aboutsummaryrefslogtreecommitdiffstats
path: root/yardstick/benchmark/runners/iteration.py
blob: c2376af48b7ec1bc9bea7dc81b2d4ab022cc946b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2014: Mirantis Inc.
# All Rights Reserved.
#
#    Licensed under the Apache License, Version 2.0 (the "License"); you may
#    not use this file except in compliance with the License. You may obtain
#    a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
#    License for the specific language governing permissions and limitations
#    under the License.

# yardstick comment: this is a modified copy of
# rally/rally/benchmark/runners/constant.py

"""A runner that runs a configurable number of times before it returns
"""

from __future__ import absolute_import
import os
import multiprocessing
import logging
import traceback
import time

from yardstick.benchmark.runners import base

LOG = logging.getLogger(__name__)


def _worker_process(queue, cls, method_name, scenario_cfg,
                    context_cfg, aborted):

    sequence = 1

    runner_cfg = scenario_cfg['runner']

    interval = runner_cfg.get("interval", 1)
    iterations = runner_cfg.get("iterations", 1)
    run_step = runner_cfg.get("run_step", "setup,run,teardown")
    LOG.info("worker START, iterations %d times, class %s", iterations, cls)

    runner_cfg['runner_id'] = os.getpid()

    benchmark = cls(scenario_cfg, context_cfg)
    if "setup" in run_step:
        benchmark.setup()

    method = getattr(benchmark, method_name)

    queue.put({'runner_id': runner_cfg['runner_id'],
               'scenario_cfg': scenario_cfg,
               'context_cfg': context_cfg})

    sla_action = None
    if "sla" in scenario_cfg:
        sla_action = scenario_cfg["sla"].get("action", "assert")
    if "run" in run_step:
        while True:

            LOG.debug("runner=%(runner)s seq=%(sequence)s START",
                      {"runner": runner_cfg["runner_id"],
                       "sequence": sequence})

            data = {}
            errors = ""

            try:
                method(data)
            except AssertionError as assertion:
                # SLA validation failed in scenario, determine what to do now
                if sla_action == "assert":
                    raise
                elif sla_action == "monitor":
                    LOG.warning("SLA validation failed: %s", assertion.args)
                    errors = assertion.args
            except Exception as e:
                errors = traceback.format_exc()
                LOG.exception(e)

            time.sleep(interval)

            benchmark_output = {
                'timestamp': time.time(),
                'sequence': sequence,
                'data': data,
                'errors': errors
            }

            record = {'runner_id': runner_cfg['runner_id'],
                      'benchmark': benchmark_output}

            queue.put(record)

            LOG.debug("runner=%(runner)s seq=%(sequence)s END",
                      {"runner": runner_cfg["runner_id"],
                       "sequence": sequence})

            sequence += 1

            if (errors and sla_action is None) or \
                    (sequence > iterations or aborted.is_set()):
                LOG.info("worker END")
                break
    if "teardown" in run_step:
        benchmark.teardown()


class IterationRunner(base.Runner):
    """Run a scenario for a configurable number of times

If the scenario ends before the time has elapsed, it will be started again.

  Parameters
    iterations - amount of times the scenario will be run for
        type:    int
        unit:    na
        default: 1
    interval - time to wait between each scenario invocation
        type:    int
        unit:    seconds
        default: 1 sec
    """
    __execution_type__ = 'Iteration'

    def _run_benchmark(self, cls, method, scenario_cfg, context_cfg):
        self.process = multiprocessing.Process(
            target=_worker_process,
            args=(self.result_queue, cls, method, scenario_cfg,
                  context_cfg, self.aborted))
        self.process.start()