aboutsummaryrefslogtreecommitdiffstats
path: root/docs/testing/user/userguide/opnfv_yardstick_tc006.rst
blob: d2d6467f18234ea14e0a3d0f60ee4f30db37b899 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
.. This work is licensed under a Creative Commons Attribution 4.0 International
.. License.
.. http://creativecommons.org/licenses/by/4.0
.. (c) OPNFV, Huawei Technologies Co.,Ltd and others.

*************************************
Yardstick Test Case Description TC006
*************************************

.. _fio: http://bluestop.org/files/fio/HOWTO.txt

+-----------------------------------------------------------------------------+
|Volume storage Performance                                                   |
|                                                                             |
+--------------+--------------------------------------------------------------+
|test case id  | OPNFV_YARDSTICK_TC006_VOLUME STORAGE PERFORMANCE             |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|metric        | IOPS (Average IOs performed per second),                     |
|              | Throughput (Average disk read/write bandwidth rate),         |
|              | Latency (Average disk read/write latency)                    |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|test purpose  | The purpose of TC006 is to evaluate the IaaS volume storage  |
|              | performance with regards to IOPS, throughput and latency.    |
|              |                                                              |
|              | The purpose is also to be able to spot the trends.           |
|              | Test results, graphs and similar shall be stored for         |
|              | comparison reasons and product evolution understanding       |
|              | between different OPNFV versions and/or configurations.      |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|test tool     | fio                                                          |
|              |                                                              |
|              | fio is an I/O tool meant to be used both for benchmark and   |
|              | stress/hardware verification. It has support for 19          |
|              | different types of I/O engines (sync, mmap, libaio,          |
|              | posixaio, SG v3, splice, null, network, syslet, guasi,       |
|              | solarisaio, and more), I/O priorities (for newer Linux       |
|              | kernels), rate I/O, forked or threaded jobs, and much more.  |
|              |                                                              |
|              | (fio is not always part of a Linux distribution, hence it    |
|              | needs to be installed. As an example see the                 |
|              | /yardstick/tools/ directory for how to generate a Linux      |
|              | image with fio included.)                                    |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|test          | fio test is invoked in a host VM with a volume attached on a |
|description   | compute blade, a job file as well as parameters are passed   |
|              | to fio and fio will start doing what the job file tells it   |
|              | to do.                                                       |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|configuration | file: opnfv_yardstick_tc006.yaml                             |
|              |                                                              |
|              | Fio job file is provided to define the benchmark process     |
|              | Target volume is mounted at /FIO_Test directory              |
|              |                                                              |
|              | For SLA, minimum read/write iops is set to 100,              |
|              | minimum read/write throughput is set to 400 KB/s,            |
|              | and maximum read/write latency is set to 20000 usec.         |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|applicability | This test case can be configured with different:             |
|              |                                                              |
|              |   * Job file;                                                |
|              |   * Volume mount directory.                                  |
|              |                                                              |
|              | SLA is optional. The SLA in this test case serves as an      |
|              | example. Considerably higher throughput and lower latency    |
|              | are expected. However, to cover most configurations, both    |
|              | baremetal and fully virtualized  ones, this value should be  |
|              | possible to achieve and acceptable for black box testing.    |
|              | Many heavy IO applications start to suffer badly if the      |
|              | read/write bandwidths are lower than this.                   |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|usability     | This test case is one of Yardstick's generic test. Thus it   |
|              | is runnable on most of the scenarios.                        |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|references    | fio_                                                         |
|              |                                                              |
|              | ETSI-NFV-TST001                                              |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|pre-test      | The test case image needs to be installed into Glance        |
|conditions    | with fio included in it.                                     |
|              |                                                              |
|              | No POD specific requirements have been identified.           |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|test sequence | description and expected result                              |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|step 1        | A host VM with fio installed is booted.                      |
|              | A 200G volume is attached to the host VM                     |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|step 2        | Yardstick is connected with the host VM by using ssh.        |
|              | 'job_file.ini' is copyied from Jump Host to the host VM via  |
|              | the ssh tunnel. The attached volume is formated and mounted. |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|step 3        | Fio benchmark is invoked. Simulated IO operations are        |
|              | started. IOPS, disk read/write bandwidth and latency are     |
|              | recorded and checked against the SLA. Logs are produced and  |
|              | stored.                                                      |
|              |                                                              |
|              | Result: Logs are stored.                                     |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|step 4        | The host VM is deleted.                                      |
|              |                                                              |
+--------------+--------------------------------------------------------------+
|test verdict  | Fails only if SLA is not passed, or if there is a test case  |
|              | execution problem.                                           |
|              |                                                              |
+--------------+--------------------------------------------------------------+
='#n750'>750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/*
// Copyright (c) 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#ifndef __INCLUDE_PIPELINE_CGNAPT_BE_H__
#define __INCLUDE_PIPELINE_CGNAPT_BE_H__

/**
 * @file
 * Pipeline CG-NAPT BE.
 *
 * Pipeline CG-NAPT Back End (BE).
 * Responsible for packet processing.
 *
 */

#include "pipeline_common_be.h"
#include "vnf_common.h"
#include <rte_pipeline.h>
#include <rte_hash.h>
#include "pipeline_timer_be.h"
#include "pipeline_arpicmp_be.h"
#include "cgnapt_pcp_be.h"
#include "lib_arp.h"

#define PIPELINE_CGNAPT_KEY_MAX_SIZE  64

extern uint8_t CGNAPT_DEBUG;
#define CGNAPT_DBG_CMD_OFST 8
#define CGNAPT_DBG_CMD_STATS_SHOW 0
#define CGNAPT_DBG_CMD_STATS_CLEAR 1
#define CGNAPT_DBG_CMD_DBG_LEVEL 2
#define CGNAPT_DBG_CMD_DBG_SHOW 3
#define CGNAPT_DBG_CMD_LS_ENTRY 4
#define CGNAPT_DBG_CMD_DYN 5
#define CGNAPT_DBG_CMD_IF_STATS 6
#define CGNAPT_DBG_CMD_INSTRUMENTATION 7
#define CGNAPT_DBG_CMD_ITER_COM_TBL 8
#define CGNAPT_DBG_CMD_MAPS_INFO 9
#define CGNAPT_DBG_CMD_OFST1 10
#define CGNAPT_DBG_CMD_IPV6 11
#define CGNAPT_DBG_CMD_PRINT_DS 12
#define CGNAPT_DBG_CMD_PRINT_NSP 13
#define CGNAPT_DBG_MAX_CLI_PER_PUB_IP 14
#define CGNAPT_DBG_PUB_IP_LIST 15
#define CGNAPT_DBG_TIMING_INST 16


#ifdef PCP_ENABLE

#define CGNAPT_DBG_PCP 17
/* PCP sub commands */
enum{
CGNAPT_PCP_CMD_STATS,
CGNAPT_PCP_CMD_PCP_ENABLE,
CGNAPT_PCP_CMD_GET_LIFETIME,
CGNAPT_PCP_CMD_SET_LIFETIME,
CGNAPT_PCP_CMD_OFST = 8,
};

#endif

/*
 * CGNAPT_DBG_CMD_INSTRUMENTATION Sub commands
*/
 #define CGNAPT_CMD_INSTRUMENTATION_SUB0 0
 #define CGNAPT_CMD_INSTRUMENTATION_SUB1 1
 #define CGNAPT_CMD_INSTRUMENTATION_SUB2 2

/*
 * CGNAPT_DBG_CMD_IF_STATS Sub commands
*/
#define CGNAPT_IF_STATS_HWQ 0
#define CGNAPT_IF_STATS_SWQ 1
#define CGNAPT_IF_STATS_OTH 2

/* Version command info */
#define CGNAPT_VER_CMD_OFST 8
#define CGNAPT_VER_CMD_VER 1

/* Network Specific Prefix commnd */
#define CGNAPT_NSP_CMD_OFST 8

/* #define PIPELINE_CGNAPT_INSTRUMENTATION */
#ifdef PIPELINE_CGNAPT_INSTRUMENTATION
void *instrumentation_port_in_arg;
struct rte_mempool *cgnapt_test_pktmbuf_pool;

#define INST_ARRAY_SIZE 100000
#define CGNAPT_INST5_SIG 0xAA
#define CGNAPT_INST5_WAIT 200
#define CGNAPT_INST5_OFST 10

uint64_t *inst_start_time;
uint64_t *inst_end_time;
uint32_t *inst_diff_time;

uint32_t cgnapt_inst_index;
uint32_t cgnapt_inst5_flag;
uint32_t cgnapt_inst5_wait;
uint8_t cgnapt_num_func_to_inst;

#endif

#define CGNAPT_VERSION "1.8"
#define CGNAPT_DYN_TIMEOUT (3*10)	/* 30 secs */
#define MAX_DYN_ENTRY (70000 * 16)

#define NAPT_ENTRY_STALE 1
#define NAPT_ENTRY_VALID 0

/* For max_port_per_client */
#define MAX_PORT_INVALID_KEY -1
#define MAX_PORT_NOT_REACHED  0
#define MAX_PORT_REACHED      1
/* increment */
#define MAX_PORT_INC_SUCCESS  1
#define MAX_PORT_INC_REACHED  0
#define MAX_PORT_INC_ERROR   -1
/* decrement */
#define MAX_PORT_DEC_SUCCESS  1
#define MAX_PORT_DEC_REACHED  0
#define MAX_PORT_DEC_ERROR   -1
/* add_entry */
#define MAX_PORT_ADD_SUCCESS    1
#define MAX_PORT_ADD_UNSUCCESS  0
#define MAX_PORT_ADD_ERROR     -1
/* del_entry */
#define MAX_PORT_DEL_SUCCESS    1
#define MAX_PORT_DEL_UNSUCCESS  0
#define MAX_PORT_DEL_ERROR     -1

#define PIPELINE_CGNAPT_TABLE_AH_HIT(f_ah, f_pkt_work, f_pkt4_work)	\
static int								\
f_ah(									\
	struct rte_pipeline *rte_p,					\
	struct rte_mbuf **pkts,						\
	uint64_t pkts_mask,						\
	struct rte_pipeline_table_entry **entries,			\
	void *arg)							\
{									\
	uint64_t pkts_in_mask = pkts_mask;				\
	uint64_t pkts_out_mask = pkts_mask;				\
	uint64_t time = rte_rdtsc();					\
									\
	if ((pkts_in_mask & (pkts_in_mask + 1)) == 0) {			\
		uint64_t n_pkts = __builtin_popcountll(pkts_in_mask);	\
		uint32_t i;						\
									\
		for (i = 0; i < (n_pkts & (~0x3LLU)); i += 4) {		\
			uint64_t mask = f_pkt4_work(&pkts[i],		\
				&entries[i], i, arg);			\
			pkts_out_mask ^= mask << i;			\
		}							\
									\
		for ( ; i < n_pkts; i++) {				\
			uint64_t mask = f_pkt_work(pkts[i],		\
				entries[i], i, arg);			\
			pkts_out_mask ^= mask << i;			\
		}							\
	} else								\
		for ( ; pkts_in_mask; ) {				\
			uint32_t pos = __builtin_ctzll(pkts_in_mask);	\
			uint64_t pkt_mask = 1LLU << pos;		\
			uint64_t mask = f_pkt_work(pkts[pos],		\
				entries[pos], pos, arg);		\
									\
			pkts_in_mask &= ~pkt_mask;			\
			pkts_out_mask ^= mask << pos;			\
		}							\
									\
	rte_pipeline_ah_packet_drop(rte_p, pkts_out_mask ^ pkts_mask);	\
									\
	return 0;							\
}

#define PIPELINE_CGNAPT_PORT_OUT_AH(f_ah, f_pkt_work, f_pkt4_work)	\
static int								\
f_ah(									\
	__rte_unused struct rte_pipeline *rte_p,			\
	struct rte_mbuf **pkt,						\
	uint32_t *pkts_mask,						\
	void *arg)							\
{									\
	f_pkt4_work(pkt, arg);						\
	f_pkt_work(*pkt, arg);						\
									\
	int i = *pkts_mask; i++;					\
	return 0;							\
}

#define PIPELINE_CGNAPT_PORT_OUT_BAH(f_ah, f_pkt_work, f_pkt4_work)	\
static int								\
f_ah(									\
__rte_unused struct rte_pipeline *rte_p,				\
struct rte_mbuf **pkt,							\
uint32_t *pkts_mask,							\
void *arg)								\
{									\
	f_pkt4_work(pkt, arg);						\
									\
	f_pkt_work(*pkt, arg);						\
									\
	int i = *pkts_mask; i++;					\
	return 0;							\
}

#define PIPELINE_CGNAPT_KEY_PORT_IN_AH(f_ah, f_pkt_work, f_pkt4_work)	\
static int								\
f_ah(									\
	struct rte_pipeline *rte_p,					\
	struct rte_mbuf **pkts,						\
	uint32_t n_pkts,						\
	void *arg)							\
{									\
	uint32_t i;							\
									\
	if (CGNAPT_DEBUG > 1)						\
		printf("cgnapt_key hit fn: %"PRIu32"\n", n_pkts);	\
									\
	pkt_burst_cnt = 0;						\
	for (i = 0; i < (n_pkts & (~0x3LLU)); i += 4)			\
		f_pkt4_work(&pkts[i], arg);				\
									\
	for ( ; i < n_pkts; i++)					\
		f_pkt_work(pkts[i], arg);				\
									\
									\
	return 0;							\
}									\


#define PIPELINE_CGNAPT_TABLE_AH_MISS(f_ah, f_pkt_work, f_pkt4_work)	\
static int								\
f_ah(									\
	struct rte_pipeline *rte_p,					\
	struct rte_mbuf **pkts,						\
	uint64_t pkts_mask,						\
	struct rte_pipeline_table_entry **entries,			\
	void *arg)							\
{									\
	uint64_t pkts_in_mask = pkts_mask;				\
	uint64_t pkts_out_mask = pkts_mask;				\
	uint64_t time = rte_rdtsc();					\
									\
	if ((pkts_in_mask & (pkts_in_mask + 1)) == 0) {			\
		uint64_t n_pkts = __builtin_popcountll(pkts_in_mask);	\
		uint32_t i;						\
									\
		for (i = 0; i < (n_pkts & (~0x3LLU)); i += 4) {		\
			uint64_t mask = f_pkt4_work(&pkts[i],		\
				&entries[i], i, arg);			\
			pkts_out_mask ^= mask << i;			\
		}							\
									\
		for ( ; i < n_pkts; i++) {				\
			uint64_t mask = f_pkt_work(pkts[i],		\
				entries[i], i, arg);			\
			pkts_out_mask ^= mask << i;			\
		}							\
	} else								\
		for ( ; pkts_in_mask; ) {				\
			uint32_t pos = __builtin_ctzll(pkts_in_mask);	\
			uint64_t pkt_mask = 1LLU << pos;		\
			uint64_t mask = f_pkt_work(pkts[pos],		\
				entries[pos], pos, arg);		\
									\
			pkts_in_mask &= ~pkt_mask;			\
			pkts_out_mask ^= mask << pos;			\
		}							\
									\
	rte_pipeline_ah_packet_drop(rte_p, pkts_out_mask ^ pkts_mask);	\
									\
	return 0;							\
}

/* IPv4 offsets */
#define SRC_ADR_OFST_IP4 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_SRC_ADR_OFST)
#define DST_ADR_OFST_IP4 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_DST_ADR_OFST)
#define SRC_PRT_OFST_IP4_TCP (MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_SIZE)
#define SRC_PRT_OFST_IP4_UDP SRC_PRT_OFST_IP4_TCP
#define DST_PRT_OFST_IP4_TCP (MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_SIZE + 2)
#define DST_PRT_OFST_IP4_UDP DST_PRT_OFST_IP4_TCP
#define PROT_OFST_IP4 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_PROTOCOL_OFST)
#define IDEN_OFST_IP4_ICMP (MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_SIZE + 4)
#define SEQN_OFST_IP4_ICMP (MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_SIZE + 6)

/*NAT64*/

/* IPv6 offsets */
#define SRC_ADR_OFST_IP6 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IPV6_HDR_SRC_ADR_OFST)
#define DST_ADR_OFST_IP6 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IPV6_HDR_DST_ADR_OFST)
#define SRC_PRT_OFST_IP6 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IPV6_HDR_SIZE)
#define DST_PRT_OFST_IP6 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IPV6_HDR_SIZE + 2)
#define PROT_OFST_IP6 (MBUF_HDR_ROOM + ETH_HDR_SIZE + IPV6_HDR_PROTOCOL_OFST)

/* After IPv6 to IPv4 conversion */
#define SRC_ADR_OFST_IP6t4 (20 + MBUF_HDR_ROOM + ETH_HDR_SIZE + \
					IP_HDR_SRC_ADR_OFST)
#define DST_ADR_OFST_IP6t4 (20 + MBUF_HDR_ROOM + ETH_HDR_SIZE + \
					IP_HDR_DST_ADR_OFST)
#define SRC_PRT_OFST_IP6t4 (20 + MBUF_HDR_ROOM + ETH_HDR_SIZE + \
					IP_HDR_SIZE)
#define DST_PRT_OFST_IP6t4 (20 + MBUF_HDR_ROOM + ETH_HDR_SIZE + \
					IP_HDR_SIZE + 2)
#define PROT_OFST_IP6t4 (20 + MBUF_HDR_ROOM + ETH_HDR_SIZE + \
					IP_HDR_PROTOCOL_OFST)
#define ETH_OFST_IP6t4 (20 + MBUF_HDR_ROOM)

/* After IPv4 to IPv6 conversion */
#define DST_PRT_OFST_IP4t6 (MBUF_HDR_ROOM + ETH_HDR_SIZE + \
				IPV6_HDR_SIZE + 2 - 20)
#define DST_ADR_OFST_IP4t6 (MBUF_HDR_ROOM + ETH_HDR_SIZE + \
				IPV6_HDR_DST_ADR_OFST - 20)

#define TRAFFIC_TYPE_MIX   0
#define TRAFFIC_TYPE_IPV4  4
#define TRAFFIC_TYPE_IPV6  6

#define CGNAPT_MAX_PUB_IP 256


/**
 * A structure defining public ip and associated client count.
 */
struct public_ip {
	uint32_t ip;
	rte_atomic16_t count;	/* how many clients are using the public_ip */
} all_public_ip[CGNAPT_MAX_PUB_IP];

/**
 * Command to dump number of clients using an IP address.
 */
void print_num_ip_clients(void);

extern struct rte_hash *napt_common_table;
extern struct public_ip all_public_ip[CGNAPT_MAX_PUB_IP];

/**
 * A structure defining pipeline_cgnapt - placeholder for all
 * CGNAPT pipeline variables
 *
 *
 */
struct pipeline_cgnapt {
	struct pipeline p;
	pipeline_msg_req_handler custom_handlers[PIPELINE_CGNAPT_MSG_REQS];

	uint32_t n_flows;
	uint32_t key_offset;
	uint32_t key_size;
	uint32_t hash_offset;

	uint32_t n_entries;

	/* Dynamic NAPT Start */
	uint8_t is_static_cgnapt;
	uint16_t max_port_per_client;
	uint16_t max_clients_per_ip;

	struct pub_ip_port_set *pub_ip_port_set;
	uint8_t pub_ip_count;
	struct pub_ip_range *pub_ip_range;
	uint8_t pub_ip_range_count;

	struct napt_port_alloc_elem *allocated_ports;
	struct napt_port_alloc_elem *free_ports;
	struct rte_ring *port_alloc_ring;

	uint64_t *port_map;
	uint16_t port_map_array_size;

	uint64_t n_cgnapt_entry_deleted;
	uint64_t n_cgnapt_entry_added;
	uint64_t naptedPktCount;
	uint64_t naptDroppedPktCount;

	uint64_t inaptedPktCount;
	uint64_t enaptedPktCount;
	uint64_t receivedPktCount;
	uint64_t missedPktCount;
	uint64_t dynCgnaptCount;
	uint64_t arpicmpPktCount;

	uint64_t app_params_addr;
	uint8_t pipeline_num;
	uint8_t pkt_burst_cnt;
	uint8_t hw_checksum_reqd;
	uint8_t traffic_type;
	uint8_t links_map[PIPELINE_MAX_PORT_IN];
	uint8_t outport_id[PIPELINE_MAX_PORT_IN];

	struct pipeline_cgnapt_entry_key
			cgnapt_dyn_ent_table[RTE_PORT_IN_BURST_SIZE_MAX];
	uint32_t cgnapt_dyn_ent_index[RTE_PORT_IN_BURST_SIZE_MAX];

	/* table lookup keys */
	struct pipeline_cgnapt_entry_key keys[RTE_HASH_LOOKUP_BULK_MAX];
	/* pointers to table lookup keys */
	void *key_ptrs[RTE_HASH_LOOKUP_BULK_MAX];
	/* table lookup results */
	int32_t lkup_indx[RTE_HASH_LOOKUP_BULK_MAX];
	/* entries used for pkts fwd */
	struct rte_pipeline_table_entry *entries[RTE_HASH_LOOKUP_BULK_MAX];
	uint64_t valid_packets;	/* bitmap of valid packets to process */
	uint64_t invalid_packets;/* bitmap of invalid packets to be dropped */

	uint8_t vnf_set;	/* to identify as separate LB-CGNAPT set */

	/* Local ARP & ND Tables */
	struct lib_arp_route_table_entry
		local_lib_arp_route_table[MAX_ARP_RT_ENTRY];
	uint8_t local_lib_arp_route_ent_cnt;
	struct lib_nd_route_table_entry
		local_lib_nd_route_table[MAX_ND_RT_ENTRY];
	uint8_t local_lib_nd_route_ent_cnt;

	/* For internal debugging purpose */
#ifdef CGNAPT_TIMING_INST
	uint64_t in_port_exit_timestamp;
	uint64_t external_time_sum;
	uint64_t internal_time_sum;
	uint32_t time_measurements;
	uint32_t max_time_mesurements;
	uint8_t time_measurements_on;
#endif

#ifdef CGNAPT_DEBUGGING

	uint32_t naptDebugCount;

	uint64_t naptDroppedPktCount1;
	uint64_t naptDroppedPktCount2;
	uint64_t naptDroppedPktCount3;
	uint64_t naptDroppedPktCount4;
	uint64_t naptDroppedPktCount5;
	uint64_t naptDroppedPktCount6;

	uint64_t kpc1, kpc2;

	uint64_t missedpktcount1;
	uint64_t missedpktcount2;
	uint64_t missedpktcount3;
	uint64_t missedpktcount4;
	uint64_t missedpktcount5;
	uint64_t missedpktcount6;
	uint64_t missedpktcount7;
	uint64_t missedpktcount8;
	uint64_t missedpktcount9;
	uint64_t missedpktcount10;

	uint64_t missedpktcount11;
	uint64_t missedpktcount12;


	uint64_t max_port_dec_err1;
	uint64_t max_port_dec_err2;
	uint64_t max_port_dec_err3;
	uint64_t max_port_dec_success;

	uint64_t pfb_err;
	uint64_t pfb_ret;
	uint64_t pfb_get;
	uint64_t pfb_suc;
	uint64_t gfp_suc;
	uint64_t gfp_get;
	uint64_t gfp_ret;
	uint64_t gfp_err;
#endif
} __rte_cache_aligned;

/**
 * A structure defining the CG-NAPT input port handler arg.
 */
struct pipeline_cgnapt_in_port_h_arg {
	struct pipeline_cgnapt *p;
	uint8_t in_port_id;
};

enum {
	CGNAPT_PRV_PORT_ID,
	CGNAPT_PUB_PORT_ID,
};

uint16_t cgnapt_meta_offset;
uint8_t dual_stack_enable;
uint16_t dest_if_offset;
uint8_t nat_only_config_flag;
uint8_t CGNAPT_DEBUG;

#if (RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN)
/* x86 == little endian   */
/* network  == big endian */
#define CHECK_ENDIAN_16(x) rte_be_to_cpu_16(x)
#else
#define CHECK_ENDIAN_16(x) (x)
#endif
#define IP_VHL_DEF (0x40 | 0x05)
struct rte_mempool *cgnapt_icmp_pktmbuf_tx_pool;
struct rte_mbuf *cgnapt_icmp_pkt;
struct rte_pipeline *myP;
uint8_t icmp_pool_init;

#define MAX_NUM_LOCAL_MAC_ADDRESS 16

/***** NAT64 NSP declarations *****/
/**
 * A structure defining nsp node.
 */
struct cgnapt_nsp_node {
	struct pipeline_cgnapt_nsp_t nsp;
	struct cgnapt_nsp_node *next;
};

struct cgnapt_nsp_node *nsp_ll;

/***** Common Table declarations *****/
#define IP_VERSION_4 4
#define IP_VERSION_6 6
#define MAX_NAPT_ENTRIES 16777216       /* 0x1000000 */
#define NUM_NAPT_PORT_BULK_ALLOC 250


struct rte_hash *napt_common_table;
struct cgnapt_table_entry *napt_hash_tbl_entries;

/***** Multiple NAT IP declarations *****/

/**
 * A structure defining public ip and associated port range set
 */
struct pub_ip_port_set {
	uint32_t ip;
	uint16_t start_port;
	uint16_t end_port;
};

/**
 * A structure defining public ip range
 */
struct pub_ip_range {
	uint32_t start_ip;
	uint32_t end_ip;
};

/***** Common Port Allocation declarations *****/

int create_napt_common_table(uint32_t nFlows);
struct rte_mempool *napt_port_pool;

#define MAX_CGNAPT_SETS 16

/**
 * A structure defining a bulk port allocation element.
 */
struct napt_port_alloc_elem {
	uint32_t count;
	uint32_t ip_addr[NUM_NAPT_PORT_BULK_ALLOC];
	uint16_t ports[NUM_NAPT_PORT_BULK_ALLOC];
};

int napt_port_alloc_init(struct pipeline_cgnapt *p_nat);
void release_iport(uint16_t port, uint32_t public_ip,
			 struct pipeline_cgnapt *p_nat);
int get_free_iport(struct pipeline_cgnapt *p_nat, uint32_t *public_ip);

/***************************** Function declarations *************************/

void
pkt4_work_cgnapt_ipv6_prv(struct rte_mbuf **pkts,
				uint32_t in_pkt_num,
				void *arg, struct pipeline_cgnapt *p_nat);
void
pkt_work_cgnapt_ipv6_prv(struct rte_mbuf *pkts,
			 uint32_t in_pkt_num,
			 void *arg, struct pipeline_cgnapt *p_nat);

void
pkt4_work_cgnapt_ipv6_pub(struct rte_mbuf **pkts,
				uint32_t in_pkt_num,
				void *arg, struct pipeline_cgnapt *p_nat);
void
pkt_work_cgnapt_ipv6_pub(struct rte_mbuf *pkt,
			 uint32_t in_pkt_num,
			 void *arg, struct pipeline_cgnapt *p_nat);

void
pkt4_work_cgnapt_ipv4_prv(struct rte_mbuf **pkts,
				uint32_t in_pkt_num,
				void *arg, struct pipeline_cgnapt *p_nat);

void
pkt_work_cgnapt_ipv4_prv(struct rte_mbuf **pkts,
			 uint32_t in_pkt_num,
			 void *arg, struct pipeline_cgnapt *p_nat);

void
pkt4_work_cgnapt_ipv4_pub(struct rte_mbuf **pkts,
				uint32_t in_pkt_num,
				void *arg, struct pipeline_cgnapt *p_nat);
void
pkt_work_cgnapt_ipv4_pub(struct rte_mbuf **pkts,
			 uint32_t in_pkt_num,
			 void *arg, struct pipeline_cgnapt *p_nat);

/* in port handler key functions */
void
pkt4_work_cgnapt_key_ipv4_prv(struct rte_mbuf **pkts,
						uint32_t pkt_num,
						void *arg, struct pipeline_cgnapt *p_nat);

void
pkt_work_cgnapt_key_ipv4_prv(struct rte_mbuf *pkt,
					 uint32_t pkt_num,
					 void *arg, struct pipeline_cgnapt *p_nat);

void
pkt4_work_cgnapt_key_ipv4_pub(struct rte_mbuf **pkts,
						uint32_t pkt_num,
						void *arg, struct pipeline_cgnapt *p_nat);

void
pkt_work_cgnapt_key_ipv4_pub(struct rte_mbuf *pkt,
					 uint32_t pkt_num,
					 void *arg, struct pipeline_cgnapt *p_nat);
void
pkt4_work_cgnapt_key_ipv6_pub(struct rte_mbuf **pkts,
						uint32_t pkt_num,
						void *arg, struct pipeline_cgnapt *p_nat);
void
pkt_work_cgnapt_key_ipv6_pub(struct rte_mbuf *pkts,
					 uint32_t pkt_num,
					 void *arg, struct pipeline_cgnapt *p_nat);
void
pkt4_work_cgnapt_key_ipv6_prv(struct rte_mbuf **pkts,
						uint32_t pkt_num,
						void *arg, struct pipeline_cgnapt *p_nat);
void
pkt_work_cgnapt_key_ipv6_prv(struct rte_mbuf *pkt,
					 uint32_t pkt_num,
					 void *arg, struct pipeline_cgnapt *p_nat);

void send_icmp_dest_unreachable_msg(void);
unsigned short cksum_calc(unsigned short *addr, int len);
void print_mbuf(const char *rx_tx, unsigned int portid, struct rte_mbuf *mbuf,
		unsigned int line);


/* Max port per client declarations */
/**
 * A structure defining maximun ports per client
 */
struct max_port_per_client {
	uint32_t prv_ip;
	uint32_t prv_phy_port;
	uint8_t max_port_cnt;
};

/**
 * A structure defining maximun ports per client key
 */
struct max_port_per_client_key {
	uint32_t prv_ip;
	uint32_t prv_phy_port;
};

struct rte_hash *max_port_per_client_hash;
struct max_port_per_client *max_port_per_client_array;


int init_max_port_per_client(struct pipeline_cgnapt *p_nat);
int is_max_port_per_client_reached(uint32_t prv_ip_param,
					 uint32_t prv_phy_port_param,
					 struct pipeline_cgnapt *p_nat);
int increment_max_port_counter(uint32_t prv_ip_param,
						 uint32_t prv_phy_port_param,
						 struct pipeline_cgnapt *p_nat);
int decrement_max_port_counter(uint32_t prv_ip_param,
						 uint32_t prv_phy_port_param,
						 struct pipeline_cgnapt *p_nat);
int max_port_per_client_add_entry(uint32_t prv_ip_param,
					uint32_t prv_phy_port_param,
					struct pipeline_cgnapt *p_nat);
int max_port_per_client_del_entry(uint32_t prv_ip_param,
					uint32_t prv_phy_port_param,
					struct pipeline_cgnapt *p_nat);

/* Print functions */
void print_pkt(struct rte_mbuf *pkt);
void log_pkt(struct rte_mbuf *pkt);
void print_key(struct pipeline_cgnapt_entry_key *key);
void print_entry1(struct rte_pipeline_table_entry *entry);
void print_cgnapt_entry(struct cgnapt_table_entry *entry);
void my_print_entry(struct cgnapt_table_entry *ent);

/* CLI custom handler back-end helper functions */

void *pipeline_cgnapt_msg_req_custom_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_entry_add_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_entry_del_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_entry_sync_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_entry_dbg_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_entry_addm_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_ver_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_nsp_add_handler(
	struct pipeline *p,
	void *msg);

void *pipeline_cgnapt_msg_req_nsp_del_handler(
	struct pipeline *p,
	void *msg);
#ifdef PCP_ENABLE
extern void *pipeline_cgnapt_msg_req_pcp_handler(
	struct pipeline *p,
	void *msg);
#endif

int pipeline_cgnapt_msg_req_entry_addm_pair(
	struct pipeline *p, void *msg,
	uint32_t src_ip, uint16_t src_port,
	uint32_t dest_ip, uint16_t dest_port,
	uint16_t rx_port, uint32_t ttl,
	uint8_t type, uint8_t src_ipv6[16]);

/* CGNAPT Functions */
uint64_t pkt_miss_cgnapt(
	struct pipeline_cgnapt_entry_key *key,
	struct rte_mbuf *pkt,
	struct rte_pipeline_table_entry **table_entry,
	uint64_t *pkts_mask,
	uint32_t pkt_num,
	void *arg);

struct cgnapt_table_entry *add_dynamic_cgnapt_entry(
	struct pipeline *p,
	struct pipeline_cgnapt_entry_key *key,
	//#ifdef PCP_ENABLE
	uint32_t timeout,
	//#endif
	uint8_t pkt_type,
	uint8_t *src_addr,
	uint8_t *err);

void calculate_hw_checksum(
	struct rte_mbuf *pkt,
	uint8_t ip_ver,
	uint8_t protocol);

uint64_t nextPowerOf2(uint64_t n);
uint8_t local_dest_mac_present(uint8_t out_port);

enum PKT_TYPE {
PKT_TYPE_IPV4,
PKT_TYPE_IPV6,
PKT_TYPE_IPV6to4,
PKT_TYPE_IPV4to6,
};
void hw_checksum(struct rte_mbuf *pkt, enum PKT_TYPE ver);
void sw_checksum(struct rte_mbuf *pkt, enum PKT_TYPE ver);
int rte_get_pkt_ver(struct rte_mbuf *pkt);
void print_common_table(void);
#if CT_CGNAT
extern int add_dynamic_cgnapt_entry_alg(
	struct pipeline *p,
	struct pipeline_cgnapt_entry_key *key,
	struct cgnapt_table_entry **entry_ptr1,
	struct cgnapt_table_entry **entry_ptr2);
#endif
#endif