summaryrefslogtreecommitdiffstats
path: root/docs
AgeCommit message (Expand)AuthorFilesLines
2017-10-20Added NSB sample Test Case documentation.Maciej Skrocki10-0/+911
2017-10-20Docs: add yardstick gui descrption in userguideJingLu51-0/+10
2017-10-20Merge "Docs: update new test cases in release note"Jing Lu1-12/+31
2017-10-20Docs: update new test cases in release noteJingLu51-12/+31
2017-10-19nsb_installation: updatesRoss Brattain5-787/+1168
2017-10-19Merge "DRAFT: update release notes for Euphrates"Jing Lu1-562/+313
2017-10-19Docs: update new implemented APIsJingLu51-18/+503
2017-10-19DRAFT: update release notes for EuphratesRoss Brattain1-562/+313
2017-10-18Merge "Docs: test case description for TC080 and TC081"Ross Brattain5-3/+249
2017-10-18Hamonization of the titles of the documents (Testing group)Morgan Richomme2-6/+6
2017-10-18Docs: test case description for TC080 and TC081JingLu55-3/+249
2017-10-12Bugfix: Reference for the tool used in TC044 mentioned in the user guide is w...JingLu51-1/+1
2017-10-10Doc amendment: env prepare commandJingLu51-22/+8
2017-09-15Merge "add tc083 rst and tc073/tc083 netperf local dashboard"Rex Lee1-0/+81
2017-09-15add tc083 rst and tc073/tc083 netperf local dashboardrexlee87761-0/+81
2017-09-12[DRAFT] add yardstick cli info in userguiderexlee87761-2/+136
2017-09-05Adding NSB documentation for SV and BaremetalDeepak S2-21/+530
2017-08-26Merge "Test case: Fio volume benchmark testcase using job file"Jing Lu1-0/+119
2017-08-24Standardized TRex client library pathMaciej Skrocki1-1/+2
2017-08-23Add test case file, document and related scripts of yardsticktjuyinkanglin1-0/+165
2017-08-23Merge "Add test case file and document of Tardstick TC056(HA_TC013)"Jing Lu1-0/+149
2017-08-23Merge "Add test case file, document and related scripts of yardstick tc058(HA...Jing Lu1-0/+148
2017-08-22Test case: Fio volume benchmark testcase using job fileJingLu51-0/+119
2017-08-15Update release note for Danube.3.2JingLu51-8/+19
2017-08-11Add test case file, document and related scripts of yardsticktjuyinkanglin1-0/+148
2017-08-11Add test case file and document of Tardstick TC056(HA_TC013)tjuyinkanglin1-0/+149
2017-08-11Merge "New storage test case: Bonnie++"Jing Lu1-0/+109
2017-08-03Merge "DRAFT: remove apexlake"Ross Brattain10-1025/+2
2017-08-03New storage test case: Bonnie++JingLu51-0/+109
2017-07-31DRAFT: remove apexlakeRoss Brattain10-1025/+2
2017-07-31Add spec cpu2006 test caseJingLu51-0/+133
2017-07-14add release dateRoss Brattain1-1/+1
2017-07-14Danube 3.1 release notesRoss Brattain1-11/+55
2017-07-03Bugfix: amend the CLI to build yardstick-image manuallyJingLu51-0/+2
2017-06-23Improve Yardstick user-guideJingLu51-1/+7
2017-05-16Bugfix: change monitor command in tc019JingLu51-8/+8
2017-05-04Update release note for Danube.2.0JingLu51-29/+60
2017-04-22Update virtualenv installation step in userguideJingLu51-1/+19
2017-04-05Bugfix: fix query job status in TC074JingLu51-3/+3
2017-03-31Refine documentationJingLu52-48/+45
2017-03-30add yardstick_user_interface chapter in userguideJingLu59-12/+17
2017-03-30Refine documentationJingLu521-478/+840
2017-03-24Update cirros image to latest versionMichael Polenchuk1-2/+2
2017-03-23Merge "Update yardstick framework architecture in userguide"Jing Lu13-141/+300
2017-03-22Merge "Yardstick: User interface for Yardstick."Jing Lu1-0/+29
2017-03-22Merge "Refine test case description for tc076"Jing Lu1-10/+53
2017-03-22Update yardstick framework architecture in userguideJingLu513-141/+300
2017-03-17Yardstick: User interface for Yardstick.rajesh_4k1-0/+29
2017-03-17Refine test case description for tc076JingLu51-10/+53
2017-03-10Adding Labelsrexlee87764-0/+8
a> 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
/*
 * QEMU System Emulator
 *
 * Copyright (c) 2003-2008 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/* Needed early for CONFIG_BSD etc. */
#include "qemu/osdep.h"

#include "monitor/monitor.h"
#include "qapi/qmp/qerror.h"
#include "qemu/error-report.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"
#include "exec/gdbstub.h"
#include "sysemu/dma.h"
#include "sysemu/kvm.h"
#include "qmp-commands.h"

#include "qemu/thread.h"
#include "sysemu/cpus.h"
#include "sysemu/qtest.h"
#include "qemu/main-loop.h"
#include "qemu/bitmap.h"
#include "qemu/seqlock.h"
#include "qapi-event.h"
#include "hw/nmi.h"
#include "sysemu/replay.h"

#ifndef _WIN32
#include "qemu/compatfd.h"
#endif

#ifdef CONFIG_LINUX

#include <sys/prctl.h>

#ifndef PR_MCE_KILL
#define PR_MCE_KILL 33
#endif

#ifndef PR_MCE_KILL_SET
#define PR_MCE_KILL_SET 1
#endif

#ifndef PR_MCE_KILL_EARLY
#define PR_MCE_KILL_EARLY 1
#endif

#endif /* CONFIG_LINUX */

static CPUState *next_cpu;
int64_t max_delay;
int64_t max_advance;

/* vcpu throttling controls */
static QEMUTimer *throttle_timer;
static unsigned int throttle_percentage;

#define CPU_THROTTLE_PCT_MIN 1
#define CPU_THROTTLE_PCT_MAX 99
#define CPU_THROTTLE_TIMESLICE_NS 10000000

bool cpu_is_stopped(CPUState *cpu)
{
    return cpu->stopped || !runstate_is_running();
}

static bool cpu_thread_is_idle(CPUState *cpu)
{
    if (cpu->stop || cpu->queued_work_first) {
        return false;
    }
    if (cpu_is_stopped(cpu)) {
        return true;
    }
    if (!cpu->halted || cpu_has_work(cpu) ||
        kvm_halt_in_kernel()) {
        return false;
    }
    return true;
}

static bool all_cpu_threads_idle(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        if (!cpu_thread_is_idle(cpu)) {
            return false;
        }
    }
    return true;
}

/***********************************************************/
/* guest cycle counter */

/* Protected by TimersState seqlock */

static bool icount_sleep = true;
static int64_t vm_clock_warp_start = -1;
/* Conversion factor from emulated instructions to virtual clock ticks.  */
static int icount_time_shift;
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
#define MAX_ICOUNT_SHIFT 10

static QEMUTimer *icount_rt_timer;
static QEMUTimer *icount_vm_timer;
static QEMUTimer *icount_warp_timer;

typedef struct TimersState {
    /* Protected by BQL.  */
    int64_t cpu_ticks_prev;
    int64_t cpu_ticks_offset;

    /* cpu_clock_offset can be read out of BQL, so protect it with
     * this lock.
     */
    QemuSeqLock vm_clock_seqlock;
    int64_t cpu_clock_offset;
    int32_t cpu_ticks_enabled;
    int64_t dummy;

    /* Compensate for varying guest execution speed.  */
    int64_t qemu_icount_bias;
    /* Only written by TCG thread */
    int64_t qemu_icount;
} TimersState;

static TimersState timers_state;

int64_t cpu_get_icount_raw(void)
{
    int64_t icount;
    CPUState *cpu = current_cpu;

    icount = timers_state.qemu_icount;
    if (cpu) {
        if (!cpu->can_do_io) {
            fprintf(stderr, "Bad icount read\n");
            exit(1);
        }
        icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
    }
    return icount;
}

/* Return the virtual CPU time, based on the instruction counter.  */
static int64_t cpu_get_icount_locked(void)
{
    int64_t icount = cpu_get_icount_raw();
    return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
}

int64_t cpu_get_icount(void)
{
    int64_t icount;
    unsigned start;

    do {
        start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
        icount = cpu_get_icount_locked();
    } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));

    return icount;
}

int64_t cpu_icount_to_ns(int64_t icount)
{
    return icount << icount_time_shift;
}

/* return the host CPU cycle counter and handle stop/restart */
/* Caller must hold the BQL */
int64_t cpu_get_ticks(void)
{
    int64_t ticks;

    if (use_icount) {
        return cpu_get_icount();
    }

    ticks = timers_state.cpu_ticks_offset;
    if (timers_state.cpu_ticks_enabled) {
        ticks += cpu_get_host_ticks();
    }

    if (timers_state.cpu_ticks_prev > ticks) {
        /* Note: non increasing ticks may happen if the host uses
           software suspend */
        timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
        ticks = timers_state.cpu_ticks_prev;
    }

    timers_state.cpu_ticks_prev = ticks;
    return ticks;
}

static int64_t cpu_get_clock_locked(void)
{
    int64_t ticks;

    ticks = timers_state.cpu_clock_offset;
    if (timers_state.cpu_ticks_enabled) {
        ticks += get_clock();
    }

    return ticks;
}

/* return the host CPU monotonic timer and handle stop/restart */
int64_t cpu_get_clock(void)
{
    int64_t ti;
    unsigned start;

    do {
        start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
        ti = cpu_get_clock_locked();
    } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));

    return ti;
}

/* enable cpu_get_ticks()
 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
 */
void cpu_enable_ticks(void)
{
    /* Here, the really thing protected by seqlock is cpu_clock_offset. */
    seqlock_write_lock(&timers_state.vm_clock_seqlock);
    if (!timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
        timers_state.cpu_clock_offset -= get_clock();
        timers_state.cpu_ticks_enabled = 1;
    }
    seqlock_write_unlock(&timers_state.vm_clock_seqlock);
}

/* disable cpu_get_ticks() : the clock is stopped. You must not call
 * cpu_get_ticks() after that.
 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
 */
void cpu_disable_ticks(void)
{
    /* Here, the really thing protected by seqlock is cpu_clock_offset. */
    seqlock_write_lock(&timers_state.vm_clock_seqlock);
    if (timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset += cpu_get_host_ticks();
        timers_state.cpu_clock_offset = cpu_get_clock_locked();
        timers_state.cpu_ticks_enabled = 0;
    }
    seqlock_write_unlock(&timers_state.vm_clock_seqlock);
}

/* Correlation between real and virtual time is always going to be
   fairly approximate, so ignore small variation.
   When the guest is idle real and virtual time will be aligned in
   the IO wait loop.  */
#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)

static void icount_adjust(void)
{
    int64_t cur_time;
    int64_t cur_icount;
    int64_t delta;

    /* Protected by TimersState mutex.  */
    static int64_t last_delta;

    /* If the VM is not running, then do nothing.  */
    if (!runstate_is_running()) {
        return;
    }

    seqlock_write_lock(&timers_state.vm_clock_seqlock);
    cur_time = cpu_get_clock_locked();
    cur_icount = cpu_get_icount_locked();

    delta = cur_icount - cur_time;
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
    if (delta > 0
        && last_delta + ICOUNT_WOBBLE < delta * 2
        && icount_time_shift > 0) {
        /* The guest is getting too far ahead.  Slow time down.  */
        icount_time_shift--;
    }
    if (delta < 0
        && last_delta - ICOUNT_WOBBLE > delta * 2
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
        /* The guest is getting too far behind.  Speed time up.  */
        icount_time_shift++;
    }
    last_delta = delta;
    timers_state.qemu_icount_bias = cur_icount
                              - (timers_state.qemu_icount << icount_time_shift);
    seqlock_write_unlock(&timers_state.vm_clock_seqlock);
}

static void icount_adjust_rt(void *opaque)
{
    timer_mod(icount_rt_timer,
              qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
    icount_adjust();
}

static void icount_adjust_vm(void *opaque)
{
    timer_mod(icount_vm_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                   NANOSECONDS_PER_SECOND / 10);
    icount_adjust();
}

static int64_t qemu_icount_round(int64_t count)
{
    return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
}

static void icount_warp_rt(void)
{
    unsigned seq;
    int64_t warp_start;

    /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
     * changes from -1 to another value, so the race here is okay.
     */
    do {
        seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
        warp_start = vm_clock_warp_start;
    } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));

    if (warp_start == -1) {
        return;
    }

    seqlock_write_lock(&timers_state.vm_clock_seqlock);
    if (runstate_is_running()) {
        int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
                                     cpu_get_clock_locked());
        int64_t warp_delta;

        warp_delta = clock - vm_clock_warp_start;
        if (use_icount == 2) {
            /*
             * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
             * far ahead of real time.
             */
            int64_t cur_icount = cpu_get_icount_locked();
            int64_t delta = clock - cur_icount;
            warp_delta = MIN(warp_delta, delta);
        }
        timers_state.qemu_icount_bias += warp_delta;
    }
    vm_clock_warp_start = -1;
    seqlock_write_unlock(&timers_state.vm_clock_seqlock);

    if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
        qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
    }
}

static void icount_timer_cb(void *opaque)
{
    /* No need for a checkpoint because the timer already synchronizes
     * with CHECKPOINT_CLOCK_VIRTUAL_RT.
     */
    icount_warp_rt();
}

void qtest_clock_warp(int64_t dest)
{
    int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    AioContext *aio_context;
    assert(qtest_enabled());
    aio_context = qemu_get_aio_context();
    while (clock < dest) {
        int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
        int64_t warp = qemu_soonest_timeout(dest - clock, deadline);

        seqlock_write_lock(&timers_state.vm_clock_seqlock);
        timers_state.qemu_icount_bias += warp;
        seqlock_write_unlock(&timers_state.vm_clock_seqlock);

        qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
        timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
        clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    }
    qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
}

void qemu_start_warp_timer(void)
{
    int64_t clock;
    int64_t deadline;

    if (!use_icount) {
        return;
    }

    /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
     * do not fire, so computing the deadline does not make sense.
     */
    if (!runstate_is_running()) {
        return;
    }

    /* warp clock deterministically in record/replay mode */
    if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
        return;
    }

    if (!all_cpu_threads_idle()) {
        return;
    }

    if (qtest_enabled()) {
        /* When testing, qtest commands advance icount.  */
        return;
    }

    /* We want to use the earliest deadline from ALL vm_clocks */
    clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
    deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
    if (deadline < 0) {
        static bool notified;
        if (!icount_sleep && !notified) {
            error_report("WARNING: icount sleep disabled and no active timers");
            notified = true;
        }
        return;
    }

    if (deadline > 0) {
        /*
         * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
         * sleep.  Otherwise, the CPU might be waiting for a future timer
         * interrupt to wake it up, but the interrupt never comes because
         * the vCPU isn't running any insns and thus doesn't advance the
         * QEMU_CLOCK_VIRTUAL.
         */
        if (!icount_sleep) {
            /*
             * We never let VCPUs sleep in no sleep icount mode.
             * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
             * to the next QEMU_CLOCK_VIRTUAL event and notify it.
             * It is useful when we want a deterministic execution time,
             * isolated from host latencies.
             */
            seqlock_write_lock(&timers_state.vm_clock_seqlock);
            timers_state.qemu_icount_bias += deadline;
            seqlock_write_unlock(&timers_state.vm_clock_seqlock);
            qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
        } else {
            /*
             * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
             * "real" time, (related to the time left until the next event) has
             * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
             * This avoids that the warps are visible externally; for example,
             * you will not be sending network packets continuously instead of
             * every 100ms.
             */
            seqlock_write_lock(&timers_state.vm_clock_seqlock);
            if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
                vm_clock_warp_start = clock;
            }
            seqlock_write_unlock(&timers_state.vm_clock_seqlock);
            timer_mod_anticipate(icount_warp_timer, clock + deadline);
        }
    } else if (deadline == 0) {
        qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
    }
}

static void qemu_account_warp_timer(void)
{
    if (!use_icount || !icount_sleep) {
        return;
    }

    /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
     * do not fire, so computing the deadline does not make sense.
     */
    if (!runstate_is_running()) {
        return;
    }

    /* warp clock deterministically in record/replay mode */
    if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
        return;
    }

    timer_del(icount_warp_timer);
    icount_warp_rt();
}

static bool icount_state_needed(void *opaque)
{
    return use_icount;
}

/*
 * This is a subsection for icount migration.
 */
static const VMStateDescription icount_vmstate_timers = {
    .name = "timer/icount",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = icount_state_needed,
    .fields = (VMStateField[]) {
        VMSTATE_INT64(qemu_icount_bias, TimersState),
        VMSTATE_INT64(qemu_icount, TimersState),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_timers = {
    .name = "timer",
    .version_id = 2,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
        VMSTATE_INT64(dummy, TimersState),
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
        VMSTATE_END_OF_LIST()
    },
    .subsections = (const VMStateDescription*[]) {
        &icount_vmstate_timers,
        NULL
    }
};

static void cpu_throttle_thread(void *opaque)
{
    CPUState *cpu = opaque;
    double pct;
    double throttle_ratio;
    long sleeptime_ns;

    if (!cpu_throttle_get_percentage()) {
        return;
    }

    pct = (double)cpu_throttle_get_percentage()/100;
    throttle_ratio = pct / (1 - pct);
    sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);

    qemu_mutex_unlock_iothread();
    atomic_set(&cpu->throttle_thread_scheduled, 0);
    g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
    qemu_mutex_lock_iothread();
}

static void cpu_throttle_timer_tick(void *opaque)
{
    CPUState *cpu;
    double pct;

    /* Stop the timer if needed */
    if (!cpu_throttle_get_percentage()) {
        return;
    }
    CPU_FOREACH(cpu) {
        if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
            async_run_on_cpu(cpu, cpu_throttle_thread, cpu);
        }
    }

    pct = (double)cpu_throttle_get_percentage()/100;
    timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
                                   CPU_THROTTLE_TIMESLICE_NS / (1-pct));
}

void cpu_throttle_set(int new_throttle_pct)
{
    /* Ensure throttle percentage is within valid range */
    new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
    new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);

    atomic_set(&throttle_percentage, new_throttle_pct);

    timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
                                       CPU_THROTTLE_TIMESLICE_NS);
}

void cpu_throttle_stop(void)
{
    atomic_set(&throttle_percentage, 0);
}

bool cpu_throttle_active(void)
{
    return (cpu_throttle_get_percentage() != 0);
}

int cpu_throttle_get_percentage(void)
{
    return atomic_read(&throttle_percentage);
}

void cpu_ticks_init(void)
{
    seqlock_init(&timers_state.vm_clock_seqlock, NULL);
    vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
    throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
                                           cpu_throttle_timer_tick, NULL);
}

void configure_icount(QemuOpts *opts, Error **errp)
{
    const char *option;
    char *rem_str = NULL;

    option = qemu_opt_get(opts, "shift");
    if (!option) {
        if (qemu_opt_get(opts, "align") != NULL) {
            error_setg(errp, "Please specify shift option when using align");
        }
        return;
    }

    icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
    if (icount_sleep) {
        icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
                                         icount_timer_cb, NULL);
    }

    icount_align_option = qemu_opt_get_bool(opts, "align", false);

    if (icount_align_option && !icount_sleep) {
        error_setg(errp, "align=on and sleep=off are incompatible");
    }
    if (strcmp(option, "auto") != 0) {
        errno = 0;
        icount_time_shift = strtol(option, &rem_str, 0);
        if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
            error_setg(errp, "icount: Invalid shift value");
        }
        use_icount = 1;
        return;
    } else if (icount_align_option) {
        error_setg(errp, "shift=auto and align=on are incompatible");
    } else if (!icount_sleep) {
        error_setg(errp, "shift=auto and sleep=off are incompatible");
    }

    use_icount = 2;

    /* 125MIPS seems a reasonable initial guess at the guest speed.
       It will be corrected fairly quickly anyway.  */
    icount_time_shift = 3;

    /* Have both realtime and virtual time triggers for speed adjustment.
       The realtime trigger catches emulated time passing too slowly,
       the virtual time trigger catches emulated time passing too fast.
       Realtime triggers occur even when idle, so use them less frequently
       than VM triggers.  */
    icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
                                   icount_adjust_rt, NULL);
    timer_mod(icount_rt_timer,
                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
    icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
                                        icount_adjust_vm, NULL);
    timer_mod(icount_vm_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                   NANOSECONDS_PER_SECOND / 10);
}

/***********************************************************/
void hw_error(const char *fmt, ...)
{
    va_list ap;
    CPUState *cpu;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    CPU_FOREACH(cpu) {
        fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
        cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
    }
    va_end(ap);
    abort();
}

void cpu_synchronize_all_states(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        cpu_synchronize_state(cpu);
    }
}

void cpu_synchronize_all_post_reset(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        cpu_synchronize_post_reset(cpu);
    }
}

void cpu_synchronize_all_post_init(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        cpu_synchronize_post_init(cpu);
    }
}

static int do_vm_stop(RunState state)
{
    int ret = 0;

    if (runstate_is_running()) {
        cpu_disable_ticks();
        pause_all_vcpus();
        runstate_set(state);
        vm_state_notify(0, state);
        qapi_event_send_stop(&error_abort);
    }

    bdrv_drain_all();
    ret = blk_flush_all();

    return ret;
}

static bool cpu_can_run(CPUState *cpu)
{
    if (cpu->stop) {
        return false;
    }
    if (cpu_is_stopped(cpu)) {
        return false;
    }
    return true;
}

static void cpu_handle_guest_debug(CPUState *cpu)
{
    gdb_set_stop_cpu(cpu);
    qemu_system_debug_request();
    cpu->stopped = true;
}

#ifdef CONFIG_LINUX
static void sigbus_reraise(void)
{
    sigset_t set;
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_handler = SIG_DFL;
    if (!sigaction(SIGBUS, &action, NULL)) {
        raise(SIGBUS);
        sigemptyset(&set);
        sigaddset(&set, SIGBUS);
        sigprocmask(SIG_UNBLOCK, &set, NULL);
    }
    perror("Failed to re-raise SIGBUS!\n");
    abort();
}

static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
                           void *ctx)
{
    if (kvm_on_sigbus(siginfo->ssi_code,
                      (void *)(intptr_t)siginfo->ssi_addr)) {
        sigbus_reraise();
    }
}

static void qemu_init_sigbus(void)
{
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_flags = SA_SIGINFO;
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
    sigaction(SIGBUS, &action, NULL);

    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
}

static void qemu_kvm_eat_signals(CPUState *cpu)
{
    struct timespec ts = { 0, 0 };
    siginfo_t siginfo;
    sigset_t waitset;
    sigset_t chkset;
    int r;

    sigemptyset(&waitset);
    sigaddset(&waitset, SIG_IPI);
    sigaddset(&waitset, SIGBUS);

    do {
        r = sigtimedwait(&waitset, &siginfo, &ts);
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
            perror("sigtimedwait");
            exit(1);
        }

        switch (r) {
        case SIGBUS:
            if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
                sigbus_reraise();
            }
            break;
        default:
            break;
        }

        r = sigpending(&chkset);
        if (r == -1) {
            perror("sigpending");
            exit(1);
        }
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
}

#else /* !CONFIG_LINUX */

static void qemu_init_sigbus(void)
{
}

static void qemu_kvm_eat_signals(CPUState *cpu)
{
}
#endif /* !CONFIG_LINUX */

#ifndef _WIN32
static void dummy_signal(int sig)
{
}

static void qemu_kvm_init_cpu_signals(CPUState *cpu)
{
    int r;
    sigset_t set;
    struct sigaction sigact;

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = dummy_signal;
    sigaction(SIG_IPI, &sigact, NULL);

    pthread_sigmask(SIG_BLOCK, NULL, &set);
    sigdelset(&set, SIG_IPI);
    sigdelset(&set, SIGBUS);
    r = kvm_set_signal_mask(cpu, &set);
    if (r) {
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
        exit(1);
    }
}

#else /* _WIN32 */
static void qemu_kvm_init_cpu_signals(CPUState *cpu)
{
    abort();
}
#endif /* _WIN32 */

static QemuMutex qemu_global_mutex;
static QemuCond qemu_io_proceeded_cond;
static unsigned iothread_requesting_mutex;

static QemuThread io_thread;

/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_pause_cond;
static QemuCond qemu_work_cond;

void qemu_init_cpu_loop(void)
{
    qemu_init_sigbus();
    qemu_cond_init(&qemu_cpu_cond);
    qemu_cond_init(&qemu_pause_cond);
    qemu_cond_init(&qemu_work_cond);
    qemu_cond_init(&qemu_io_proceeded_cond);
    qemu_mutex_init(&qemu_global_mutex);

    qemu_thread_get_self(&io_thread);
}

void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
{
    struct qemu_work_item wi;

    if (qemu_cpu_is_self(cpu)) {
        func(data);
        return;
    }

    wi.func = func;
    wi.data = data;
    wi.free = false;

    qemu_mutex_lock(&cpu->work_mutex);
    if (cpu->queued_work_first == NULL) {
        cpu->queued_work_first = &wi;
    } else {
        cpu->queued_work_last->next = &wi;
    }
    cpu->queued_work_last = &wi;
    wi.next = NULL;
    wi.done = false;
    qemu_mutex_unlock(&cpu->work_mutex);

    qemu_cpu_kick(cpu);
    while (!atomic_mb_read(&wi.done)) {
        CPUState *self_cpu = current_cpu;

        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
        current_cpu = self_cpu;
    }
}

void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
{
    struct qemu_work_item *wi;

    if (qemu_cpu_is_self(cpu)) {
        func(data);
        return;
    }

    wi = g_malloc0(sizeof(struct qemu_work_item));
    wi->func = func;
    wi->data = data;
    wi->free = true;

    qemu_mutex_lock(&cpu->work_mutex);
    if (cpu->queued_work_first == NULL) {
        cpu->queued_work_first = wi;
    } else {
        cpu->queued_work_last->next = wi;
    }
    cpu->queued_work_last = wi;
    wi->next = NULL;
    wi->done = false;
    qemu_mutex_unlock(&cpu->work_mutex);

    qemu_cpu_kick(cpu);
}

static void flush_queued_work(CPUState *cpu)
{
    struct qemu_work_item *wi;

    if (cpu->queued_work_first == NULL) {
        return;
    }

    qemu_mutex_lock(&cpu->work_mutex);
    while (cpu->queued_work_first != NULL) {
        wi = cpu->queued_work_first;
        cpu->queued_work_first = wi->next;
        if (!cpu->queued_work_first) {
            cpu->queued_work_last = NULL;
        }
        qemu_mutex_unlock(&cpu->work_mutex);
        wi->func(wi->data);
        qemu_mutex_lock(&cpu->work_mutex);
        if (wi->free) {
            g_free(wi);
        } else {
            atomic_mb_set(&wi->done, true);
        }
    }
    qemu_mutex_unlock(&cpu->work_mutex);
    qemu_cond_broadcast(&qemu_work_cond);
}

static void qemu_wait_io_event_common(CPUState *cpu)
{
    if (cpu->stop) {
        cpu->stop = false;
        cpu->stopped = true;
        qemu_cond_broadcast(&qemu_pause_cond);
    }
    flush_queued_work(cpu);
    cpu->thread_kicked = false;
}

static void qemu_tcg_wait_io_event(CPUState *cpu)
{
    while (all_cpu_threads_idle()) {
        qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
    }

    while (iothread_requesting_mutex) {
        qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
    }

    CPU_FOREACH(cpu) {
        qemu_wait_io_event_common(cpu);
    }
}

static void qemu_kvm_wait_io_event(CPUState *cpu)
{
    while (cpu_thread_is_idle(cpu)) {
        qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
    }

    qemu_kvm_eat_signals(cpu);
    qemu_wait_io_event_common(cpu);
}

static void *qemu_kvm_cpu_thread_fn(void *arg)
{
    CPUState *cpu = arg;
    int r;

    rcu_register_thread();

    qemu_mutex_lock_iothread();
    qemu_thread_get_self(cpu->thread);
    cpu->thread_id = qemu_get_thread_id();
    cpu->can_do_io = 1;
    current_cpu = cpu;

    r = kvm_init_vcpu(cpu);
    if (r < 0) {
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
        exit(1);
    }

    qemu_kvm_init_cpu_signals(cpu);

    /* signal CPU creation */
    cpu->created = true;
    qemu_cond_signal(&qemu_cpu_cond);

    while (1) {
        if (cpu_can_run(cpu)) {
            r = kvm_cpu_exec(cpu);
            if (r == EXCP_DEBUG) {
                cpu_handle_guest_debug(cpu);
            }
        }
        qemu_kvm_wait_io_event(cpu);
    }

    return NULL;
}

static void *qemu_dummy_cpu_thread_fn(void *arg)
{
#ifdef _WIN32
    fprintf(stderr, "qtest is not supported under Windows\n");
    exit(1);
#else
    CPUState *cpu = arg;
    sigset_t waitset;
    int r;

    rcu_register_thread();

    qemu_mutex_lock_iothread();
    qemu_thread_get_self(cpu->thread);
    cpu->thread_id = qemu_get_thread_id();
    cpu->can_do_io = 1;

    sigemptyset(&waitset);
    sigaddset(&waitset, SIG_IPI);

    /* signal CPU creation */
    cpu->created = true;
    qemu_cond_signal(&qemu_cpu_cond);

    current_cpu = cpu;
    while (1) {
        current_cpu = NULL;
        qemu_mutex_unlock_iothread();
        do {
            int sig;
            r = sigwait(&waitset, &sig);
        } while (r == -1 && (errno == EAGAIN || errno == EINTR));
        if (r == -1) {
            perror("sigwait");
            exit(1);
        }
        qemu_mutex_lock_iothread();
        current_cpu = cpu;
        qemu_wait_io_event_common(cpu);
    }

    return NULL;
#endif
}

static void tcg_exec_all(void);

static void *qemu_tcg_cpu_thread_fn(void *arg)
{
    CPUState *cpu = arg;

    rcu_register_thread();

    qemu_mutex_lock_iothread();
    qemu_thread_get_self(cpu->thread);

    CPU_FOREACH(cpu) {
        cpu->thread_id = qemu_get_thread_id();
        cpu->created = true;
        cpu->can_do_io = 1;
    }
    qemu_cond_signal(&qemu_cpu_cond);

    /* wait for initial kick-off after machine start */
    while (first_cpu->stopped) {
        qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);

        /* process any pending work */
        CPU_FOREACH(cpu) {
            qemu_wait_io_event_common(cpu);
        }
    }

    /* process any pending work */
    atomic_mb_set(&exit_request, 1);

    while (1) {
        tcg_exec_all();

        if (use_icount) {
            int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);

            if (deadline == 0) {
                qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
            }
        }
        qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
    }

    return NULL;
}

static void qemu_cpu_kick_thread(CPUState *cpu)
{
#ifndef _WIN32
    int err;

    if (cpu->thread_kicked) {
        return;
    }
    cpu->thread_kicked = true;
    err = pthread_kill(cpu->thread->thread, SIG_IPI);
    if (err) {
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
        exit(1);
    }
#else /* _WIN32 */
    abort();
#endif
}

static void qemu_cpu_kick_no_halt(void)
{
    CPUState *cpu;
    /* Ensure whatever caused the exit has reached the CPU threads before
     * writing exit_request.
     */
    atomic_mb_set(&exit_request, 1);
    cpu = atomic_mb_read(&tcg_current_cpu);
    if (cpu) {
        cpu_exit(cpu);
    }
}

void qemu_cpu_kick(CPUState *cpu)
{
    qemu_cond_broadcast(cpu->halt_cond);
    if (tcg_enabled()) {
        qemu_cpu_kick_no_halt();
    } else {
        qemu_cpu_kick_thread(cpu);
    }
}

void qemu_cpu_kick_self(void)
{
    assert(current_cpu);
    qemu_cpu_kick_thread(current_cpu);
}

bool qemu_cpu_is_self(CPUState *cpu)
{
    return qemu_thread_is_self(cpu->thread);
}

bool qemu_in_vcpu_thread(void)
{
    return current_cpu && qemu_cpu_is_self(current_cpu);
}

static __thread bool iothread_locked = false;

bool qemu_mutex_iothread_locked(void)
{
    return iothread_locked;
}

void qemu_mutex_lock_iothread(void)
{
    atomic_inc(&iothread_requesting_mutex);
    /* In the simple case there is no need to bump the VCPU thread out of
     * TCG code execution.
     */
    if (!tcg_enabled() || qemu_in_vcpu_thread() ||
        !first_cpu || !first_cpu->created) {
        qemu_mutex_lock(&qemu_global_mutex);
        atomic_dec(&iothread_requesting_mutex);
    } else {
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
            qemu_cpu_kick_no_halt();
            qemu_mutex_lock(&qemu_global_mutex);
        }
        atomic_dec(&iothread_requesting_mutex);
        qemu_cond_broadcast(&qemu_io_proceeded_cond);
    }
    iothread_locked = true;
}

void qemu_mutex_unlock_iothread(void)
{
    iothread_locked = false;
    qemu_mutex_unlock(&qemu_global_mutex);
}

static int all_vcpus_paused(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        if (!cpu->stopped) {
            return 0;
        }
    }

    return 1;
}

void pause_all_vcpus(void)
{
    CPUState *cpu;

    qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
    CPU_FOREACH(cpu) {
        cpu->stop = true;
        qemu_cpu_kick(cpu);
    }

    if (qemu_in_vcpu_thread()) {
        cpu_stop_current();
        if (!kvm_enabled()) {
            CPU_FOREACH(cpu) {
                cpu->stop = false;
                cpu->stopped = true;
            }
            return;
        }
    }

    while (!all_vcpus_paused()) {
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
        CPU_FOREACH(cpu) {
            qemu_cpu_kick(cpu);
        }
    }
}

void cpu_resume(CPUState *cpu)
{
    cpu->stop = false;
    cpu->stopped = false;
    qemu_cpu_kick(cpu);
}

void resume_all_vcpus(void)
{
    CPUState *cpu;

    qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
    CPU_FOREACH(cpu) {
        cpu_resume(cpu);
    }
}

/* For temporary buffers for forming a name */
#define VCPU_THREAD_NAME_SIZE 16

static void qemu_tcg_init_vcpu(CPUState *cpu)
{
    char thread_name[VCPU_THREAD_NAME_SIZE];
    static QemuCond *tcg_halt_cond;
    static QemuThread *tcg_cpu_thread;

    /* share a single thread for all cpus with TCG */
    if (!tcg_cpu_thread) {
        cpu->thread = g_malloc0(sizeof(QemuThread));
        cpu->halt_cond = g_malloc0(sizeof(QemuCond));
        qemu_cond_init(cpu->halt_cond);
        tcg_halt_cond = cpu->halt_cond;
        snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
                 cpu->cpu_index);
        qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
                           cpu, QEMU_THREAD_JOINABLE);
#ifdef _WIN32
        cpu->hThread = qemu_thread_get_handle(cpu->thread);
#endif
        while (!cpu->created) {
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
        }
        tcg_cpu_thread = cpu->thread;
    } else {
        cpu->thread = tcg_cpu_thread;
        cpu->halt_cond = tcg_halt_cond;
    }
}

static void qemu_kvm_start_vcpu(CPUState *cpu)
{
    char thread_name[VCPU_THREAD_NAME_SIZE];

    cpu->thread = g_malloc0(sizeof(QemuThread));
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
    qemu_cond_init(cpu->halt_cond);
    snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
             cpu->cpu_index);
    qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
                       cpu, QEMU_THREAD_JOINABLE);
    while (!cpu->created) {
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
    }
}

static void qemu_dummy_start_vcpu(CPUState *cpu)
{
    char thread_name[VCPU_THREAD_NAME_SIZE];

    cpu->thread = g_malloc0(sizeof(QemuThread));
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
    qemu_cond_init(cpu->halt_cond);
    snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
             cpu->cpu_index);
    qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
                       QEMU_THREAD_JOINABLE);
    while (!cpu->created) {
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
    }
}

void qemu_init_vcpu(CPUState *cpu)
{
    cpu->nr_cores = smp_cores;
    cpu->nr_threads = smp_threads;
    cpu->stopped = true;

    if (!cpu->as) {
        /* If the target cpu hasn't set up any address spaces itself,
         * give it the default one.
         */
        AddressSpace *as = address_space_init_shareable(cpu->memory,
                                                        "cpu-memory");
        cpu->num_ases = 1;
        cpu_address_space_init(cpu, as, 0);
    }

    if (kvm_enabled()) {
        qemu_kvm_start_vcpu(cpu);
    } else if (tcg_enabled()) {
        qemu_tcg_init_vcpu(cpu);
    } else {
        qemu_dummy_start_vcpu(cpu);
    }
}

void cpu_stop_current(void)
{
    if (current_cpu) {
        current_cpu->stop = false;
        current_cpu->stopped = true;
        cpu_exit(current_cpu);
        qemu_cond_broadcast(&qemu_pause_cond);
    }
}

int vm_stop(RunState state)
{
    if (qemu_in_vcpu_thread()) {
        qemu_system_vmstop_request_prepare();
        qemu_system_vmstop_request(state);
        /*
         * FIXME: should not return to device code in case
         * vm_stop() has been requested.
         */
        cpu_stop_current();
        return 0;
    }

    return do_vm_stop(state);
}

/* does a state transition even if the VM is already stopped,
   current state is forgotten forever */
int vm_stop_force_state(RunState state)
{
    if (runstate_is_running()) {
        return vm_stop(state);
    } else {
        runstate_set(state);

        bdrv_drain_all();
        /* Make sure to return an error if the flush in a previous vm_stop()
         * failed. */
        return blk_flush_all();
    }
}

static int64_t tcg_get_icount_limit(void)
{
    int64_t deadline;

    if (replay_mode != REPLAY_MODE_PLAY) {
        deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);

        /* Maintain prior (possibly buggy) behaviour where if no deadline
         * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
         * INT32_MAX nanoseconds ahead, we still use INT32_MAX
         * nanoseconds.
         */
        if ((deadline < 0) || (deadline > INT32_MAX)) {
            deadline = INT32_MAX;
        }

        return qemu_icount_round(deadline);
    } else {
        return replay_get_instructions();
    }
}

static int tcg_cpu_exec(CPUState *cpu)
{
    int ret;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    if (use_icount) {
        int64_t count;
        int decr;
        timers_state.qemu_icount -= (cpu->icount_decr.u16.low
                                    + cpu->icount_extra);
        cpu->icount_decr.u16.low = 0;
        cpu->icount_extra = 0;
        count = tcg_get_icount_limit();
        timers_state.qemu_icount += count;
        decr = (count > 0xffff) ? 0xffff : count;
        count -= decr;
        cpu->icount_decr.u16.low = decr;
        cpu->icount_extra = count;
    }
    ret = cpu_exec(cpu);
#ifdef CONFIG_PROFILER
    tcg_time += profile_getclock() - ti;
#endif
    if (use_icount) {
        /* Fold pending instructions back into the
           instruction counter, and clear the interrupt flag.  */
        timers_state.qemu_icount -= (cpu->icount_decr.u16.low
                        + cpu->icount_extra);
        cpu->icount_decr.u32 = 0;
        cpu->icount_extra = 0;
        replay_account_executed_instructions();
    }
    return ret;
}

static void tcg_exec_all(void)
{
    int r;

    /* Account partial waits to QEMU_CLOCK_VIRTUAL.  */
    qemu_account_warp_timer();

    if (next_cpu == NULL) {
        next_cpu = first_cpu;
    }
    for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
        CPUState *cpu = next_cpu;

        qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
                          (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);

        if (cpu_can_run(cpu)) {
            r = tcg_cpu_exec(cpu);
            if (r == EXCP_DEBUG) {
                cpu_handle_guest_debug(cpu);
                break;
            }
        } else if (cpu->stop || cpu->stopped) {
            break;
        }
    }

    /* Pairs with smp_wmb in qemu_cpu_kick.  */
    atomic_mb_set(&exit_request, 0);
}

void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
{
    /* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
    cpu_list(f, cpu_fprintf);
#endif
}

CpuInfoList *qmp_query_cpus(Error **errp)
{
    CpuInfoList *head = NULL, *cur_item = NULL;
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        CpuInfoList *info;
#if defined(TARGET_I386)
        X86CPU *x86_cpu = X86_CPU(cpu);
        CPUX86State *env = &x86_cpu->env;
#elif defined(TARGET_PPC)
        PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
        CPUPPCState *env = &ppc_cpu->env;
#elif defined(TARGET_SPARC)
        SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
        CPUSPARCState *env = &sparc_cpu->env;
#elif defined(TARGET_MIPS)
        MIPSCPU *mips_cpu = MIPS_CPU(cpu);
        CPUMIPSState *env = &mips_cpu->env;
#elif defined(TARGET_TRICORE)
        TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
        CPUTriCoreState *env = &tricore_cpu->env;
#endif

        cpu_synchronize_state(cpu);

        info = g_malloc0(sizeof(*info));
        info->value = g_malloc0(sizeof(*info->value));
        info->value->CPU = cpu->cpu_index;
        info->value->current = (cpu == first_cpu);
        info->value->halted = cpu->halted;
        info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
        info->value->thread_id = cpu->thread_id;
#if defined(TARGET_I386)
        info->value->arch = CPU_INFO_ARCH_X86;
        info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
#elif defined(TARGET_PPC)
        info->value->arch = CPU_INFO_ARCH_PPC;
        info->value->u.ppc.nip = env->nip;
#elif defined(TARGET_SPARC)
        info->value->arch = CPU_INFO_ARCH_SPARC;
        info->value->u.q_sparc.pc = env->pc;
        info->value->u.q_sparc.npc = env->npc;
#elif defined(TARGET_MIPS)
        info->value->arch = CPU_INFO_ARCH_MIPS;
        info->value->u.q_mips.PC = env->active_tc.PC;
#elif defined(TARGET_TRICORE)
        info->value->arch = CPU_INFO_ARCH_TRICORE;
        info->value->u.tricore.PC = env->PC;
#else
        info->value->arch = CPU_INFO_ARCH_OTHER;
#endif

        /* XXX: waiting for the qapi to support GSList */
        if (!cur_item) {
            head = cur_item = info;
        } else {
            cur_item->next = info;
            cur_item = info;
        }
    }

    return head;
}

void qmp_memsave(int64_t addr, int64_t size, const char *filename,
                 bool has_cpu, int64_t cpu_index, Error **errp)
{
    FILE *f;
    uint32_t l;
    CPUState *cpu;
    uint8_t buf[1024];
    int64_t orig_addr = addr, orig_size = size;

    if (!has_cpu) {
        cpu_index = 0;
    }

    cpu = qemu_get_cpu(cpu_index);
    if (cpu == NULL) {
        error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
                   "a CPU number");
        return;
    }

    f = fopen(filename, "wb");
    if (!f) {
        error_setg_file_open(errp, errno, filename);
        return;
    }

    while (size != 0) {
        l = sizeof(buf);
        if (l > size)
            l = size;
        if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
            error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
                             " specified", orig_addr, orig_size);
            goto exit;
        }
        if (fwrite(buf, 1, l, f) != l) {
            error_setg(errp, QERR_IO_ERROR);
            goto exit;
        }
        addr += l;
        size -= l;
    }

exit:
    fclose(f);
}

void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
                  Error **errp)
{
    FILE *f;
    uint32_t l;
    uint8_t buf[1024];

    f = fopen(filename, "wb");
    if (!f) {
        error_setg_file_open(errp, errno, filename);
        return;
    }

    while (size != 0) {
        l = sizeof(buf);
        if (l > size)
            l = size;
        cpu_physical_memory_read(addr, buf, l);
        if (fwrite(buf, 1, l, f) != l) {
            error_setg(errp, QERR_IO_ERROR);
            goto exit;
        }
        addr += l;
        size -= l;
    }

exit:
    fclose(f);
}

void qmp_inject_nmi(Error **errp)
{
#if defined(TARGET_I386)
    CPUState *cs;

    CPU_FOREACH(cs) {
        X86CPU *cpu = X86_CPU(cs);

        if (!cpu->apic_state) {
            cpu_interrupt(cs, CPU_INTERRUPT_NMI);
        } else {
            apic_deliver_nmi(cpu->apic_state);
        }
    }
#else
    nmi_monitor_handle(monitor_get_cpu_index(), errp);
#endif
}

void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
{
    if (!use_icount) {
        return;
    }

    cpu_fprintf(f, "Host - Guest clock  %"PRIi64" ms\n",
                (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
    if (icount_align_option) {
        cpu_fprintf(f, "Max guest delay     %"PRIi64" ms\n", -max_delay/SCALE_MS);
        cpu_fprintf(f, "Max guest advance   %"PRIi64" ms\n", max_advance/SCALE_MS);
    } else {
        cpu_fprintf(f, "Max guest delay     NA\n");
        cpu_fprintf(f, "Max guest advance   NA\n");
    }
}