summaryrefslogtreecommitdiffstats
path: root/yardstick/benchmark/runners/iteration.py
blob: e38ed37494047c5898ff211d11378b7b45e298fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
##############################################################################
# Copyright (c) 2015 Huawei Technologies Co.,Ltd and others.
#
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the Apache License, Version 2.0
# which accompanies this distribution, and is available at
# http://www.apache.org/licenses/LICENSE-2.0
##############################################################################

'''A runner that runs a configurable number of times before it returns
'''

import os
import multiprocessing
import logging
import traceback
import time

from yardstick.benchmark.runners import base

LOG = logging.getLogger(__name__)


def _worker_process(queue, cls, method_name, scenario_cfg,
                    context_cfg, aborted):

    sequence = 1

    runner_cfg = scenario_cfg['runner']

    interval = runner_cfg.get("interval", 1)
    iterations = runner_cfg.get("iterations", 1)
    LOG.info("worker START, iterations %d times, class %s", iterations, cls)

    runner_cfg['runner_id'] = os.getpid()

    benchmark = cls(scenario_cfg, context_cfg)
    benchmark.setup()
    method = getattr(benchmark, method_name)

    queue.put({'runner_id': runner_cfg['runner_id'],
               'scenario_cfg': scenario_cfg,
               'context_cfg': context_cfg})

    sla_action = None
    if "sla" in scenario_cfg:
        sla_action = scenario_cfg["sla"].get("action", "assert")

    while True:

        LOG.debug("runner=%(runner)s seq=%(sequence)s START" %
                  {"runner": runner_cfg["runner_id"], "sequence": sequence})

        data = {}
        errors = ""

        try:
            method(data)
        except AssertionError as assertion:
            # SLA validation failed in scenario, determine what to do now
            if sla_action == "assert":
                raise
            elif sla_action == "monitor":
                LOG.warning("SLA validation failed: %s" % assertion.args)
                errors = assertion.args
        except Exception as e:
            errors = traceback.format_exc()
            LOG.exception(e)

        time.sleep(interval)

        benchmark_output = {
            'timestamp': time.time(),
            'sequence': sequence,
            'data': data,
            'errors': errors
        }

        record = {'runner_id': runner_cfg['runner_id'],
                  'benchmark': benchmark_output}

        queue.put(record)

        LOG.debug("runner=%(runner)s seq=%(sequence)s END" %
                  {"runner": runner_cfg["runner_id"], "sequence": sequence})

        sequence += 1

        if (errors and sla_action is None) or \
                (sequence > iterations or aborted.is_set()):
            LOG.info("worker END")
            break

    benchmark.teardown()


class IterationRunner(base.Runner):
    '''Run a scenario for a configurable number of times

If the scenario ends before the time has elapsed, it will be started again.

  Parameters
    iterations - amount of times the scenario will be run for
        type:    int
        unit:    na
        default: 1
    interval - time to wait between each scenario invocation
        type:    int
        unit:    seconds
        default: 1 sec
    '''
    __execution_type__ = 'Iteration'

    def _run_benchmark(self, cls, method, scenario_cfg, context_cfg):
        self.process = multiprocessing.Process(
            target=_worker_process,
            args=(self.result_queue, cls, method, scenario_cfg,
                  context_cfg, self.aborted))
        self.process.start()