summaryrefslogtreecommitdiffstats
path: root/api/resources/v1/__init__.py
blob: e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 (plain)

22' href='#n322'>322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/*
 * 2002-10-18  written by Jim Houston jim.houston@ccur.com
 *	Copyright (C) 2002 by Concurrent Computer Corporation
 *	Distributed under the GNU GPL license version 2.
 *
 * Modified by George Anzinger to reuse immediately and to use
 * find bit instructions.  Also removed _irq on spinlocks.
 *
 * Modified by Nadia Derbey to make it RCU safe.
 *
 * Small id to pointer translation service.
 *
 * It uses a radix tree like structure as a sparse array indexed
 * by the id to obtain the pointer.  The bitmap makes allocating
 * a new id quick.
 *
 * You call it to allocate an id (an int) an associate with that id a
 * pointer or what ever, we treat it as a (void *).  You can pass this
 * id to a user for him to pass back at a later time.  You then pass
 * that id to this code and it returns your pointer.
 */

#ifndef TEST                        // to test in user space...
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/export.h>
#endif
#include <linux/err.h>
#include <linux/string.h>
#include <linux/idr.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/locallock.h>

#define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
#define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)

/* Leave the possibility of an incomplete final layer */
#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)

/* Number of id_layer structs to leave in free list */
#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)

static struct kmem_cache *idr_layer_cache;
static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
static DEFINE_PER_CPU(int, idr_preload_cnt);
static DEFINE_SPINLOCK(simple_ida_lock);

#ifdef CONFIG_PREEMPT_RT_FULL
static DEFINE_LOCAL_IRQ_LOCK(idr_lock);

static inline void idr_preload_lock(void)
{
	local_lock(idr_lock);
}

static inline void idr_preload_unlock(void)
{
	local_unlock(idr_lock);
}

void idr_preload_end(void)
{
	idr_preload_unlock();
}
EXPORT_SYMBOL(idr_preload_end);
#else
static inline void idr_preload_lock(void)
{
	preempt_disable();
}

static inline void idr_preload_unlock(void)
{
	preempt_enable();
}
#endif


/* the maximum ID which can be allocated given idr->layers */
static int idr_max(int layers)
{
	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);

	return (1 << bits) - 1;
}

/*
 * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
 * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
 * so on.
 */
static int idr_layer_prefix_mask(int layer)
{
	return ~idr_max(layer + 1);
}

static struct idr_layer *get_from_free_list(struct idr *idp)
{
	struct idr_layer *p;
	unsigned long flags;

	spin_lock_irqsave(&idp->lock, flags);
	if ((p = idp->id_free)) {
		idp->id_free = p->ary[0];
		idp->id_free_cnt--;
		p->ary[0] = NULL;
	}
	spin_unlock_irqrestore(&idp->lock, flags);
	return(p);
}

/**
 * idr_layer_alloc - allocate a new idr_layer
 * @gfp_mask: allocation mask
 * @layer_idr: optional idr to allocate from
 *
 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
 * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
 * an idr_layer from @idr->id_free.
 *
 * @layer_idr is to maintain backward compatibility with the old alloc
 * interface - idr_pre_get() and idr_get_new*() - and will be removed
 * together with per-pool preload buffer.
 */
static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
{
	struct idr_layer *new;

	/* this is the old path, bypass to get_from_free_list() */
	if (layer_idr)
		return get_from_free_list(layer_idr);

	/*
	 * Try to allocate directly from kmem_cache.  We want to try this
	 * before preload buffer; otherwise, non-preloading idr_alloc()
	 * users will end up taking advantage of preloading ones.  As the
	 * following is allowed to fail for preloaded cases, suppress
	 * warning this time.
	 */
	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
	if (new)
		return new;

	/*
	 * Try to fetch one from the per-cpu preload buffer if in process
	 * context.  See idr_preload() for details.
	 */
	if (!in_interrupt()) {
		idr_preload_lock();
		new = __this_cpu_read(idr_preload_head);
		if (new) {
			__this_cpu_write(idr_preload_head, new->ary[0]);
			__this_cpu_dec(idr_preload_cnt);
			new->ary[0] = NULL;
		}
		idr_preload_unlock();
		if (new)
			return new;
	}

	/*
	 * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so
	 * that memory allocation failure warning is printed as intended.
	 */
	return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
}

static void idr_layer_rcu_free(struct rcu_head *head)
{
	struct idr_layer *layer;

	layer = container_of(head, struct idr_layer, rcu_head);
	kmem_cache_free(idr_layer_cache, layer);
}

static inline void free_layer(struct idr *idr, struct idr_layer *p)
{
	if (idr->hint == p)
		RCU_INIT_POINTER(idr->hint, NULL);
	call_rcu(&p->rcu_head, idr_layer_rcu_free);
}

/* only called when idp->lock is held */
static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
{
	p->ary[0] = idp->id_free;
	idp->id_free = p;
	idp->id_free_cnt++;
}

static void move_to_free_list(struct idr *idp, struct idr_layer *p)
{
	unsigned long flags;

	/*
	 * Depends on the return element being zeroed.
	 */
	spin_lock_irqsave(&idp->lock, flags);
	__move_to_free_list(idp, p);
	spin_unlock_irqrestore(&idp->lock, flags);
}

static void idr_mark_full(struct idr_layer **pa, int id)
{
	struct idr_layer *p = pa[0];
	int l = 0;

	__set_bit(id & IDR_MASK, p->bitmap);
	/*
	 * If this layer is full mark the bit in the layer above to
	 * show that this part of the radix tree is full.  This may
	 * complete the layer above and require walking up the radix
	 * tree.
	 */
	while (bitmap_full(p->bitmap, IDR_SIZE)) {
		if (!(p = pa[++l]))
			break;
		id = id >> IDR_BITS;
		__set_bit((id & IDR_MASK), p->bitmap);
	}
}

static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
{
	while (idp->id_free_cnt < MAX_IDR_FREE) {
		struct idr_layer *new;
		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
		if (new == NULL)
			return (0);
		move_to_free_list(idp, new);
	}
	return 1;
}

/**
 * sub_alloc - try to allocate an id without growing the tree depth
 * @idp: idr handle
 * @starting_id: id to start search at
 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
 * @gfp_mask: allocation mask for idr_layer_alloc()
 * @layer_idr: optional idr passed to idr_layer_alloc()
 *
 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
 * growing its depth.  Returns
 *
 *  the allocated id >= 0 if successful,
 *  -EAGAIN if the tree needs to grow for allocation to succeed,
 *  -ENOSPC if the id space is exhausted,
 *  -ENOMEM if more idr_layers need to be allocated.
 */
static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
		     gfp_t gfp_mask, struct idr *layer_idr)
{
	int n, m, sh;
	struct idr_layer *p, *new;
	int l, id, oid;

	id = *starting_id;
 restart:
	p = idp->top;
	l = idp->layers;
	pa[l--] = NULL;
	while (1) {
		/*
		 * We run around this while until we reach the leaf node...
		 */
		n = (id >> (IDR_BITS*l)) & IDR_MASK;
		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
		if (m == IDR_SIZE) {
			/* no space available go back to previous layer. */
			l++;
			oid = id;
			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;

			/* if already at the top layer, we need to grow */
			if (id > idr_max(idp->layers)) {
				*starting_id = id;
				return -EAGAIN;
			}
			p = pa[l];
			BUG_ON(!p);

			/* If we need to go up one layer, continue the
			 * loop; otherwise, restart from the top.
			 */
			sh = IDR_BITS * (l + 1);
			if (oid >> sh == id >> sh)
				continue;
			else
				goto restart;
		}
		if (m != n) {
			sh = IDR_BITS*l;
			id = ((id >> sh) ^ n ^ m) << sh;
		}
		if ((id >= MAX_IDR_BIT) || (id < 0))
			return -ENOSPC;
		if (l == 0)
			break;
		/*
		 * Create the layer below if it is missing.
		 */
		if (!p->ary[m]) {
			new = idr_layer_alloc(gfp_mask, layer_idr);
			if (!new)
				return -ENOMEM;
			new->layer = l-1;
			new->prefix = id & idr_layer_prefix_mask(new->layer);
			rcu_assign_pointer(p->ary[m], new);
			p->count++;
		}
		pa[l--] = p;
		p = p->ary[m];
	}

	pa[l] = p;
	return id;
}

static int idr_get_empty_slot(struct idr *idp, int starting_id,
			      struct idr_layer **pa, gfp_t gfp_mask,
			      struct idr *layer_idr)
{
	struct idr_layer *p, *new;
	int layers, v, id;
	unsigned long flags;

	id = starting_id;
build_up:
	p = idp->top;
	layers = idp->layers;
	if (unlikely(!p)) {
		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
			return -ENOMEM;
		p->layer = 0;
		layers = 1;
	}
	/*
	 * Add a new layer to the top of the tree if the requested
	 * id is larger than the currently allocated space.
	 */
	while (id > idr_max(layers)) {
		layers++;
		if (!p->count) {
			/* special case: if the tree is currently empty,
			 * then we grow the tree by moving the top node
			 * upwards.
			 */
			p->layer++;
			WARN_ON_ONCE(p->prefix);
			continue;
		}
		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
			/*
			 * The allocation failed.  If we built part of
			 * the structure tear it down.
			 */
			spin_lock_irqsave(&idp->lock, flags);
			for (new = p; p && p != idp->top; new = p) {
				p = p->ary[0];
				new->ary[0] = NULL;
				new->count = 0;
				bitmap_clear(new->bitmap, 0, IDR_SIZE);
				__move_to_free_list(idp, new);
			}
			spin_unlock_irqrestore(&idp->lock, flags);
			return -ENOMEM;
		}
		new->ary[0] = p;
		new->count = 1;
		new->layer = layers-1;
		new->prefix = id & idr_layer_prefix_mask(new->layer);
		if (bitmap_full(p->bitmap, IDR_SIZE))
			__set_bit(0, new->bitmap);
		p = new;
	}
	rcu_assign_pointer(idp->top, p);
	idp->layers = layers;
	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
	if (v == -EAGAIN)
		goto build_up;
	return(v);
}

/*
 * @id and @pa are from a successful allocation from idr_get_empty_slot().
 * Install the user pointer @ptr and mark the slot full.
 */
static void idr_fill_slot(struct idr *idr, void *ptr, int id,
			  struct idr_layer **pa)
{
	/* update hint used for lookup, cleared from free_layer() */
	rcu_assign_pointer(idr->hint, pa[0]);

	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
	pa[0]->count++;
	idr_mark_full(pa, id);
}

/**
 * idr_preload - preload for idr_alloc()
 * @gfp_mask: allocation mask to use for preloading
 *
 * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
 * process context and each idr_preload() invocation should be matched with
 * idr_preload_end().  Note that preemption is disabled while preloaded.
 *
 * The first idr_alloc() in the preloaded section can be treated as if it
 * were invoked with @gfp_mask used for preloading.  This allows using more
 * permissive allocation masks for idrs protected by spinlocks.
 *
 * For example, if idr_alloc() below fails, the failure can be treated as
 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
 *
 *	idr_preload(GFP_KERNEL);
 *	spin_lock(lock);
 *
 *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
 *
 *	spin_unlock(lock);
 *	idr_preload_end();
 *	if (id < 0)
 *		error;
 */
void idr_preload(gfp_t gfp_mask)
{
	/*
	 * Consuming preload buffer from non-process context breaks preload
	 * allocation guarantee.  Disallow usage from those contexts.
	 */
	WARN_ON_ONCE(in_interrupt());
	might_sleep_if(gfpflags_allow_blocking(gfp_mask));

	idr_preload_lock();

	/*
	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
	 * return value from idr_alloc() needs to be checked for failure
	 * anyway.  Silently give up if allocation fails.  The caller can
	 * treat failures from idr_alloc() as if idr_alloc() were called
	 * with @gfp_mask which should be enough.
	 */
	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
		struct idr_layer *new;

		idr_preload_unlock();
		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
		idr_preload_lock();
		if (!new)
			break;

		/* link the new one to per-cpu preload list */
		new->ary[0] = __this_cpu_read(idr_preload_head);
		__this_cpu_write(idr_preload_head, new);
		__this_cpu_inc(idr_preload_cnt);
	}
}
EXPORT_SYMBOL(idr_preload);

/**
 * idr_alloc - allocate new idr entry
 * @idr: the (initialized) idr
 * @ptr: pointer to be associated with the new id
 * @start: the minimum id (inclusive)
 * @end: the maximum id (exclusive, <= 0 for max)
 * @gfp_mask: memory allocation flags
 *
 * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
 * available in the specified range, returns -ENOSPC.  On memory allocation
 * failure, returns -ENOMEM.
 *
 * Note that @end is treated as max when <= 0.  This is to always allow
 * using @start + N as @end as long as N is inside integer range.
 *
 * The user is responsible for exclusively synchronizing all operations
 * which may modify @idr.  However, read-only accesses such as idr_find()
 * or iteration can be performed under RCU read lock provided the user
 * destroys @ptr in RCU-safe way after removal from idr.
 */
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
{
	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
	int id;

	might_sleep_if(gfpflags_allow_blocking(gfp_mask));

	/* sanity checks */
	if (WARN_ON_ONCE(start < 0))
		return -EINVAL;
	if (unlikely(max < start))
		return -ENOSPC;

	/* allocate id */
	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
	if (unlikely(id < 0))
		return id;
	if (unlikely(id > max))
		return -ENOSPC;

	idr_fill_slot(idr, ptr, id, pa);
	return id;
}
EXPORT_SYMBOL_GPL(idr_alloc);

/**
 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
 * @idr: the (initialized) idr
 * @ptr: pointer to be associated with the new id
 * @start: the minimum id (inclusive)
 * @end: the maximum id (exclusive, <= 0 for max)
 * @gfp_mask: memory allocation flags
 *
 * Essentially the same as idr_alloc, but prefers to allocate progressively
 * higher ids if it can. If the "cur" counter wraps, then it will start again
 * at the "start" end of the range and allocate one that has already been used.
 */
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
			gfp_t gfp_mask)
{
	int id;

	id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
	if (id == -ENOSPC)
		id = idr_alloc(idr, ptr, start, end, gfp_mask);

	if (likely(id >= 0))
		idr->cur = id + 1;
	return id;
}
EXPORT_SYMBOL(idr_alloc_cyclic);

static void idr_remove_warning(int id)
{
	WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
}

static void sub_remove(struct idr *idp, int shift, int id)
{
	struct idr_layer *p = idp->top;
	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
	struct idr_layer ***paa = &pa[0];
	struct idr_layer *to_free;
	int n;

	*paa = NULL;
	*++paa = &idp->top;

	while ((shift > 0) && p) {
		n = (id >> shift) & IDR_MASK;
		__clear_bit(n, p->bitmap);
		*++paa = &p->ary[n];
		p = p->ary[n];
		shift -= IDR_BITS;
	}
	n = id & IDR_MASK;
	if (likely(p != NULL && test_bit(n, p->bitmap))) {
		__clear_bit(n, p->bitmap);
		RCU_INIT_POINTER(p->ary[n], NULL);
		to_free = NULL;
		while(*paa && ! --((**paa)->count)){
			if (to_free)
				free_layer(idp, to_free);
			to_free = **paa;
			**paa-- = NULL;
		}
		if (!*paa)
			idp->layers = 0;
		if (to_free)
			free_layer(idp, to_free);
	} else
		idr_remove_warning(id);
}

/**
 * idr_remove - remove the given id and free its slot
 * @idp: idr handle
 * @id: unique key
 */
void idr_remove(struct idr *idp, int id)
{
	struct idr_layer *p;
	struct idr_layer *to_free;

	if (id < 0)
		return;

	if (id > idr_max(idp->layers)) {
		idr_remove_warning(id);
		return;
	}

	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
	    idp->top->ary[0]) {
		/*
		 * Single child at leftmost slot: we can shrink the tree.
		 * This level is not needed anymore since when layers are
		 * inserted, they are inserted at the top of the existing
		 * tree.
		 */
		to_free = idp->top;
		p = idp->top->ary[0];
		rcu_assign_pointer(idp->top, p);
		--idp->layers;
		to_free->count = 0;
		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
		free_layer(idp, to_free);
	}
}
EXPORT_SYMBOL(idr_remove);

static void __idr_remove_all(struct idr *idp)
{
	int n, id, max;
	int bt_mask;
	struct idr_layer *p;
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
	struct idr_layer **paa = &pa[0];

	n = idp->layers * IDR_BITS;
	*paa = idp->top;
	RCU_INIT_POINTER(idp->top, NULL);
	max = idr_max(idp->layers);

	id = 0;
	while (id >= 0 && id <= max) {
		p = *paa;
		while (n > IDR_BITS && p) {
			n -= IDR_BITS;
			p = p->ary[(id >> n) & IDR_MASK];
			*++paa = p;
		}

		bt_mask = id;
		id += 1 << n;
		/* Get the highest bit that the above add changed from 0->1. */
		while (n < fls(id ^ bt_mask)) {
			if (*paa)
				free_layer(idp, *paa);
			n += IDR_BITS;
			--paa;
		}
	}
	idp->layers = 0;
}

/**
 * idr_destroy - release all cached layers within an idr tree
 * @idp: idr handle
 *
 * Free all id mappings and all idp_layers.  After this function, @idp is
 * completely unused and can be freed / recycled.  The caller is
 * responsible for ensuring that no one else accesses @idp during or after
 * idr_destroy().
 *
 * A typical clean-up sequence for objects stored in an idr tree will use
 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
 * free up the id mappings and cached idr_layers.
 */
void idr_destroy(struct idr *idp)
{
	__idr_remove_all(idp);

	while (idp->id_free_cnt) {
		struct idr_layer *p = get_from_free_list(idp);
		kmem_cache_free(idr_layer_cache, p);
	}
}
EXPORT_SYMBOL(idr_destroy);

void *idr_find_slowpath(struct idr *idp, int id)
{
	int n;
	struct idr_layer *p;

	if (id < 0)
		return NULL;

	p = rcu_dereference_raw(idp->top);
	if (!p)
		return NULL;
	n = (p->layer+1) * IDR_BITS;

	if (id > idr_max(p->layer + 1))
		return NULL;
	BUG_ON(n == 0);

	while (n > 0 && p) {
		n -= IDR_BITS;
		BUG_ON(n != p->layer*IDR_BITS);
		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
	}
	return((void *)p);
}
EXPORT_SYMBOL(idr_find_slowpath);

/**
 * idr_for_each - iterate through all stored pointers
 * @idp: idr handle
 * @fn: function to be called for each pointer
 * @data: data passed back to callback function
 *
 * Iterate over the pointers registered with the given idr.  The
 * callback function will be called for each pointer currently
 * registered, passing the id, the pointer and the data pointer passed
 * to this function.  It is not safe to modify the idr tree while in
 * the callback, so functions such as idr_get_new and idr_remove are
 * not allowed.
 *
 * We check the return of @fn each time. If it returns anything other
 * than %0, we break out and return that value.
 *
 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
 */
int idr_for_each(struct idr *idp,
		 int (*fn)(int id, void *p, void *data), void *data)
{
	int n, id, max, error = 0;
	struct idr_layer *p;
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
	struct idr_layer **paa = &pa[0];

	n = idp->layers * IDR_BITS;
	*paa = rcu_dereference_raw(idp->top);
	max = idr_max(idp->layers);

	id = 0;
	while (id >= 0 && id <= max) {
		p = *paa;
		while (n > 0 && p) {
			n -= IDR_BITS;
			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
			*++paa = p;
		}

		if (p) {
			error = fn(id, (void *)p, data);
			if (error)
				break;
		}

		id += 1 << n;
		while (n < fls(id)) {
			n += IDR_BITS;
			--paa;
		}
	}

	return error;
}
EXPORT_SYMBOL(idr_for_each);

/**
 * idr_get_next - lookup next object of id to given id.
 * @idp: idr handle
 * @nextidp:  pointer to lookup key
 *
 * Returns pointer to registered object with id, which is next number to
 * given id. After being looked up, *@nextidp will be updated for the next
 * iteration.
 *
 * This function can be called under rcu_read_lock(), given that the leaf
 * pointers lifetimes are correctly managed.
 */
void *idr_get_next(struct idr *idp, int *nextidp)
{
	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
	struct idr_layer **paa = &pa[0];
	int id = *nextidp;
	int n, max;

	/* find first ent */
	p = *paa = rcu_dereference_raw(idp->top);
	if (!p)
		return NULL;
	n = (p->layer + 1) * IDR_BITS;
	max = idr_max(p->layer + 1);

	while (id >= 0 && id <= max) {
		p = *paa;
		while (n > 0 && p) {
			n -= IDR_BITS;
			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
			*++paa = p;
		}

		if (p) {
			*nextidp = id;
			return p;
		}

		/*
		 * Proceed to the next layer at the current level.  Unlike
		 * idr_for_each(), @id isn't guaranteed to be aligned to
		 * layer boundary at this point and adding 1 << n may
		 * incorrectly skip IDs.  Make sure we jump to the
		 * beginning of the next layer using round_up().
		 */
		id = round_up(id + 1, 1 << n);
		while (n < fls(id)) {
			n += IDR_BITS;
			--paa;
		}
	}
	return NULL;
}
EXPORT_SYMBOL(idr_get_next);


/**
 * idr_replace - replace pointer for given id
 * @idp: idr handle
 * @ptr: pointer you want associated with the id
 * @id: lookup key
 *
 * Replace the pointer registered with an id and return the old value.
 * A %-ENOENT return indicates that @id was not found.
 * A %-EINVAL return indicates that @id was not within valid constraints.
 *
 * The caller must serialize with writers.
 */
void *idr_replace(struct idr *idp, void *ptr, int id)
{
	int n;
	struct idr_layer *p, *old_p;

	if (id < 0)
		return ERR_PTR(-EINVAL);

	p = idp->top;
	if (!p)
		return ERR_PTR(-ENOENT);

	if (id > idr_max(p->layer + 1))
		return ERR_PTR(-ENOENT);

	n = p->layer * IDR_BITS;
	while ((n > 0) && p) {
		p = p->ary[(id >> n) & IDR_MASK];
		n -= IDR_BITS;
	}

	n = id & IDR_MASK;
	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
		return ERR_PTR(-ENOENT);

	old_p = p->ary[n];
	rcu_assign_pointer(p->ary[n], ptr);

	return old_p;
}
EXPORT_SYMBOL(idr_replace);

void __init idr_init_cache(void)
{
	idr_layer_cache = kmem_cache_create("idr_layer_cache",
				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
}

/**
 * idr_init - initialize idr handle
 * @idp:	idr handle
 *
 * This function is use to set up the handle (@idp) that you will pass
 * to the rest of the functions.
 */
void idr_init(struct idr *idp)
{
	memset(idp, 0, sizeof(struct idr));
	spin_lock_init(&idp->lock);
}
EXPORT_SYMBOL(idr_init);

static int idr_has_entry(int id, void *p, void *data)
{
	return 1;
}

bool idr_is_empty(struct idr *idp)
{
	return !idr_for_each(idp, idr_has_entry, NULL);
}
EXPORT_SYMBOL(idr_is_empty);

/**
 * DOC: IDA description
 * IDA - IDR based ID allocator
 *
 * This is id allocator without id -> pointer translation.  Memory
 * usage is much lower than full blown idr because each id only
 * occupies a bit.  ida uses a custom leaf node which contains
 * IDA_BITMAP_BITS slots.
 *
 * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
 */

static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
{
	unsigned long flags;

	if (!ida->free_bitmap) {
		spin_lock_irqsave(&ida->idr.lock, flags);
		if (!ida->free_bitmap) {
			ida->free_bitmap = bitmap;
			bitmap = NULL;
		}
		spin_unlock_irqrestore(&ida->idr.lock, flags);
	}

	kfree(bitmap);
}

/**
 * ida_pre_get - reserve resources for ida allocation
 * @ida:	ida handle
 * @gfp_mask:	memory allocation flag
 *
 * This function should be called prior to locking and calling the
 * following function.  It preallocates enough memory to satisfy the
 * worst possible allocation.
 *
 * If the system is REALLY out of memory this function returns %0,
 * otherwise %1.
 */
int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
{
	/* allocate idr_layers */
	if (!__idr_pre_get(&ida->idr, gfp_mask))
		return 0;

	/* allocate free_bitmap */
	if (!ida->free_bitmap) {
		struct ida_bitmap *bitmap;

		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
		if (!bitmap)
			return 0;

		free_bitmap(ida, bitmap);
	}

	return 1;
}
EXPORT_SYMBOL(ida_pre_get);

/**
 * ida_get_new_above - allocate new ID above or equal to a start id
 * @ida:	ida handle
 * @starting_id: id to start search at
 * @p_id:	pointer to the allocated handle
 *
 * Allocate new ID above or equal to @starting_id.  It should be called
 * with any required locks.
 *
 * If memory is required, it will return %-EAGAIN, you should unlock
 * and go back to the ida_pre_get() call.  If the ida is full, it will
 * return %-ENOSPC.
 *
 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
 */
int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
{
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
	struct ida_bitmap *bitmap;
	unsigned long flags;
	int idr_id = starting_id / IDA_BITMAP_BITS;
	int offset = starting_id % IDA_BITMAP_BITS;
	int t, id;

 restart:
	/* get vacant slot */
	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
	if (t < 0)
		return t == -ENOMEM ? -EAGAIN : t;

	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
		return -ENOSPC;

	if (t != idr_id)
		offset = 0;
	idr_id = t;

	/* if bitmap isn't there, create a new one */
	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
	if (!bitmap) {
		spin_lock_irqsave(&ida->idr.lock, flags);
		bitmap = ida->free_bitmap;
		ida->free_bitmap = NULL;
		spin_unlock_irqrestore(&ida->idr.lock, flags);

		if (!bitmap)
			return -EAGAIN;

		memset(bitmap, 0, sizeof(struct ida_bitmap));
		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
				(void *)bitmap);
		pa[0]->count++;
	}

	/* lookup for empty slot */
	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
	if (t == IDA_BITMAP_BITS) {
		/* no empty slot after offset, continue to the next chunk */
		idr_id++;
		offset = 0;
		goto restart;
	}

	id = idr_id * IDA_BITMAP_BITS + t;
	if (id >= MAX_IDR_BIT)
		return -ENOSPC;

	__set_bit(t, bitmap->bitmap);
	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
		idr_mark_full(pa, idr_id);

	*p_id = id;

	/* Each leaf node can handle nearly a thousand slots and the
	 * whole idea of ida is to have small memory foot print.
	 * Throw away extra resources one by one after each successful
	 * allocation.
	 */
	if (ida->idr.id_free_cnt || ida->free_bitmap) {
		struct idr_layer *p = get_from_free_list(&ida->idr);
		if (p)
			kmem_cache_free(idr_layer_cache, p);
	}

	return 0;
}
EXPORT_SYMBOL(ida_get_new_above);

/**
 * ida_remove - remove the given ID
 * @ida:	ida handle
 * @id:		ID to free
 */
void ida_remove(struct ida *ida, int id)
{
	struct idr_layer *p = ida->idr.top;
	int shift = (ida->idr.layers - 1) * IDR_BITS;
	int idr_id = id / IDA_BITMAP_BITS;
	int offset = id % IDA_BITMAP_BITS;
	int n;
	struct ida_bitmap *bitmap;

	if (idr_id > idr_max(ida->idr.layers))
		goto err;

	/* clear full bits while looking up the leaf idr_layer */
	while ((shift > 0) && p) {
		n = (idr_id >> shift) & IDR_MASK;
		__clear_bit(n, p->bitmap);
		p = p->ary[n];
		shift -= IDR_BITS;
	}

	if (p == NULL)
		goto err;

	n = idr_id & IDR_MASK;
	__clear_bit(n, p->bitmap);

	bitmap = (void *)p->ary[n];
	if (!bitmap || !test_bit(offset, bitmap->bitmap))
		goto err;

	/* update bitmap and remove it if empty */
	__clear_bit(offset, bitmap->bitmap);
	if (--bitmap->nr_busy == 0) {
		__set_bit(n, p->bitmap);	/* to please idr_remove() */
		idr_remove(&ida->idr, idr_id);
		free_bitmap(ida, bitmap);
	}

	return;

 err:
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
}
EXPORT_SYMBOL(ida_remove);

/**
 * ida_destroy - release all cached layers within an ida tree
 * @ida:		ida handle
 */
void ida_destroy(struct ida *ida)
{
	idr_destroy(&ida->idr);
	kfree(ida->free_bitmap);
}
EXPORT_SYMBOL(ida_destroy);

/**
 * ida_simple_get - get a new id.
 * @ida: the (initialized) ida.
 * @start: the minimum id (inclusive, < 0x8000000)
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 * @gfp_mask: memory allocation flags
 *
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 * On memory allocation failure, returns -ENOMEM.
 *
 * Use ida_simple_remove() to get rid of an id.
 */
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
		   gfp_t gfp_mask)
{
	int ret, id;
	unsigned int max;
	unsigned long flags;

	BUG_ON((int)start < 0);
	BUG_ON((int)end < 0);

	if (end == 0)
		max = 0x80000000;
	else {
		BUG_ON(end < start);
		max = end - 1;
	}

again:
	if (!ida_pre_get(ida, gfp_mask))
		return -ENOMEM;

	spin_lock_irqsave(&simple_ida_lock, flags);
	ret = ida_get_new_above(ida, start, &id);
	if (!ret) {
		if (id > max) {
			ida_remove(ida, id);
			ret = -ENOSPC;
		} else {
			ret = id;
		}
	}
	spin_unlock_irqrestore(&simple_ida_lock, flags);

	if (unlikely(ret == -EAGAIN))
		goto again;

	return ret;
}
EXPORT_SYMBOL(ida_simple_get);

/**
 * ida_simple_remove - remove an allocated id.
 * @ida: the (initialized) ida.
 * @id: the id returned by ida_simple_get.
 */
void ida_simple_remove(struct ida *ida, unsigned int id)
{
	unsigned long flags;

	BUG_ON((int)id < 0);
	spin_lock_irqsave(&simple_ida_lock, flags);
	ida_remove(ida, id);
	spin_unlock_irqrestore(&simple_ida_lock, flags);
}
EXPORT_SYMBOL(ida_simple_remove);

/**
 * ida_init - initialize ida handle
 * @ida:	ida handle
 *
 * This function is use to set up the handle (@ida) that you will pass
 * to the rest of the functions.
 */
void ida_init(struct ida *ida)
{
	memset(ida, 0, sizeof(struct ida));
	idr_init(&ida->idr);

}
EXPORT_SYMBOL(ida_init);