summaryrefslogtreecommitdiffstats
path: root/tests/unit/benchmark/contexts/nodes_sample_ovsdpdk.yaml
blob: c02849a0533a62882457e43afad42f959cc4c023 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright (c) 2016 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

nodes:
-
    name: trafficgen_1
    role: TrafficGen
    ip: 10.223.197.182
    user: root
    auth_type: password
    password: intel123
    interfaces:
        xe0:  # logical name from topology.yaml and vnfd.yaml
            vpci:      "0000:03:00.0"
            driver:    ixgbe
            dpdk_port_num: 0
            local_ip: "152.16.100.20"
            netmask:   "255.255.255.0"
            local_mac:   "90:e2:ba:77:ce:68"
        xe1:  # logical name from topology.yaml and vnfd.yaml
            vpci:      "0000:03:00.1"
            driver:    ixgbe
            dpdk_port_num: 1
            local_ip: "152.16.100.21"
            netmask:   "255.255.255.0"
            local_mac:   "90:e2:ba:77:ce:69"
-
    name: ovs
    role: Ovsdpdk1
    ip: 10.223.197.222
    user: root
    auth_type: password
    password: intel123
    vpath: "/usr/local/"
    vports:
     - dpdkvhostuser0
     - dpdkvhostuser1
    vports_mac:
     - "00:00:00:00:00:03"
     - "00:00:00:00:00:04"
    phy_ports: # Physical ports to configure ovs
     - "0000:06:00.0"
     - "0000:06:00.1"
    flow:
     - ovs-ofctl add-flow br0 in_port=1,action=output:3
     - ovs-ofctl add-flow br0 in_port=3,action=output:1
     - ovs-ofctl add-flow br0 in_port=4,action=output:2
     - ovs-ofctl add-flow br0 in_port=2,action=output:4
    phy_driver:    i40e # kernel driver
    images: "/var/lib/libvirt/images/ubuntu1.img"

-
    name: vnf
    role: vnf
    ip: 10.223.197.155
    user: root
    auth_type: password
    password: intel123
    host: 10.223.197.140
    interfaces:
        xe0:  # logical name from topology.yaml and vnfd.yaml
            vpci:      "0000:00:04.0"
            driver:    virtio-pci
            dpdk_port_num: 0
            local_ip: "152.16.100.19"
            netmask:   "255.255.255.0"
            local_mac:   "00:00:00:00:00:03"

        xe1:  # logical name from topology.yaml and vnfd.yaml
            vpci:      "0000:00:05.0"
            driver:    virtio-pci
            dpdk_port_num: 1
            local_ip: "152.16.40.19"
            netmask:   "255.255.255.0"
            local_mac:   "00:00:00:00:00:04"
    routing_table:
    - network: "152.16.100.20"
      netmask: "255.255.255.0"
      gateway: "152.16.100.20"
      if: "xe0"
    - network: "152.16.40.20"
      netmask: "255.255.255.0"
      gateway: "152.16.40.20"
      if: "xe1"
    nd_route_tbl:
    - network: "0064:ff9b:0:0:0:0:9810:6414"
      netmask: "112"
      gateway: "0064:ff9b:0:0:0:0:9810:6414"
      if: "xe0"
    - network: "0064:ff9b:0:0:0:0:9810:2814"
      netmask: "112"
      gateway: "0064:ff9b:0:0:0:0:9810:2814"
      if: "xe1"
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <rte_mbuf.h>
#include <pcap.h>
#include <string.h>
#include <stdlib.h>
#include <rte_cycles.h>
#include <rte_version.h>
#include <rte_byteorder.h>
#include <rte_ether.h>
#include <rte_hash_crc.h>

#include "prox_shared.h"
#include "random.h"
#include "prox_malloc.h"
#include "handle_gen.h"
#include "handle_lat.h"
#include "task_init.h"
#include "task_base.h"
#include "prox_port_cfg.h"
#include "lconf.h"
#include "log.h"
#include "quit.h"
#include "prox_cfg.h"
#include "mbuf_utils.h"
#include "qinq.h"
#include "prox_cksum.h"
#include "etypes.h"
#include "prox_assert.h"
#include "prefetch.h"
#include "token_time.h"
#include "local_mbuf.h"
#include "arp.h"
#include "tx_pkt.h"
#include "handle_master.h"

struct pkt_template {
	uint16_t len;
	uint16_t l2_len;
	uint16_t l3_len;
	uint8_t  *buf;
};

#define MAX_TEMPLATE_INDEX	65536
#define TEMPLATE_INDEX_MASK	(MAX_TEMPLATE_INDEX - 1)
#define MBUF_ARP		MAX_TEMPLATE_INDEX

#define IP4(x) x & 0xff, (x >> 8) & 0xff, (x >> 16) & 0xff, x >> 24

static void pkt_template_init_mbuf(struct pkt_template *pkt_template, struct rte_mbuf *mbuf, uint8_t *pkt)
{
	const uint32_t pkt_size = pkt_template->len;

	rte_pktmbuf_pkt_len(mbuf) = pkt_size;
	rte_pktmbuf_data_len(mbuf) = pkt_size;
	init_mbuf_seg(mbuf);
	rte_memcpy(pkt, pkt_template->buf, pkt_template->len);
}

struct task_gen_pcap {
	struct task_base base;
	uint64_t hz;
	struct local_mbuf local_mbuf;
	uint32_t pkt_idx;
	struct pkt_template *proto;
	uint32_t loop;
	uint32_t n_pkts;
	uint64_t last_tsc;
	uint64_t *proto_tsc;
};

struct task_gen {
	struct task_base base;
	uint64_t hz;
	uint64_t link_speed;
	struct token_time token_time;
	struct local_mbuf local_mbuf;
	struct pkt_template *pkt_template; /* packet templates used at runtime */
	uint64_t write_duration_estimate; /* how long it took previously to write the time stamps in the packets */
	uint64_t earliest_tsc_next_pkt;
	uint64_t new_rate_bps;
	uint64_t pkt_queue_index;
	uint32_t n_pkts; /* number of packets in pcap */
	uint32_t pkt_idx; /* current packet from pcap */
	uint32_t pkt_count; /* how many pakets to generate */
	uint32_t max_frame_size;
	uint32_t runtime_flags;
	uint16_t lat_pos;
	uint16_t packet_id_pos;
	uint16_t accur_pos;
	uint16_t sig_pos;
	uint32_t sig;
	uint8_t generator_id;
	uint8_t n_rands; /* number of randoms */
	uint8_t min_bulk_size;
	uint8_t max_bulk_size;
	uint8_t lat_enabled;
	uint8_t runtime_checksum_needed;
	struct {
		struct random state;
		uint32_t rand_mask; /* since the random vals are uniform, masks don't introduce bias  */
		uint32_t fixed_bits; /* length of each random (max len = 4) */
		uint16_t rand_offset; /* each random has an offset*/
		uint8_t rand_len; /* # bytes to take from random (no bias introduced) */
	} rand[64];
	uint64_t accur[64];
	uint64_t pkt_tsc_offset[64];
	struct pkt_template *pkt_template_orig; /* packet templates (from inline or from pcap) */
	struct ether_addr  src_mac;
	uint8_t flags;
	uint8_t cksum_offload;
	struct prox_port_cfg *port;
} __rte_cache_aligned;

static inline uint8_t ipv4_get_hdr_len(struct ipv4_hdr *ip)
{
	/* Optimize for common case of IPv4 header without options. */
	if (ip->version_ihl == 0x45)
		return sizeof(struct ipv4_hdr);
	if (unlikely(ip->version_ihl >> 4 != 4)) {
		plog_warn("IPv4 ether_type but IP version = %d != 4", ip->version_ihl >> 4);
		return 0;
	}
	return (ip->version_ihl & 0xF) * 4;
}

static void parse_l2_l3_len(uint8_t *pkt, uint16_t *l2_len, uint16_t *l3_len, uint16_t len)
{
	*l2_len = sizeof(struct ether_hdr);
	*l3_len = 0;
	struct vlan_hdr *vlan_hdr;
	struct ether_hdr *eth_hdr = (struct ether_hdr*)pkt;
	struct ipv4_hdr *ip;
	uint16_t ether_type = eth_hdr->ether_type;

	// Unstack VLAN tags
	while (((ether_type == ETYPE_8021ad) || (ether_type == ETYPE_VLAN)) && (*l2_len + sizeof(struct vlan_hdr) < len)) {
		vlan_hdr = (struct vlan_hdr *)(pkt + *l2_len);
		*l2_len +=4;
		ether_type = vlan_hdr->eth_proto;
	}

	// No L3 cksum offload for IPv6, but TODO L4 offload
	// ETYPE_EoGRE CRC not implemented yet

	switch (ether_type) {
	case ETYPE_MPLSU:
	case ETYPE_MPLSM:
		*l2_len +=4;
		break;
	case ETYPE_IPv4:
		break;
	case ETYPE_EoGRE:
	case ETYPE_ARP:
	case ETYPE_IPv6:
		*l2_len = 0;
		break;
	default:
		*l2_len = 0;
		plog_warn("Unsupported packet type %x - CRC might be wrong\n", ether_type);
		break;
	}

	if (*l2_len) {
		struct ipv4_hdr *ip = (struct ipv4_hdr *)(pkt + *l2_len);
		*l3_len = ipv4_get_hdr_len(ip);
	}
}

static void checksum_packet(uint8_t *hdr, struct rte_mbuf *mbuf, struct pkt_template *pkt_template, int cksum_offload)
{
	uint16_t l2_len = pkt_template->l2_len;
	uint16_t l3_len = pkt_template->l3_len;

	if (l2_len) {
		struct ipv4_hdr *ip = (struct ipv4_hdr*)(hdr + l2_len);
		prox_ip_udp_cksum(mbuf, ip, l2_len, l3_len, cksum_offload);
	}
}

static void task_gen_reset_token_time(struct task_gen *task)
{
	token_time_set_bpp(&task->token_time, task->new_rate_bps);
	token_time_reset(&task->token_time, rte_rdtsc(), 0);
}

static void task_gen_take_count(struct task_gen *task, uint32_t send_bulk)
{
	if (task->pkt_count == (uint32_t)-1)
		return ;
	else {
		if (task->pkt_count >= send_bulk)
			task->pkt_count -= send_bulk;
		else
			task->pkt_count = 0;
	}
}

static int handle_gen_pcap_bulk(struct task_base *tbase, struct rte_mbuf **mbuf, uint16_t n_pkts)
{
	struct task_gen_pcap *task = (struct task_gen_pcap *)tbase;
	uint64_t now = rte_rdtsc();
	uint64_t send_bulk = 0;
	uint32_t pkt_idx_tmp = task->pkt_idx;

	if (pkt_idx_tmp == task->n_pkts) {
		PROX_ASSERT(task->loop);
		return 0;
	}

	for (uint16_t j = 0; j < 64; ++j) {
		uint64_t tsc = task->proto_tsc[pkt_idx_tmp];
		if (task->last_tsc + tsc <= now) {
			task->last_tsc += tsc;
			send_bulk++;
			pkt_idx_tmp++;
			if (pkt_idx_tmp == task->n_pkts) {
				if (task->loop)
					pkt_idx_tmp = 0;
				else
					break;
			}
		}
		else
			break;
	}

	struct rte_mbuf **new_pkts = local_mbuf_refill_and_take(&task->local_mbuf, send_bulk);
	if (new_pkts == NULL)
		return 0;

	for (uint16_t j = 0; j < send_bulk; ++j) {
		struct rte_mbuf *next_pkt = new_pkts[j];
		struct pkt_template *pkt_template = &task->proto[task->pkt_idx];
		uint8_t *hdr = rte_pktmbuf_mtod(next_pkt, uint8_t *);

		pkt_template_init_mbuf(pkt_template, next_pkt, hdr);

		task->pkt_idx++;
		if (task->pkt_idx == task->n_pkts) {
			if (task->loop)
				task->pkt_idx = 0;
			else
				break;
		}
	}

	return task->base.tx_pkt(&task->base, new_pkts, send_bulk, NULL);
}

static uint64_t bytes_to_tsc(struct task_gen *task, uint32_t bytes)
{
	const uint64_t hz = task->hz;
	const uint64_t bytes_per_hz = task->link_speed;

	if (bytes_per_hz == UINT64_MAX)
		return 0;

	return hz * bytes / bytes_per_hz;
}

static uint32_t task_gen_next_pkt_idx(const struct task_gen *task, uint32_t pkt_idx)
{
	return pkt_idx + 1 == task->n_pkts? 0 : pkt_idx + 1;
}

static uint32_t task_gen_offset_pkt_idx(const struct task_gen *task, uint32_t offset)
{
	return (task->pkt_idx + offset) % task->n_pkts;
}

static uint32_t task_gen_calc_send_bulk(const struct task_gen *task, uint32_t *total_bytes)
{
	/* The biggest bulk we allow to send is task->max_bulk_size
	   packets. The max bulk size can also be limited by the
	   pkt_count field.  At the same time, we are rate limiting
	   based on the specified speed (in bytes per second) so token
	   bucket based rate limiting must also be applied. The
	   minimum bulk size is also constrained. If the calculated
	   bulk size is less then the minimum, then don't send
	   anything. */

	const uint32_t min_bulk = task->min_bulk_size;
	uint32_t max_bulk = task->max_bulk_size;

	if (task->pkt_count != (uint32_t)-1 && task->pkt_count < max_bulk) {
		max_bulk = task->pkt_count;
	}

	uint32_t send_bulk = 0;
	uint32_t pkt_idx_tmp = task->pkt_idx;
	uint32_t would_send_bytes = 0;
	uint32_t pkt_size;

	/*
	 * TODO - this must be improved to take into account the fact that, after applying randoms
	 * The packet can be replaced by an ARP
	 */
	for (uint16_t j = 0; j < max_bulk; ++j) {
		struct pkt_template *pktpl = &task->pkt_template[pkt_idx_tmp];
		pkt_size = pktpl->len;
		uint32_t pkt_len = pkt_len_to_wire_size(pkt_size);
		if (pkt_len + would_send_bytes > task->token_time.bytes_now)
			break;

		pkt_idx_tmp = task_gen_next_pkt_idx(task, pkt_idx_tmp);

		send_bulk++;
		would_send_bytes += pkt_len;
	}

	if (send_bulk < min_bulk)
		return 0;
	*total_bytes = would_send_bytes;
	return send_bulk;
}

static void task_gen_apply_random_fields(struct task_gen *task, uint8_t *hdr)
{
	uint32_t ret, ret_tmp;

	for (uint16_t i = 0; i < task->n_rands; ++i) {
		ret = random_next(&task->rand[i].state);
		ret_tmp = (ret & task->rand[i].rand_mask) | task->rand[i].fixed_bits;

		ret_tmp = rte_bswap32(ret_tmp);
		/* At this point, the lower order bytes (BE) contain
		   the generated value. The address where the values
		   of interest starts is at ret_tmp + 4 - rand_len. */
		uint8_t *pret_tmp = (uint8_t*)&ret_tmp;
		rte_memcpy(hdr + task->rand[i].rand_offset, pret_tmp + 4 - task->rand[i].rand_len, task->rand[i].rand_len);
	}
}

static void task_gen_apply_all_random_fields(struct task_gen *task, uint8_t **pkt_hdr, uint32_t count)
{
	if (!task->n_rands)
		return;

	for (uint16_t i = 0; i < count; ++i)
		task_gen_apply_random_fields(task, pkt_hdr[i]);
}

static void task_gen_apply_accur_pos(struct task_gen *task, uint8_t *pkt_hdr, uint32_t accuracy)
{
	*(uint32_t *)(pkt_hdr + task->accur_pos) = accuracy;
}

static void task_gen_apply_sig(struct task_gen *task, uint8_t *pkt_hdr)
{
	*(uint32_t *)(pkt_hdr + task->sig_pos) = task->sig;
}

static void task_gen_apply_all_accur_pos(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
	if (!task->accur_pos)
		return;

	/* The accuracy of task->pkt_queue_index - 64 is stored in
	   packet task->pkt_queue_index. The ID modulo 64 is the
	   same. */
	for (uint16_t j = 0; j < count; ++j) {
		if ((mbufs[j]->udata64 & MBUF_ARP) == 0) {
			uint32_t accuracy = task->accur[(task->pkt_queue_index + j) & 63];
			task_gen_apply_accur_pos(task, pkt_hdr[j], accuracy);
		}
	}
}

static void task_gen_apply_all_sig(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
	if (!task->sig_pos)
		return;

	for (uint16_t j = 0; j < count; ++j) {
		if ((mbufs[j]->udata64 & MBUF_ARP) == 0) {
			task_gen_apply_sig(task, pkt_hdr[j]);
		}
	}
}

static void task_gen_apply_unique_id(struct task_gen *task, uint8_t *pkt_hdr, const struct unique_id *id)
{
	struct unique_id *dst = (struct unique_id *)(pkt_hdr + task->packet_id_pos);

	*dst = *id;
}

static void task_gen_apply_all_unique_id(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
	if (!task->packet_id_pos)
		return;

	for (uint16_t i = 0; i < count; ++i) {
		if ((mbufs[i]->udata64 & MBUF_ARP) == 0) {
			struct unique_id id;
			unique_id_init(&id, task->generator_id, task->pkt_queue_index++);
			task_gen_apply_unique_id(task, pkt_hdr[i], &id);
		}
	}
}

static void task_gen_checksum_packets(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
	if (!(task->runtime_flags & TASK_TX_CRC))
		return;

	if (!task->runtime_checksum_needed)
		return;

	uint32_t pkt_idx = task_gen_offset_pkt_idx(task, - count);
	for (uint16_t i = 0; i < count; ++i) {
		if ((mbufs[i]->udata64 & MBUF_ARP) == 0) {
			struct pkt_template *pkt_template = &task->pkt_template[pkt_idx];
			checksum_packet(pkt_hdr[i], mbufs[i], pkt_template, task->cksum_offload);
			pkt_idx = task_gen_next_pkt_idx(task, pkt_idx);
		}
	}
}

static void task_gen_consume_tokens(struct task_gen *task, uint32_t tokens, uint32_t send_count)
{
	/* If max burst has been sent, we can't keep up so just assume
	   that we can (leaving a "gap" in the packet stream on the
	   wire) */
	task->token_time.bytes_now -= tokens;
	if (send_count == task->max_bulk_size && task->token_time.bytes_now > tokens) {
		task->token_time.bytes_now = tokens;
	}
}

static uint64_t task_gen_calc_bulk_duration(struct task_gen *task, uint32_t count)
{
	uint32_t pkt_idx = task_gen_offset_pkt_idx(task, - 1);
	struct pkt_template *last_pkt_template = &task->pkt_template[pkt_idx];
	uint32_t last_pkt_len = pkt_len_to_wire_size(last_pkt_template->len);
	uint64_t last_pkt_duration = bytes_to_tsc(task, last_pkt_len);
	uint64_t bulk_duration = task->pkt_tsc_offset[count - 1] + last_pkt_duration;

	return bulk_duration;
}

static uint64_t task_gen_write_latency(struct task_gen *task, uint8_t **pkt_hdr, uint32_t count)
{
	if (!task->lat_enabled)
		return 0;

	uint64_t tx_tsc, delta_t;
	uint64_t tsc_before_tx = 0;

	/* Just before sending the packets, apply the time stamp
	   relative to when the first packet will be sent. The first
	   packet will be sent now. The time is read for each packet
	   to reduce the error towards the actual time the packet will
	   be sent. */
	uint64_t write_tsc_after, write_tsc_before;

	write_tsc_before = rte_rdtsc();

	/* The time it took previously to write the time stamps in the
	   packets is used as an estimate for how long it will take to
	   write the time stamps now.  The estimated time at which the
	   packets will actually be sent will be at tx_tsc. */
	tx_tsc = write_tsc_before + task->write_duration_estimate;

	/* The offset delta_t tracks the difference between the actual
	   time and the time written in the packets. Adding the offset
	   to the actual time insures that the time written in the
	   packets is monotonically increasing. At the same time,
	   simply sleeping until delta_t is zero would leave a period
	   of silence on the line. The error has been introduced
	   earlier, but the packets have already been sent. */
	if (tx_tsc < task->earliest_tsc_next_pkt)
		delta_t = task->earliest_tsc_next_pkt - tx_tsc;
	else
		delta_t = 0;

	for (uint16_t i = 0; i < count; ++i) {
		uint32_t *pos = (uint32_t *)(pkt_hdr[i] + task->lat_pos);
		const uint64_t pkt_tsc = tx_tsc + delta_t + task->pkt_tsc_offset[i];

		*pos = pkt_tsc >> LATENCY_ACCURACY;
	}

	uint64_t bulk_duration = task_gen_calc_bulk_duration(task, count);

	task->earliest_tsc_next_pkt = tx_tsc + delta_t + bulk_duration;
	write_tsc_after = rte_rdtsc();
	task->write_duration_estimate = write_tsc_after - write_tsc_before;

	/* Make sure that the time stamps that were written
	   are valid. The offset must be taken into account */
	do {
		tsc_before_tx = rte_rdtsc();
	} while (tsc_before_tx < tx_tsc);
	return tsc_before_tx;
}

static void task_gen_store_accuracy(struct task_gen *task, uint32_t count, uint64_t tsc_before_tx)
{
	if (!task->accur_pos)
		return;

	uint64_t accur = rte_rdtsc() - tsc_before_tx;
	uint64_t first_accuracy_idx = task->pkt_queue_index - count;

	for (uint32_t i = 0; i < count; ++i) {
		uint32_t accuracy_idx = (first_accuracy_idx + i) & 63;

		task->accur[accuracy_idx] = accur;
	}
}

static void task_gen_load_and_prefetch(struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
	for (uint16_t i = 0; i < count; ++i)
		rte_prefetch0(mbufs[i]);
	for (uint16_t i = 0; i < count; ++i)
		pkt_hdr[i] = rte_pktmbuf_mtod(mbufs[i], uint8_t *);
	for (uint16_t i = 0; i < count; ++i)
		rte_prefetch0(pkt_hdr[i]);
}

static void task_gen_build_packets(struct task_gen *task, struct rte_mbuf **mbufs, uint8_t **pkt_hdr, uint32_t count)
{
	uint64_t will_send_bytes = 0;

	for (uint16_t i = 0; i < count; ++i) {
		struct pkt_template *pktpl = &task->pkt_template[task->pkt_idx];
		struct pkt_template *pkt_template = &task->pkt_template[task->pkt_idx];
		pkt_template_init_mbuf(pkt_template, mbufs[i], pkt_hdr[i]);
		mbufs[i]->udata64 = task->pkt_idx & TEMPLATE_INDEX_MASK;
		struct ether_hdr *hdr = (struct ether_hdr *)pkt_hdr[i];
		if (task->lat_enabled) {
			task->pkt_tsc_offset[i] = bytes_to_tsc(task, will_send_bytes);
			will_send_bytes += pkt_len_to_wire_size(pkt_template->len);
		}
		task->pkt_idx = task_gen_next_pkt_idx(task, task->pkt_idx);
	}
}

static void task_gen_update_config(struct task_gen *task)
{
	if (task->token_time.cfg.bpp != task->new_rate_bps)
		task_gen_reset_token_time(task);
}

static inline void build_value(struct task_gen *task, uint32_t mask, int bit_pos, uint32_t val, uint32_t fixed_bits)
{
	struct task_base *tbase = (struct task_base *)task;
	if (bit_pos < 32) {
		build_value(task, mask >> 1, bit_pos + 1, val, fixed_bits);
		if (mask & 1) {
			build_value(task, mask >> 1, bit_pos + 1, val | (1 << bit_pos), fixed_bits);
		}
	} else {
		register_ip_to_ctrl_plane(tbase->l3.tmaster, rte_cpu_to_be_32(val | fixed_bits), tbase->l3.reachable_port_id, tbase->l3.core_id, tbase->l3.task_id);
	}
}
static inline void register_all_ip_to_ctrl_plane(struct task_gen *task)
{
	struct task_base *tbase = (struct task_base *)task;
	int i, len, fixed;
	unsigned int offset;
	uint32_t mask;

	for (uint32_t i = 0; i < task->n_pkts; ++i) {
		struct pkt_template *pktpl = &task->pkt_template[i];
		unsigned int ip_src_pos = 0;
		int maybe_ipv4 = 0;
		unsigned int l2_len = sizeof(struct ether_hdr);

		uint8_t *pkt = pktpl->buf;
		struct ether_hdr *eth_hdr = (struct ether_hdr*)pkt;
		uint16_t ether_type = eth_hdr->ether_type;
		struct vlan_hdr *vlan_hdr;

		// Unstack VLAN tags
		while (((ether_type == ETYPE_8021ad) || (ether_type == ETYPE_VLAN)) && (l2_len + sizeof(struct vlan_hdr) < pktpl->len)) {
			vlan_hdr = (struct vlan_hdr *)(pkt + l2_len);
			l2_len +=4;
			ether_type = vlan_hdr->eth_proto;
		}
		if ((ether_type == ETYPE_MPLSU) || (ether_type == ETYPE_MPLSM)) {
			l2_len +=4;
			maybe_ipv4 = 1;
		}
		if ((ether_type != ETYPE_IPv4) && !maybe_ipv4)
			continue;

		struct ipv4_hdr *ip = (struct ipv4_hdr *)(pkt + l2_len);
		PROX_PANIC(ip->version_ihl >> 4 != 4, "IPv4 ether_type but IP version = %d != 4", ip->version_ihl >> 4);

		// Even if IPv4 header contains options, options are after ip src and dst
		ip_src_pos = l2_len + sizeof(struct ipv4_hdr) - 2 * sizeof(uint32_t);
		uint32_t *ip_src = ((uint32_t *)(pktpl->buf + ip_src_pos));
		plog_info("\tip_src_pos = %d, ip_src = %x\n", ip_src_pos, *ip_src);
		register_ip_to_ctrl_plane(tbase->l3.tmaster, *ip_src, tbase->l3.reachable_port_id, tbase->l3.core_id, tbase->l3.task_id);

		for (int j = 0; j < task->n_rands; j++) {
			offset = task->rand[j].rand_offset;
			len = task->rand[j].rand_len;
			mask = task->rand[j].rand_mask;
			fixed = task->rand[j].fixed_bits;
			plog_info("offset = %d, len = %d, mask = %x, fixed = %x\n", offset, len, mask, fixed);
			if ((offset < ip_src_pos + 4) && (offset + len >= ip_src_pos)) {
				if (offset >= ip_src_pos) {
					int32_t ip_src_mask = (1 << (4 + ip_src_pos - offset) * 8) - 1;
					mask = mask & ip_src_mask;
					fixed = (fixed & ip_src_mask) | (rte_be_to_cpu_32(*ip_src) & ~ip_src_mask);
					build_value(task, mask, 0, 0, fixed);
				} else {
					int32_t bits = ((ip_src_pos + 4 - offset - len) * 8);
					mask = mask << bits;
					fixed = (fixed << bits) | (rte_be_to_cpu_32(*ip_src) & ((1 << bits) - 1));
					build_value(task, mask, 0, 0, fixed);
				}
			}
		}
	}
}

static int handle_gen_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_gen *task = (struct task_gen *)tbase;
	uint8_t out[MAX_PKT_BURST] = {0};
	int ret;

	int i, j;

	// If link is down, link_speed is 0
	if (unlikely(task->link_speed == 0)) {
		if (task->port && task->port->link_speed != 0) {
			task->link_speed = task->port->link_speed * 125000L;
			plog_info("\tPort %u: link speed is %ld Mbps\n",
				(uint8_t)(task->port - prox_port_cfg), 8 * task->link_speed / 1000000);
		} else
			return 0;
	}

	task_gen_update_config(task);

	if (task->pkt_count == 0) {
		task_gen_reset_token_time(task);
		return 0;
	}
	if (!task->token_time.cfg.bpp)
		return 0;

	token_time_update(&task->token_time, rte_rdtsc());

	uint32_t would_send_bytes;
	uint32_t send_bulk = task_gen_calc_send_bulk(task, &would_send_bytes);

	if (send_bulk == 0)
		return 0;
	task_gen_take_count(task, send_bulk);
	task_gen_consume_tokens(task, would_send_bytes, send_bulk);

	struct rte_mbuf **new_pkts = local_mbuf_refill_and_take(&task->local_mbuf, send_bulk);
	if (new_pkts == NULL)
		return 0;
	uint8_t *pkt_hdr[MAX_RING_BURST];

	task_gen_load_and_prefetch(new_pkts, pkt_hdr, send_bulk);
	task_gen_build_packets(task, new_pkts, pkt_hdr, send_bulk);
	task_gen_apply_all_random_fields(task, pkt_hdr, send_bulk);
	task_gen_apply_all_accur_pos(task, new_pkts, pkt_hdr, send_bulk);
	task_gen_apply_all_sig(task, new_pkts, pkt_hdr, send_bulk);
	task_gen_apply_all_unique_id(task, new_pkts, pkt_hdr, send_bulk);

	uint64_t tsc_before_tx;

	tsc_before_tx = task_gen_write_latency(task, pkt_hdr, send_bulk);
	task_gen_checksum_packets(task, new_pkts, pkt_hdr, send_bulk);
	ret = task->base.tx_pkt(&task->base, new_pkts, send_bulk, out);
	task_gen_store_accuracy(task, send_bulk, tsc_before_tx);
	return ret;
}

static void init_task_gen_seeds(struct task_gen *task)
{
	for (size_t i = 0; i < sizeof(task->rand)/sizeof(task->rand[0]); ++i)
		random_init_seed(&task->rand[i].state);
}

static uint32_t pcap_count_pkts(pcap_t *handle, uint32_t *max_frame_size)
{
	struct pcap_pkthdr header;
	const uint8_t *buf;
	uint32_t ret = 0;
	*max_frame_size = 0;
	long pkt1_fpos = ftell(pcap_file(handle));

	while ((buf = pcap_next(handle, &header))) {
		if (header.len > *max_frame_size)
			*max_frame_size = header.len;
		ret++;
	}
	int ret2 = fseek(pcap_file(handle), pkt1_fpos, SEEK_SET);
	PROX_PANIC(ret2 != 0, "Failed to reset reading pcap file\n");
	return ret;
}

static uint64_t avg_time_stamp(uint64_t *time_stamp, uint32_t n)
{
	uint64_t tot_inter_pkt = 0;

	for (uint32_t i = 0; i < n; ++i)
		tot_inter_pkt += time_stamp[i];
	return (tot_inter_pkt + n / 2)/n;
}

static int pcap_read_pkts(pcap_t *handle, const char *file_name, uint32_t n_pkts, struct pkt_template *proto, uint64_t *time_stamp)
{
	struct pcap_pkthdr header;
	const uint8_t *buf;
	size_t len;

	for (uint32_t i = 0; i < n_pkts; ++i) {
		buf = pcap_next(handle, &header);

		PROX_PANIC(buf == NULL, "Failed to read packet %d from pcap %s\n", i, file_name);
		proto[i].len = header.len;
		len = RTE_MIN(header.len, sizeof(proto[i].buf));
		if (header.len > len)
			plogx_warn("Packet truncated from %u to %zu bytes\n", header.len, len);

		if (time_stamp) {
			static struct timeval beg;
			struct timeval tv;

			if (i == 0)
				beg = header.ts;

			tv = tv_diff(&beg, &header.ts);
			tv_to_tsc(&tv, time_stamp + i);
		}
		rte_memcpy(proto[i].buf, buf, len);
	}

	if (time_stamp && n_pkts) {
		for (uint32_t i = n_pkts - 1; i > 0; --i)
			time_stamp[i] -= time_stamp[i - 1];
		/* Since the handle function will loop the packets,
		   there is one time-stamp that is not provided by the
		   pcap file. This is the time between the last and
		   the first packet. This implementation takes the
		   average of the inter-packet times here. */
		if (n_pkts > 1)
			time_stamp[0] = avg_time_stamp(time_stamp + 1, n_pkts - 1);
	}

	return 0;
}

static int check_pkt_size(struct task_gen *task, uint32_t pkt_size, int do_panic)
{
	const uint16_t min_len = sizeof(struct ether_hdr) + sizeof(struct ipv4_hdr);
	const uint16_t max_len = task->max_frame_size;

	if (do_panic) {
		PROX_PANIC(pkt_size == 0, "Invalid packet size length (no packet defined?)\n");
		PROX_PANIC(pkt_size > max_len, "pkt_size out of range (must be <= %u)\n", max_len);
		PROX_PANIC(pkt_size < min_len, "pkt_size out of range (must be >= %u)\n", min_len);
		return 0;
	} else {
		if (pkt_size == 0) {
			plog_err("Invalid packet size length (no packet defined?)\n");
			return -1;
		}
		if (pkt_size > max_len) {
			plog_err("pkt_size out of range (must be <= %u)\n", max_len);
			return -1;
		}
		if (pkt_size < min_len) {
			plog_err("pkt_size out of range (must be >= %u)\n", min_len);
			return -1;
		}
		return 0;
	}
}

static int check_all_pkt_size(struct task_gen *task, int do_panic)
{
	int rc;
	for (uint32_t i = 0; i < task->n_pkts;++i) {
		if ((rc = check_pkt_size(task, task->pkt_template[i].len, do_panic)) != 0)
			return rc;
	}
	return 0;
}

static int check_fields_in_bounds(struct task_gen *task, uint32_t pkt_size, int do_panic)
{
	if (task->lat_enabled) {
		uint32_t pos_beg = task->lat_pos;
		uint32_t pos_end = task->lat_pos + 3U;

		if (do_panic)
			PROX_PANIC(pkt_size <= pos_end, "Writing latency at %u-%u, but packet size is %u bytes\n",
			   pos_beg, pos_end, pkt_size);
		else if (pkt_size <= pos_end) {
			plog_err("Writing latency at %u-%u, but packet size is %u bytes\n", pos_beg, pos_end, pkt_size);
			return -1;
		}
	}
	if (task->packet_id_pos) {
		uint32_t pos_beg = task->packet_id_pos;
		uint32_t pos_end = task->packet_id_pos + 4U;

		if (do_panic)
			PROX_PANIC(pkt_size <= pos_end, "Writing packet at %u-%u, but packet size is %u bytes\n",
			   pos_beg, pos_end, pkt_size);
		else if (pkt_size <= pos_end) {
			plog_err("Writing packet at %u-%u, but packet size is %u bytes\n", pos_beg, pos_end, pkt_size);
			return -1;
		}
	}
	if (task->accur_pos) {
		uint32_t pos_beg = task->accur_pos;
		uint32_t pos_end = task->accur_pos + 3U;

		if (do_panic)
			PROX_PANIC(pkt_size <= pos_end, "Writing accuracy at %u%-u, but packet size is %u bytes\n",
			   pos_beg, pos_end, pkt_size);
		else if (pkt_size <= pos_end) {
			plog_err("Writing accuracy at %u%-u, but packet size is %u bytes\n", pos_beg, pos_end, pkt_size);
			return -1;
		}
	}
	return 0;
}

static void task_gen_pkt_template_recalc_metadata(struct task_gen *task)
{
	struct pkt_template *template;

	for (size_t i = 0; i < task->n_pkts; ++i) {
		template = &task->pkt_template[i];
		parse_l2_l3_len(template->buf, &template->l2_len, &template->l3_len, template->len);
	}
}

static void task_gen_pkt_template_recalc_checksum(struct task_gen *task)
{
	struct pkt_template *template;
	struct ipv4_hdr *ip;

	task->runtime_checksum_needed = 0;
	for (size_t i = 0; i < task->n_pkts; ++i) {
		template = &task->pkt_template[i];
		if (template->l2_len == 0)
			continue;
		ip = (struct ipv4_hdr *)(template->buf + template->l2_len);

		ip->hdr_checksum = 0;
		prox_ip_cksum_sw(ip);
		uint32_t l4_len = rte_bswap16(ip->total_length) - template->l3_len;

		if (ip->next_proto_id == IPPROTO_UDP) {
			struct udp_hdr *udp = (struct udp_hdr *)(((uint8_t *)ip) + template->l3_len);
			prox_udp_cksum_sw(udp, l4_len, ip->src_addr, ip->dst_addr);
		} else if (ip->next_proto_id == IPPROTO_TCP) {
			struct tcp_hdr *tcp = (struct tcp_hdr *)(((uint8_t *)ip) + template->l3_len);
			prox_tcp_cksum_sw(tcp, l4_len, ip->src_addr, ip->dst_addr);
		}

		/* The current implementation avoids checksum
		   calculation by determining that at packet
		   construction time, no fields are applied that would
		   require a recalculation of the checksum. */
		if (task->lat_enabled && task->lat_pos > template->l2_len)
			task->runtime_checksum_needed = 1;
		if (task->accur_pos > template->l2_len)
			task->runtime_checksum_needed = 1;
		if (task->packet_id_pos > template->l2_len)
			task->runtime_checksum_needed = 1;
	}
}

static void task_gen_pkt_template_recalc_all(struct task_gen *task)
{
	task_gen_pkt_template_recalc_metadata(task);
	task_gen_pkt_template_recalc_checksum(task);
}

static void task_gen_reset_pkt_templates_len(struct task_gen *task)
{
	struct pkt_template *src, *dst;

	for (size_t i = 0; i < task->n_pkts; ++i) {
		src = &task->pkt_template_orig[i];
		dst = &task->pkt_template[i];
		dst->len = src->len;
	}
}

static void task_gen_reset_pkt_templates_content(struct task_gen *task)
{
	struct pkt_template *src, *dst;

	for (size_t i = 0; i < task->n_pkts; ++i) {
		src = &task->pkt_template_orig[i];
		dst = &task->pkt_template[i];
		memcpy(dst->buf, src->buf, dst->len);
	}
}

static void task_gen_reset_pkt_templates(struct task_gen *task)
{
	task_gen_reset_pkt_templates_len(task);
	task_gen_reset_pkt_templates_content(task);
	task_gen_pkt_template_recalc_all(task);
}

static void task_init_gen_load_pkt_inline(struct task_gen *task, struct task_args *targ)
{
	const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);

	task->n_pkts = 1;

	size_t mem_size = task->n_pkts * sizeof(*task->pkt_template);
	task->pkt_template = prox_zmalloc(mem_size, socket_id);
	task->pkt_template_orig = prox_zmalloc(mem_size, socket_id);

	PROX_PANIC(task->pkt_template == NULL ||
		   task->pkt_template_orig == NULL,
		   "Failed to allocate %lu bytes (in huge pages) for packet template\n", mem_size);

	task->pkt_template->buf = prox_zmalloc(task->max_frame_size, socket_id);
	task->pkt_template_orig->buf = prox_zmalloc(task->max_frame_size, socket_id);
	PROX_PANIC(task->pkt_template->buf == NULL ||
		task->pkt_template_orig->buf == NULL,
		"Failed to allocate %u bytes (in huge pages) for packet\n", task->max_frame_size);

	PROX_PANIC(targ->pkt_size > task->max_frame_size,
		targ->pkt_size > ETHER_MAX_LEN + 2 * PROX_VLAN_TAG_SIZE - 4 ?
			"pkt_size too high and jumbo frames disabled" : "pkt_size > mtu");

	rte_memcpy(task->pkt_template_orig[0].buf, targ->pkt_inline, targ->pkt_size);
	task->pkt_template_orig[0].len = targ->pkt_size;
	task_gen_reset_pkt_templates(task);
	check_all_pkt_size(task, 1);
	check_fields_in_bounds(task, task->pkt_template[0].len, 1);
}

static void task_init_gen_load_pcap(struct task_gen *task, struct task_args *targ)
{
	const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
	char err[PCAP_ERRBUF_SIZE];
	uint32_t max_frame_size;
	pcap_t *handle = pcap_open_offline(targ->pcap_file, err);
	PROX_PANIC(handle == NULL, "Failed to open PCAP file: %s\n", err);

	task->n_pkts = pcap_count_pkts(handle, &max_frame_size);
	plogx_info("%u packets in pcap file '%s'\n", task->n_pkts, targ->pcap_file);
	PROX_PANIC(max_frame_size > task->max_frame_size,
		max_frame_size > ETHER_MAX_LEN + 2 * PROX_VLAN_TAG_SIZE -4 ?
			"pkt_size too high and jumbo frames disabled" : "pkt_size > mtu");

	if (targ->n_pkts)
		task->n_pkts = RTE_MIN(task->n_pkts, targ->n_pkts);
	PROX_PANIC(task->n_pkts > MAX_TEMPLATE_INDEX, "Too many packets specified in pcap - increase MAX_TEMPLATE_INDEX\n");
	plogx_info("Loading %u packets from pcap\n", task->n_pkts);
	size_t mem_size = task->n_pkts * sizeof(*task->pkt_template);
	task->pkt_template = prox_zmalloc(mem_size, socket_id);
	task->pkt_template_orig = prox_zmalloc(mem_size, socket_id);
	PROX_PANIC(task->pkt_template == NULL ||
		   task->pkt_template_orig == NULL,
		   "Failed to allocate %lu bytes (in huge pages) for pcap file\n", mem_size);

	for (uint i = 0; i < task->n_pkts; i++) {
		task->pkt_template[i].buf = prox_zmalloc(max_frame_size, socket_id);
		task->pkt_template_orig[i].buf = prox_zmalloc(max_frame_size, socket_id);

		PROX_PANIC(task->pkt_template->buf == NULL ||
			task->pkt_template_orig->buf == NULL,
			"Failed to allocate %u bytes (in huge pages) for pcap file\n", task->max_frame_size);
	}

	pcap_read_pkts(handle, targ->pcap_file, task->n_pkts, task->pkt_template_orig, NULL);
	pcap_close(handle);
	task_gen_reset_pkt_templates(task);
}

static struct rte_mempool *task_gen_create_mempool(struct task_args *targ, uint16_t max_frame_size)
{
	static char name[] = "gen_pool";
	struct rte_mempool *ret;
	const int sock_id = rte_lcore_to_socket_id(targ->lconf->id);

	name[0]++;
	uint32_t mbuf_size = TX_MBUF_SIZE;
	if (max_frame_size + (unsigned)sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM > mbuf_size)
		mbuf_size = max_frame_size + (unsigned)sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM;
	plog_info("\t\tCreating mempool with name '%s'\n", name);
	ret = rte_mempool_create(name, targ->nb_mbuf - 1, mbuf_size,
				 targ->nb_cache_mbuf, sizeof(struct rte_pktmbuf_pool_private),
				 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, 0,
				 sock_id, 0);
	PROX_PANIC(ret == NULL, "Failed to allocate dummy memory pool on socket %u with %u elements\n",
		   sock_id, targ->nb_mbuf - 1);

        plog_info("\t\tMempool %p size = %u * %u cache %u, socket %d\n", ret,
                  targ->nb_mbuf - 1, mbuf_size, targ->nb_cache_mbuf, sock_id);

	return ret;
}

void task_gen_set_pkt_count(struct task_base *tbase, uint32_t count)
{
	struct task_gen *task = (struct task_gen *)tbase;

	task->pkt_count = count;
}

int task_gen_set_pkt_size(struct task_base *tbase, uint32_t pkt_size)
{
	struct task_gen *task = (struct task_gen *)tbase;
	int rc;

	if ((rc = check_pkt_size(task, pkt_size, 0)) != 0)
		return rc;
	if ((rc = check_fields_in_bounds(task, pkt_size, 0)) != 0)
		return rc;
	task->pkt_template[0].len = pkt_size;
	return rc;
}

void task_gen_set_rate(struct task_base *tbase, uint64_t bps)
{
	struct task_gen *task = (struct task_gen *)tbase;

	task->new_rate_bps = bps;
}

void task_gen_reset_randoms(struct task_base *tbase)
{
	struct task_gen *task = (struct task_gen *)tbase;

	for (uint32_t i = 0; i < task->n_rands; ++i) {
		task->rand[i].rand_mask = 0;
		task->rand[i].fixed_bits = 0;
		task->rand[i].rand_offset = 0;
	}
	task->n_rands = 0;
}

int task_gen_set_value(struct task_base *tbase, uint32_t value, uint32_t offset, uint32_t len)
{
	struct task_gen *task = (struct task_gen *)tbase;

	for (size_t i = 0; i < task->n_pkts; ++i) {
		uint32_t to_write = rte_cpu_to_be_32(value) >> ((4 - len) * 8);
		uint8_t *dst = task->pkt_template[i].buf;

		rte_memcpy(dst + offset, &to_write, len);
	}

	task_gen_pkt_template_recalc_all(task);

	return 0;
}

void task_gen_reset_values(struct task_base *tbase)
{
	struct task_gen *task = (struct task_gen *)tbase;

	task_gen_reset_pkt_templates_content(task);
}

uint32_t task_gen_get_n_randoms(struct task_base *tbase)
{
	struct task_gen *task = (struct task_gen *)tbase;

	return task->n_rands;
}

static void init_task_gen_pcap(struct task_base *tbase, struct task_args *targ)
{
	struct task_gen_pcap *task = (struct task_gen_pcap *)tbase;
	const uint32_t sockid = rte_lcore_to_socket_id(targ->lconf->id);
	uint32_t max_frame_size;

	task->loop = targ->loop;
	task->pkt_idx = 0;
	task->hz = rte_get_tsc_hz();

	char err[PCAP_ERRBUF_SIZE];
	pcap_t *handle = pcap_open_offline(targ->pcap_file, err);
	PROX_PANIC(handle == NULL, "Failed to open PCAP file: %s\n", err);

	task->n_pkts = pcap_count_pkts(handle, &max_frame_size);
	plogx_info("%u packets in pcap file '%s'\n", task->n_pkts, targ->pcap_file);

	task->local_mbuf.mempool = task_gen_create_mempool(targ, max_frame_size);

	PROX_PANIC(!strcmp(targ->pcap_file, ""), "No pcap file defined\n");

	if (targ->n_pkts) {
		plogx_info("Configured to load %u packets\n", targ->n_pkts);
		if (task->n_pkts > targ->n_pkts)
			task->n_pkts = targ->n_pkts;
	}
	PROX_PANIC(task->n_pkts > MAX_TEMPLATE_INDEX, "Too many packets specified in pcap - increase MAX_TEMPLATE_INDEX\n");

	plogx_info("Loading %u packets from pcap\n", task->n_pkts);

	size_t mem_size = task->n_pkts * (sizeof(*task->proto) + sizeof(*task->proto_tsc));
	uint8_t *mem = prox_zmalloc(mem_size, sockid);

	PROX_PANIC(mem == NULL, "Failed to allocate %lu bytes (in huge pages) for pcap file\n", mem_size);
	task->proto = (struct pkt_template *) mem;
	task->proto_tsc = (uint64_t *)(mem + task->n_pkts * sizeof(*task->proto));

	for (uint i = 0; i < targ->n_pkts; i++) {
		task->proto[i].buf = prox_zmalloc(max_frame_size, sockid);
		PROX_PANIC(task->proto[i].buf == NULL, "Failed to allocate %u bytes (in huge pages) for pcap file\n", max_frame_size);
	}

	pcap_read_pkts(handle, targ->pcap_file, task->n_pkts, task->proto, task->proto_tsc);
	pcap_close(handle);
}

static int task_gen_find_random_with_offset(struct task_gen *task, uint32_t offset)
{
	for (uint32_t i = 0; i < task->n_rands; ++i) {
		if (task->rand[i].rand_offset == offset) {
			return i;
		}
	}

	return UINT32_MAX;
}

int task_gen_add_rand(struct task_base *tbase, const char *rand_str, uint32_t offset, uint32_t rand_id)
{
	struct task_gen *task = (struct task_gen *)tbase;
	uint32_t existing_rand;

	if (rand_id == UINT32_MAX && task->n_rands == 64) {
		plog_err("Too many randoms\n");
		return -1;
	}
	uint32_t mask, fixed, len;

	if (parse_random_str(&mask, &fixed, &len, rand_str)) {
		plog_err("%s\n", get_parse_err());
		return -1;
	}
	task->runtime_checksum_needed = 1;

	existing_rand = task_gen_find_random_with_offset(task, offset);
	if (existing_rand != UINT32_MAX) {
		plog_warn("Random at offset %d already set => overwriting len = %d %s\n", offset, len, rand_str);
		rand_id = existing_rand;
		task->rand[rand_id].rand_len = len;
		task->rand[rand_id].rand_offset = offset;
		task->rand[rand_id].rand_mask = mask;
		task->rand[rand_id].fixed_bits = fixed;
		return 0;
	}

	task->rand[task->n_rands].rand_len = len;
	task->rand[task->n_rands].rand_offset = offset;
	task->rand[task->n_rands].rand_mask = mask;
	task->rand[task->n_rands].fixed_bits = fixed;

	task->n_rands++;
	return 0;
}

static void start(struct task_base *tbase)
{
	struct task_gen *task = (struct task_gen *)tbase;
	task->pkt_queue_index = 0;

	task_gen_reset_token_time(task);
	if (tbase->l3.tmaster) {
		register_all_ip_to_ctrl_plane(task);
	}
	if (task->port) {
		// task->port->link_speed reports the link speed in Mbps e.g. 40k for a 40 Gbps NIC.
		// task->link_speed reports link speed in Bytes per sec.
		// It can be 0 if link is down, and must hence be updated in fast path.
		task->link_speed = task->port->link_speed * 125000L;
		if (task->link_speed)
			plog_info("\tPort %u: link speed is %ld Mbps\n",
				(uint8_t)(task->port - prox_port_cfg), 8 * task->link_speed / 1000000);
		else
			plog_info("\tPort %u: link speed is %ld Mbps - link might be down\n",
				(uint8_t)(task->port - prox_port_cfg), 8 * task->link_speed / 1000000);
	}
	/* TODO
	   Handle the case when two tasks transmit to the same port
	   and one of them is stopped. In that case ARP (requests or replies)
	   might not be sent. Master will have to keep a list of rings.
	   stop will have to de-register IP from ctrl plane.
	   un-registration will remove the ring. when having more than
	   one active rings, master can always use the first one
	*/
}

static void start_pcap(struct task_base *tbase)
{
	struct task_gen_pcap *task = (struct task_gen_pcap *)tbase;
	/* When we start, the first packet is sent immediately. */
	task->last_tsc = rte_rdtsc() - task->proto_tsc[0];
	task->pkt_idx = 0;
}

static void init_task_gen_early(struct task_args *targ)
{
	uint8_t *generator_count = prox_sh_find_system("generator_count");

	if (generator_count == NULL) {
		generator_count = prox_zmalloc(sizeof(*generator_count), rte_lcore_to_socket_id(targ->lconf->id));
		PROX_PANIC(generator_count == NULL, "Failed to allocate generator count\n");
		prox_sh_add_system("generator_count", generator_count);
	}
	targ->generator_id = *generator_count;
	(*generator_count)++;
}

static void init_task_gen(struct task_base *tbase, struct task_args *targ)
{
	struct task_gen *task = (struct task_gen *)tbase;

	task->packet_id_pos = targ->packet_id_pos;

	struct prox_port_cfg *port = find_reachable_port(targ);
	// TODO: check that all reachable ports have the same mtu...
	if (port) {
		task->cksum_offload = port->requested_tx_offload & (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM);
		task->port = port;
		task->max_frame_size = port->mtu + ETHER_HDR_LEN + 2 * PROX_VLAN_TAG_SIZE;
	} else {
		// Not generating to any port...
		task->max_frame_size = ETHER_MAX_LEN;
	}
	task->local_mbuf.mempool = task_gen_create_mempool(targ, task->max_frame_size);
	PROX_PANIC(task->local_mbuf.mempool == NULL, "Failed to create mempool\n");
	task->pkt_idx = 0;
	task->hz = rte_get_tsc_hz();
	task->lat_pos = targ->lat_pos;
	task->accur_pos = targ->accur_pos;
	task->sig_pos = targ->sig_pos;
	task->sig = targ->sig;
	task->new_rate_bps = targ->rate_bps;

	/*
	 * For tokens, use 10 Gbps as base rate
	 * Scripts can then use speed command, with speed=100 as 10 Gbps and speed=400 as 40 Gbps
	 * Script can query prox "port info" command to find out the port link speed to know
	 * at which rate to start. Note that virtio running on OVS returns 10 Gbps, so a script has
	 * probably also to check the driver (as returned by the same "port info" command.
	 */
	struct token_time_cfg tt_cfg = token_time_cfg_create(1250000000, rte_get_tsc_hz(), -1);
	token_time_init(&task->token_time, &tt_cfg);

	init_task_gen_seeds(task);

	task->min_bulk_size = targ->min_bulk_size;
	task->max_bulk_size = targ->max_bulk_size;
	if (task->min_bulk_size < 1)
		task->min_bulk_size = 1;
	if (task->max_bulk_size < 1)
		task->max_bulk_size = 64;
	PROX_PANIC(task->max_bulk_size > 64, "max_bulk_size higher than 64\n");
	PROX_PANIC(task->max_bulk_size < task->min_bulk_size, "max_bulk_size must be > than min_bulk_size\n");

	task->pkt_count = -1;
	task->lat_enabled = targ->lat_enabled;
	task->runtime_flags = targ->runtime_flags;
	PROX_PANIC((task->lat_pos || task->accur_pos) && !task->lat_enabled, "lat not enabled by lat pos or accur pos configured\n");

	task->generator_id = targ->generator_id;
	plog_info("\tGenerator id = %d\n", task->generator_id);
	task->link_speed = UINT64_MAX;

	if (!strcmp(targ->pcap_file, "")) {
		plog_info("\tUsing inline definition of a packet\n");
		task_init_gen_load_pkt_inline(task, targ);
	} else {
		plog_info("Loading from pcap %s\n", targ->pcap_file);
		task_init_gen_load_pcap(task, targ);
	}

	if ((targ->flags & DSF_KEEP_SRC_MAC) == 0 && (targ->nb_txrings || targ->nb_txports)) {
		uint8_t *src_addr = prox_port_cfg[tbase->tx_params_hw.tx_port_queue->port].eth_addr.addr_bytes;
		for (uint32_t i = 0; i < task->n_pkts; ++i) {
			rte_memcpy(&task->pkt_template[i].buf[6], src_addr, 6);
		}
	}
	memcpy(&task->src_mac, &prox_port_cfg[task->base.tx_params_hw.tx_port_queue->port].eth_addr, sizeof(struct ether_addr));
	for (uint32_t i = 0; i < targ->n_rand_str; ++i) {
		PROX_PANIC(task_gen_add_rand(tbase, targ->rand_str[i], targ->rand_offset[i], UINT32_MAX),
			   "Failed to add random\n");
	}
}

static struct task_init task_init_gen = {
	.mode_str = "gen",
	.init = init_task_gen,
	.handle = handle_gen_bulk,
	.start = start,
	.early_init = init_task_gen_early,
#ifdef SOFT_CRC
	// For SOFT_CRC, no offload is needed. If both NOOFFLOADS and NOMULTSEGS flags are set the
	// vector mode is used by DPDK, resulting (theoretically) in higher performance.
	.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX | TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS,
#else
	.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX,
#endif
	.size = sizeof(struct task_gen)
};

static struct task_init task_init_gen_l3 = {
	.mode_str = "gen",
	.sub_mode_str = "l3",
	.init = init_task_gen,
	.handle = handle_gen_bulk,
	.start = start,
	.early_init = init_task_gen_early,
#ifdef SOFT_CRC
	// For SOFT_CRC, no offload is needed. If both NOOFFLOADS and NOMULTSEGS flags are set the
	// vector mode is used by DPDK, resulting (theoretically) in higher performance.
	.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX | TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS,
#else
	.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX,
#endif
	.size = sizeof(struct task_gen)
};

static struct task_init task_init_gen_pcap = {
	.mode_str = "gen",
	.sub_mode_str = "pcap",
	.init = init_task_gen_pcap,
	.handle = handle_gen_pcap_bulk,
	.start = start_pcap,
	.early_init = init_task_gen_early,
#ifdef SOFT_CRC
	.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX | TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS,
#else
	.flag_features = TASK_FEATURE_NEVER_DISCARDS | TASK_FEATURE_NO_RX,
#endif
	.size = sizeof(struct task_gen_pcap)
};

__attribute__((constructor)) static void reg_task_gen(void)
{
	reg_task(&task_init_gen);
	reg_task(&task_init_gen_l3);
	reg_task(&task_init_gen_pcap);
}