diff options
Diffstat (limited to 'docs')
-rw-r--r-- | docs/userguide/opnfv_yardstick_tc050.rst | 135 | ||||
-rw-r--r-- | docs/userguide/opnfv_yardstick_tc051.rst | 117 | ||||
-rw-r--r-- | docs/userguide/opnfv_yardstick_tc073.rst | 81 |
3 files changed, 333 insertions, 0 deletions
diff --git a/docs/userguide/opnfv_yardstick_tc050.rst b/docs/userguide/opnfv_yardstick_tc050.rst new file mode 100644 index 000000000..8890c9d53 --- /dev/null +++ b/docs/userguide/opnfv_yardstick_tc050.rst @@ -0,0 +1,135 @@ +.. This work is licensed under a Creative Commons Attribution 4.0 International +.. License. +.. http://creativecommons.org/licenses/by/4.0 +.. (c) OPNFV, Yin Kanglin and others. +.. 14_ykl@tongji.edu.cn + +************************************* +Yardstick Test Case Description TC050 +************************************* + ++-----------------------------------------------------------------------------+ +|OpenStack Controller Node Network High Availability | +| | ++--------------+--------------------------------------------------------------+ +|test case id | OPNFV_YARDSTICK_TC050: OpenStack Controller Node Network | +| | High Availability | ++--------------+--------------------------------------------------------------+ +|test purpose | This test case will verify the high availability of control | +| | node. When one of the controller failed to connect the | +| | network, which breaks down the Openstack services on this | +| | node. These Openstack service should able to be accessed by | +| | other controller nodes, and the services on failed | +| | controller node should be isolated. | ++--------------+--------------------------------------------------------------+ +|test method | This test case turns off the network interfaces of a | +| | specified control node, then checks whether all services | +| | provided by the control node are OK with some monitor tools. | ++--------------+--------------------------------------------------------------+ +|attackers | In this test case, an attacker called "close-interface" is | +| | needed. This attacker includes three parameters: | +| | 1) fault_type: which is used for finding the attacker's | +| | scripts. It should be always set to "close-interface" in | +| | this test case. | +| | 2) host: which is the name of a control node being attacked. | +| | 3) interface: the network interface to be turned off. | +| | | +| | There are four instance of the "close-interface" monitor: | +| | attacker1(for public netork): | +| | -fault_type: "close-interface" | +| | -host: node1 | +| | -interface: "br-ex" | +| | attacker2(for management netork): | +| | -fault_type: "close-interface" | +| | -host: node1 | +| | -interface: "br-mgmt" | +| | attacker3(for storage netork): | +| | -fault_type: "close-interface" | +| | -host: node1 | +| | -interface: "br-storage" | +| | attacker4(for private netork): | +| | -fault_type: "close-interface" | +| | -host: node1 | +| | -interface: "br-mesh" | ++--------------+--------------------------------------------------------------+ +|monitors | In this test case, the monitor named "openstack-cmd" is | +| | needed. The monitor needs needs two parameters: | +| | 1) monitor_type: which is used for finding the monitor class | +| | and related scritps. It should be always set to | +| | "openstack-cmd" for this monitor. | +| | 2) command_name: which is the command name used for request | +| | | +| | There are four instance of the "openstack-cmd" monitor: | +| | monitor1: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "nova image-list" | +| | monitor2: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "neutron router-list" | +| | monitor3: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "heat stack-list" | +| | monitor4: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "cinder list" | ++--------------+--------------------------------------------------------------+ +|metrics | In this test case, there is one metric: | +| | 1)service_outage_time: which indicates the maximum outage | +| | time (seconds) of the specified Openstack command request. | ++--------------+--------------------------------------------------------------+ +|test tool | Developed by the project. Please see folder: | +| | "yardstick/benchmark/scenarios/availability/ha_tools" | +| | | ++--------------+--------------------------------------------------------------+ +|references | ETSI NFV REL001 | +| | | ++--------------+--------------------------------------------------------------+ +|configuration | This test case needs two configuration files: | +| | 1) test case file: opnfv_yardstick_tc050.yaml | +| | -Attackers: see above "attackers" discription | +| | -waiting_time: which is the time (seconds) from the process | +| | being killed to stoping monitors the monitors | +| | -Monitors: see above "monitors" discription | +| | -SLA: see above "metrics" discription | +| | | +| | 2)POD file: pod.yaml | +| | The POD configuration should record on pod.yaml first. | +| | the "host" item in this test case will use the node name in | +| | the pod.yaml. | +| | | ++--------------+--------------------------------------------------------------+ +|test sequence | description and expected result | +| | | ++--------------+--------------------------------------------------------------+ +|step 1 | start monitors: | +| | each monitor will run with independently process | +| | | +| | Result: The monitor info will be collected. | +| | | ++--------------+--------------------------------------------------------------+ +|step 2 | do attacker: connect the host through SSH, and then execute | +| | the turnoff network interface script with param value | +| | specified by "interface". | +| | | +| | Result: Network interfaces will be turned down. | +| | | ++--------------+--------------------------------------------------------------+ +|step 3 | stop monitors after a period of time specified by | +| | "waiting_time" | +| | | +| | Result: The monitor info will be aggregated. | +| | | ++--------------+--------------------------------------------------------------+ +|step 4 | verify the SLA | +| | | +| | Result: The test case is passed or not. | +| | | ++--------------+--------------------------------------------------------------+ +|post-action | It is the action when the test cases exist. It turns up the | +| | network interface of the control node if it is not turned | +| | up. | ++--------------+--------------------------------------------------------------+ +|test verdict | Fails only if SLA is not passed, or if there is a test case | +| | execution problem. | +| | | ++--------------+--------------------------------------------------------------+ diff --git a/docs/userguide/opnfv_yardstick_tc051.rst b/docs/userguide/opnfv_yardstick_tc051.rst new file mode 100644 index 000000000..3402ccd92 --- /dev/null +++ b/docs/userguide/opnfv_yardstick_tc051.rst @@ -0,0 +1,117 @@ +.. This work is licensed under a Creative Commons Attribution 4.0 International +.. License. +.. http://creativecommons.org/licenses/by/4.0 +.. (c) OPNFV, Yin Kanglin and others. +.. 14_ykl@tongji.edu.cn + +************************************* +Yardstick Test Case Description TC051 +************************************* + ++-----------------------------------------------------------------------------+ +|OpenStack Controller Node CPU Overload High Availability | +| | ++--------------+--------------------------------------------------------------+ +|test case id | OPNFV_YARDSTICK_TC051: OpenStack Controller Node CPU | +| | Overload High Availability | ++--------------+--------------------------------------------------------------+ +|test purpose | This test case will verify the high availability of control | +| | node. When the CPU usage of a specified controller node is | +| | stressed to 100%, which breaks down the Openstack services | +| | on this node. These Openstack service should able to be | +| | accessed by other controller nodes, and the services on | +| | failed controller node should be isolated. | ++--------------+--------------------------------------------------------------+ +|test method | This test case stresses the CPU uasge of a specified control | +| | node to 100%, then checks whether all services provided by | +| | the environment are OK with some monitor tools. | ++--------------+--------------------------------------------------------------+ +|attackers | In this test case, an attacker called "stress-cpu" is | +| | needed. This attacker includes two parameters: | +| | 1) fault_type: which is used for finding the attacker's | +| | scripts. It should be always set to "stress-cpu" in | +| | this test case. | +| | 2) host: which is the name of a control node being attacked. | +| | e.g. | +| | -fault_type: "stress-cpu" | +| | -host: node1 | ++--------------+--------------------------------------------------------------+ +|monitors | In this test case, the monitor named "openstack-cmd" is | +| | needed. The monitor needs needs two parameters: | +| | 1) monitor_type: which is used for finding the monitor class | +| | and related scritps. It should be always set to | +| | "openstack-cmd" for this monitor. | +| | 2) command_name: which is the command name used for request | +| | | +| | There are four instance of the "openstack-cmd" monitor: | +| | monitor1: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "nova image-list" | +| | monitor2: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "neutron router-list" | +| | monitor3: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "heat stack-list" | +| | monitor4: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "cinder list" | ++--------------+--------------------------------------------------------------+ +|metrics | In this test case, there is one metric: | +| | 1)service_outage_time: which indicates the maximum outage | +| | time (seconds) of the specified Openstack command request. | ++--------------+--------------------------------------------------------------+ +|test tool | Developed by the project. Please see folder: | +| | "yardstick/benchmark/scenarios/availability/ha_tools" | +| | | ++--------------+--------------------------------------------------------------+ +|references | ETSI NFV REL001 | +| | | ++--------------+--------------------------------------------------------------+ +|configuration | This test case needs two configuration files: | +| | 1) test case file: opnfv_yardstick_tc051.yaml | +| | -Attackers: see above "attackers" discription | +| | -waiting_time: which is the time (seconds) from the process | +| | being killed to stoping monitors the monitors | +| | -Monitors: see above "monitors" discription | +| | -SLA: see above "metrics" discription | +| | | +| | 2)POD file: pod.yaml | +| | The POD configuration should record on pod.yaml first. | +| | the "host" item in this test case will use the node name in | +| | the pod.yaml. | +| | | ++--------------+--------------------------------------------------------------+ +|test sequence | description and expected result | +| | | ++--------------+--------------------------------------------------------------+ +|step 1 | start monitors: | +| | each monitor will run with independently process | +| | | +| | Result: The monitor info will be collected. | +| | | ++--------------+--------------------------------------------------------------+ +|step 2 | do attacker: connect the host through SSH, and then execute | +| | the stress cpu script on the host. | +| | | +| | Result: The CPU usage of the host will be stressed to 100%. | +| | | ++--------------+--------------------------------------------------------------+ +|step 3 | stop monitors after a period of time specified by | +| | "waiting_time" | +| | | +| | Result: The monitor info will be aggregated. | +| | | ++--------------+--------------------------------------------------------------+ +|step 4 | verify the SLA | +| | | +| | Result: The test case is passed or not. | +| | | ++--------------+--------------------------------------------------------------+ +|post-action | It is the action when the test cases exist. It kills the | +| | process that stresses the CPU usage. | ++--------------+--------------------------------------------------------------+ +|test verdict | Fails only if SLA is not passed, or if there is a test case | +| | execution problem. | +| | | ++--------------+--------------------------------------------------------------+ diff --git a/docs/userguide/opnfv_yardstick_tc073.rst b/docs/userguide/opnfv_yardstick_tc073.rst new file mode 100644 index 000000000..a6499eabb --- /dev/null +++ b/docs/userguide/opnfv_yardstick_tc073.rst @@ -0,0 +1,81 @@ +.. This work is licensed under a Creative Commons Attribution 4.0 International +.. License. +.. http://creativecommons.org/licenses/by/4.0 +.. (c) OPNFV, Huawei Technologies Co.,Ltd and others. + +************************************* +Yardstick Test Case Description TC073 +************************************* + +.. _netperf: http://www.netperf.org/netperf/training/Netperf.html + ++-----------------------------------------------------------------------------+ +|Throughput per NFVI node test | +| | ++--------------+--------------------------------------------------------------+ +|test case id | OPNFV_YARDSTICK_TC073_Network latency and throughput between | +| | nodes | +| | | ++--------------+--------------------------------------------------------------+ +|metric | Network latency and throughput | +| | | ++--------------+--------------------------------------------------------------+ +|test purpose | To evaluate the IaaS network performance with regards to | +| | flows and throughput, such as if and how different amounts | +| | of packet sizes and flows matter for the throughput between | +| | nodes in one pod. | +| | | ++--------------+--------------------------------------------------------------+ +|configuration | file: opnfv_yardstick_tc073.yaml | +| | | +| | Packet size: default 1024 bytes. | +| | | +| | Test length: default 20 seconds. | +| | | +| | The client and server are distributed on different nodes. | +| | | +| | For SLA max_mean_latency is set to 100. | +| | | ++--------------+--------------------------------------------------------------+ +|test tool | netperf | +| | Netperf is a software application that provides network | +| | bandwidth testing between two hosts on a network. It | +| | supports Unix domain sockets, TCP, SCTP, DLPI and UDP via | +| | BSD Sockets. Netperf provides a number of predefined tests | +| | e.g. to measure bulk (unidirectional) data transfer or | +| | request response performance. | +| | (netperf is not always part of a Linux distribution, hence | +| | it needs to be installed.) | +| | | ++--------------+--------------------------------------------------------------+ +|references | netperf Man pages | +| | ETSI-NFV-TST001 | +| | | ++--------------+--------------------------------------------------------------+ +|applicability | Test can be configured with different packet sizes and | +| | test duration. Default values exist. | +| | | +| | SLA (optional): max_mean_latency | +| | | ++--------------+--------------------------------------------------------------+ +|pre-test | The POD can be reached by external ip and logged on via ssh | +|conditions | | ++--------------+--------------------------------------------------------------+ +|test sequence | description and expected result | +| | | ++--------------+--------------------------------------------------------------+ +|step 1 | Install netperf tool on each specified node, one is as the | +| | server, and the other as the client. | +| | | ++--------------+--------------------------------------------------------------+ +|step 2 | Log on to the client node and use the netperf command to | +| | execute the network performance test | +| | | ++--------------+--------------------------------------------------------------+ +|step 3 | The throughput results stored. | +| | | ++--------------+--------------------------------------------------------------+ +|test verdict | Fails only if SLA is not passed, or if there is a test case | +| | execution problem. | +| | | ++--------------+--------------------------------------------------------------+ |