aboutsummaryrefslogtreecommitdiffstats
path: root/environments/cinder-dellps-config.yaml
diff options
context:
space:
mode:
authorJenkins <jenkins@review.openstack.org>2017-07-13 04:07:50 +0000
committerGerrit Code Review <review@openstack.org>2017-07-13 04:07:50 +0000
commit6e7e5d443c98a3a9fb50cbf8815b4a57165034e4 (patch)
tree05b58472054f6740e6a476e636601ef8cef32d47 /environments/cinder-dellps-config.yaml
parentc76feac1a9d80c545330085c9928b6ff15f58096 (diff)
parentd5145167cb13170cb2f8b928b3c920648e7ecaf0 (diff)
Merge "Allow to set Notification Driver to 'noop'"
Diffstat (limited to 'environments/cinder-dellps-config.yaml')
0 files changed, 0 insertions, 0 deletions
/a> 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <pthread.h>
#include <rte_cycles.h>
#include <rte_table_hash.h>

#include "log.h"
#include "thread_generic.h"
#include "stats.h"
#include "tx_pkt.h"
#include "lconf.h"
#include "hash_entry_types.h"
#include "defines.h"
#include "hash_utils.h"

struct tsc_task {
	uint64_t tsc;
	uint64_t (* tsc_task)(struct lcore_cfg *lconf);
};

static uint64_t tsc_drain(struct lcore_cfg *lconf)
{
	lconf_flush_all_queues(lconf);
	return DRAIN_TIMEOUT;
}

static uint64_t tsc_term(struct lcore_cfg *lconf)
{
	if (lconf_is_req(lconf) && lconf_do_flags(lconf)) {
		lconf_flush_all_queues(lconf);
		return -2;
	}
	return TERM_TIMEOUT;
}

static uint64_t tsc_period(struct lcore_cfg *lconf)
{
	lconf->period_func(lconf->period_data);
	return lconf->period_timeout;
}

static uint64_t tsc_ctrl(struct lcore_cfg *lconf)
{
	const uint8_t n_tasks_all = lconf->n_tasks_all;
	void *msgs[MAX_RING_BURST];
	uint16_t n_msgs;

	for (uint8_t task_id = 0; task_id < n_tasks_all; ++task_id) {
		if (lconf->ctrl_rings_m[task_id] && lconf->ctrl_func_m[task_id]) {
#if RTE_VERSION < RTE_VERSION_NUM(17,5,0,1)
			n_msgs = rte_ring_sc_dequeue_burst(lconf->ctrl_rings_m[task_id], msgs, MAX_RING_BURST);
#else
			n_msgs = rte_ring_sc_dequeue_burst(lconf->ctrl_rings_m[task_id], msgs, MAX_RING_BURST, NULL);
#endif
			if (n_msgs) {
				lconf->ctrl_func_m[task_id](lconf->tasks_all[task_id], msgs, n_msgs);
			}
		}
		if (lconf->ctrl_rings_p[task_id] && lconf->ctrl_func_p[task_id]) {
#if RTE_VERSION < RTE_VERSION_NUM(17,5,0,1)
			n_msgs = rte_ring_sc_dequeue_burst(lconf->ctrl_rings_p[task_id], msgs, MAX_RING_BURST);
#else
			n_msgs = rte_ring_sc_dequeue_burst(lconf->ctrl_rings_p[task_id], msgs, MAX_RING_BURST, NULL);
#endif
			if (n_msgs) {
				lconf->ctrl_func_p[task_id](lconf->tasks_all[task_id], (struct rte_mbuf **)msgs, n_msgs);
			}
		}
	}
	return lconf->ctrl_timeout;
}

static void set_thread_policy(int policy)
{
	struct sched_param p;
	int ret, old_policy, old_priority;

	memset(&p, 0, sizeof(p));
	ret = pthread_getschedparam(pthread_self(), &old_policy, &p);
	if (ret) {
		plog_err("Failed getting thread policy: %d\n", ret);
		return;
	}
	old_priority = p.sched_priority;
	p.sched_priority = sched_get_priority_max(policy);
	ret = pthread_setschedparam(pthread_self(), policy, &p);
	if (ret) {
		plog_err("Failed setting thread priority: %d", ret);
	} else
		plog_info("Thread policy/priority changed from %d/%d to %d/%d\n", old_policy, old_priority, policy, p.sched_priority);
}

int thread_generic(struct lcore_cfg *lconf)
{
	struct task_base *tasks[MAX_TASKS_PER_CORE];
	int next[MAX_TASKS_PER_CORE] = {0};
	struct rte_mbuf **mbufs;
	uint64_t cur_tsc = rte_rdtsc();
	uint8_t zero_rx[MAX_TASKS_PER_CORE] = {0};
	struct tsc_task tsc_tasks[] = {
		{.tsc = cur_tsc, .tsc_task = tsc_term},
		{.tsc = cur_tsc + DRAIN_TIMEOUT, .tsc_task = tsc_drain},
		{.tsc = -1},
		{.tsc = -1},
		{.tsc = -1},
	};
	uint8_t n_tasks_run = lconf->n_tasks_run;

	if (lconf->flags & LCONF_FLAG_SCHED_RR)
		set_thread_policy(SCHED_RR);

	if (lconf->period_func) {
		tsc_tasks[2].tsc = cur_tsc + lconf->period_timeout;
		tsc_tasks[2].tsc_task = tsc_period;
	}

	for (uint8_t task_id = 0; task_id < lconf->n_tasks_all; ++task_id) {
		if (lconf->ctrl_func_m[task_id]) {
			tsc_tasks[3].tsc = cur_tsc + lconf->ctrl_timeout;
			tsc_tasks[3].tsc_task = tsc_ctrl;
			break;
		}
		if (lconf->ctrl_func_p[task_id]) {
			tsc_tasks[3].tsc = cur_tsc + lconf->ctrl_timeout;
			tsc_tasks[3].tsc_task = tsc_ctrl;
			break;
		}
	}

	/* sort tsc tasks */
	for (size_t i = 0; i < sizeof(tsc_tasks)/sizeof(tsc_tasks[0]); ++i) {
		for (size_t j = i + 1; j < sizeof(tsc_tasks)/sizeof(tsc_tasks[0]); ++j) {
			if (tsc_tasks[i].tsc > tsc_tasks[j].tsc) {
				struct tsc_task tmp = tsc_tasks[i];
				tsc_tasks[i] = tsc_tasks[j];
				tsc_tasks[j] = tmp;
			}
		}
	}
	struct tsc_task next_tsc = tsc_tasks[0];

	for (;;) {
		cur_tsc = rte_rdtsc();
		/* Sort scheduled tsc_tasks starting from earliest
		   first. A linear search is performed moving
		   tsc_tasks that are scheduled earlier to the front
		   of the list. There is a high frequency tsc_task in
		   most cases. As a consequence, the currently
		   scheduled tsc_task will be rescheduled to be
		   executed as the first again. If many tsc_tasks are
		   to be used, the algorithm should be replaced with a
		   priority-queue (heap). */
		if (unlikely(cur_tsc >= next_tsc.tsc)) {
			uint64_t resched_diff = tsc_tasks[0].tsc_task(lconf);

			if (resched_diff == (uint64_t)-2) {
				n_tasks_run = lconf->n_tasks_run;
				if (!n_tasks_run)
					return 0;
				for (int i = 0; i < lconf->n_tasks_run; ++i) {
					tasks[i] = lconf->tasks_run[i];

					uint8_t task_id = lconf_get_task_id(lconf, tasks[i]);
					if (lconf->targs[task_id].task_init->flag_features & TASK_FEATURE_ZERO_RX)
						zero_rx[i] = 1;
				}
			}

			uint64_t new_tsc = tsc_tasks[0].tsc + resched_diff;
			tsc_tasks[0].tsc = new_tsc;
			next_tsc.tsc = new_tsc;

			for (size_t i = 1; i < sizeof(tsc_tasks)/sizeof(tsc_tasks[0]); ++i) {
				if (new_tsc < tsc_tasks[i].tsc) {
					if (i > 1) {
						tsc_tasks[i - 1] = next_tsc;
						next_tsc = tsc_tasks[0];
					}
					break;
				}
				else
					tsc_tasks[i - 1] = tsc_tasks[i];
			}
		}

		uint16_t nb_rx;
		for (uint8_t task_id = 0; task_id < n_tasks_run; ++task_id) {
			struct task_base *t = tasks[task_id];
			struct task_args *targ = &lconf->targs[task_id];
			// Do not skip a task receiving packets from an optimized ring
			// as the transmitting task expects such a receiving task to always run and consume
			// the transmitted packets.
			if (unlikely(next[task_id] && (targ->tx_opt_ring_task == NULL))) {
				// plogx_info("task %d is too busy\n", task_id);
				next[task_id] = 0;
			} else {
				nb_rx = t->rx_pkt(t, &mbufs);
				if (likely(nb_rx || zero_rx[task_id])) {
					next[task_id] = t->handle_bulk(t, mbufs, nb_rx);
				}
			}

		}
	}
	return 0;
}