));
for (; j < n_pkts; ++j) {
out[j] = handle_routing(task, mbufs[j]);
}
#endif
return task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}
static void set_l2(struct task_routing *task, struct rte_mbuf *mbuf, uint8_t nh_idx)
{
prox_rte_ether_hdr *peth = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
*((uint64_t *)(&peth->d_addr)) = task->next_hops[nh_idx].mac_port_8bytes;
*((uint64_t *)(&peth->s_addr)) = task->src_mac[task->next_hops[nh_idx].mac_port.out_idx];
}
static void set_l2_mpls(struct task_routing *task, struct rte_mbuf *mbuf, uint8_t nh_idx)
{
prox_rte_ether_hdr *peth = (prox_rte_ether_hdr *)rte_pktmbuf_prepend(mbuf, sizeof(struct mpls_hdr));
*((uint64_t *)(&peth->d_addr)) = task->next_hops[nh_idx].mac_port_8bytes;
*((uint64_t *)(&peth->s_addr)) = task->src_mac[task->next_hops[nh_idx].mac_port.out_idx];
/* MPLSU ether_type written as high word of 64bit src_mac prepared by init_task_routing */
struct mpls_hdr *mpls = (struct mpls_hdr *)(peth + 1);
if (task->runtime_flags & TASK_MARK) {
enum prox_rte_color color = rte_sched_port_pkt_read_color(mbuf);
*(uint32_t *)mpls = task->next_hops[nh_idx].mpls | task->marking[color] | 0x00010000; // Set BoS to 1
}
else {
*(uint32_t *)mpls = task->next_hops[nh_idx].mpls | 0x00010000; // Set BoS to 1
}
}
static uint8_t route_ipv4(struct task_routing *task, uint8_t *beg, uint32_t ip_offset, struct rte_mbuf *mbuf)
{
prox_rte_ipv4_hdr *ip = (prox_rte_ipv4_hdr*)(beg + ip_offset);
prox_rte_ether_hdr *peth_out;
uint8_t tx_port;
uint32_t dst_ip;
if (unlikely(ip->version_ihl >> 4 != 4)) {
plog_warn("Offset: %d\n", ip_offset);
plog_warn("Expected to receive IPv4 packet but IP version was %d\n",
ip->version_ihl >> 4);
return OUT_DISCARD;
}
switch(ip->next_proto_id) {
case IPPROTO_GRE: {
struct gre_hdr *pgre = (struct gre_hdr *)(ip + 1);
dst_ip = ((prox_rte_ipv4_hdr *)(pgre + 1))->dst_addr;
break;
}
case IPPROTO_TCP:
case IPPROTO_UDP:
dst_ip = ip->dst_addr;
break;
default:
/* Routing for other protocols is not implemented */
return OUT_DISCARD;
}
#if RTE_VERSION >= RTE_VERSION_NUM(16,4,0,1)
uint32_t next_hop_index;
#else
uint8_t next_hop_index;
#endif
if (unlikely(rte_lpm_lookup(task->ipv4_lpm, rte_bswap32(dst_ip), &next_hop_index) != 0)) {
uint8_t* dst_ipp = (uint8_t*)&dst_ip;
plog_warn("lpm_lookup failed for ip %d.%d.%d.%d: rc = %d\n",
dst_ipp[0], dst_ipp[1], dst_ipp[2], dst_ipp[3], -ENOENT);
return OUT_DISCARD;
}
tx_port = task->next_hops[next_hop_index].mac_port.out_idx;
if (task->runtime_flags & TASK_MPLS_TAGGING) {
uint16_t padlen = rte_pktmbuf_pkt_len(mbuf) - rte_be_to_cpu_16(ip->total_length) - ip_offset;
if (padlen) {
rte_pktmbuf_trim(mbuf, padlen);
}
set_l2_mpls(task, mbuf, next_hop_index);
}
else {
set_l2(task, mbuf, next_hop_index);
}
return tx_port;
}
static inline uint8_t handle_routing(struct task_routing *task, struct rte_mbuf *mbuf)
{
struct qinq_hdr *qinq;
prox_rte_ether_hdr *peth = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
switch (peth->ether_type) {
case ETYPE_8021ad: {
struct qinq_hdr *qinq = (struct qinq_hdr *)peth;
if ((qinq->cvlan.eth_proto != ETYPE_VLAN)) {
plog_warn("Unexpected proto in QinQ = %#04x\n", qinq->cvlan.eth_proto);
return OUT_DISCARD;
}
return route_ipv4(task, (uint8_t*)qinq, sizeof(*qinq), mbuf);
}
case ETYPE_IPv4:
return route_ipv4(task, (uint8_t*)peth, sizeof(*peth), mbuf);
case ETYPE_MPLSU: {
/* skip MPLS headers if any for routing */
struct mpls_hdr *mpls = (struct mpls_hdr *)(peth + 1);
uint32_t count = sizeof(prox_rte_ether_hdr);
while (!(mpls->bytes & 0x00010000)) {
mpls++;
count += sizeof(struct mpls_hdr);
}
count += sizeof(struct mpls_hdr);
return route_ipv4(task, (uint8_t*)peth, count, mbuf);
}
default:
if (peth->ether_type == task->qinq_tag) {
struct qinq_hdr *qinq = (struct qinq_hdr *)peth;
if ((qinq->cvlan.eth_proto != ETYPE_VLAN)) {
plog_warn("Unexpected proto in QinQ = %#04x\n", qinq->cvlan.eth_proto);
return OUT_DISCARD;
}
return route_ipv4(task, (uint8_t*)qinq, sizeof(*qinq), mbuf);
}
plog_warn("Failed routing packet: ether_type %#06x is unknown\n", peth->ether_type);
return OUT_DISCARD;
}
}
static struct task_init task_init_routing = {
.mode_str = "routing",
.init = init_task_routing,
.handle = handle_routing_bulk,
.flag_features = TASK_FEATURE_ROUTING|TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS,
.size = sizeof(struct task_routing)
};
__attribute__((constructor)) static void reg_task_routing(void)
{
reg_task(&task_init_routing);
}