aboutsummaryrefslogtreecommitdiffstats
path: root/docs/results/os-odl_l2-sfc-ha.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/results/os-odl_l2-sfc-ha.rst')
-rw-r--r--docs/results/os-odl_l2-sfc-ha.rst231
1 files changed, 231 insertions, 0 deletions
diff --git a/docs/results/os-odl_l2-sfc-ha.rst b/docs/results/os-odl_l2-sfc-ha.rst
new file mode 100644
index 000000000..e27562cae
--- /dev/null
+++ b/docs/results/os-odl_l2-sfc-ha.rst
@@ -0,0 +1,231 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International
+.. License.
+.. http://creativecommons.org/licenses/by/4.0
+
+
+==================================
+Test Results for os-odl_l2-sfc-ha
+==================================
+
+.. toctree::
+ :maxdepth: 2
+
+
+Fuel
+=====
+
+.. _Grafana: http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main
+.. _POD2: https://wiki.opnfv.org/pharos?&#community_test_labs
+
+Overview of test results
+------------------------
+
+See Grafana_ for viewing test result metrics for each respective test case. It
+is possible to chose which specific scenarios to look at, and then to zoom in
+on the details of each run test scenario as well.
+
+All of the test case results below are based on 4 scenario test runs, each run
+on the LF POD2_ or Ericsson POD2_ between September 16 and 20 in 2016.
+
+TC002
+-----
+The round-trip-time (RTT) between 2 VMs on different blades is measured using
+ping. Most test run measurements result on average between 0.32 ms and 1.42 ms.
+Only one test run on Sep. 20 has reached greatest RTT spike of 4.66 ms.
+Meanwhile, the smallest network latency is 0.16 ms, which is obtained on Sep.
+17th. To sum up, the curve of network latency has very small wave, which is
+less than 5 ms. SLA sets to be 10 ms. The SLA value is used as a reference, it
+has not been defined by OPNFV.
+
+TC005
+-----
+The IO read bandwidth actually refers to the storage throughput, which is
+measured by fio and the greatest IO read bandwidth of the four runs is 734
+MB/s. The IO read bandwidth of the first three runs looks similar, with an
+average of less than 100 KB/s, except one on Sep. 20, whose maximum storage
+throughput can reach 734 MB/s. The SLA of read bandwidth sets to be 400 MB/s,
+which is used as a reference, and it has not been defined by OPNFV.
+
+The results of storage IOPS for the four runs look similar with each other. The
+IO read times per second of the four test runs have an average value between
+1.8k per second and 3.27k per second, and meanwhile, the minimum result is
+only 60 times per second.
+
+TC010
+-----
+The tool we use to measure memory read latency is lmbench, which is a series of
+micro benchmarks intended to measure basic operating system and hardware system
+metrics. The memory read latency of the four runs is between 1.085 ns and 1.218
+ns on average. The variations within each test run are quite small. For
+Ericsson pod2, the average of memory latency is approx. 1.217 ms. While for LF
+pod2, the average value is about 1.085 ms. It can be seen that the performance
+of LF is better than Ericsson's. The SLA sets to be 30 ns. The SLA value is
+used as a reference, it has not been defined by OPNFV.
+
+TC012
+-----
+Lmbench is also used to measure the memory read and write bandwidth, in which
+we use bw_mem to obtain the results. The four test runs all have a narrow range
+of change with the average memory and write BW of 18.5 GB/s. Here SLA set to be
+15 GB/s. The SLA value is used as a reference, it has not been defined by OPNFV.
+
+TC014
+-----
+The Unixbench is used to evaluate the IaaS processing speed with regards to
+score of single cpu running and parallel running. It can be seen from the
+dashboard that the processing test results vary from scores 3209k to 3843k, and
+there is only one result one date. No SLA set.
+
+TC037
+-----
+The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs
+on different blades are measured when increasing the amount of UDP flows sent
+between the VMs using pktgen as packet generator tool.
+
+Round trip times and packet throughput between VMs can typically be affected by
+the amount of flows set up and result in higher RTT and less PPS throughput.
+
+The mean packet throughput of the three test runs is between 439 kpps and
+582 kpps, and the test run on Sep. 17th has the lowest average value of 371
+kpps. The RTT results of all the test runs keep flat at approx. 10 ms. It is
+obvious that the PPS results are not as consistent as the RTT results.
+
+The No. flows of the four test runs are 240 k on average and the PPS results
+look a little waved, since the largest packet throughput is 680 kpps and the
+minimum throughput is 319 kpps respectively.
+
+There are no errors of packets received in the four runs, but there are still
+lost packets in all the test runs. The RTT values obtained by ping of the four
+runs have the similar trend of RTT with the average value of approx. 12 ms.
+
+CPU load is measured by mpstat, and CPU load of the four test runs seem a
+little similar, since the minimum value and the peak of CPU load is between 0
+percent and ten percent respectively. And the best result is obtained on Sep.
+17th, with an CPU load of ten percent. But on the whole, the CPU load is very
+poor, since the average value is quite small.
+
+TC069
+-----
+With the block size changing from 1 kb to 512 kb, the average memory write
+bandwidth tends to become larger first and then smaller within every run test
+for the two pods, which rangs from 25.1 GB/s to 29.4 GB/s and then to 19.2 GB/s
+on average. Since the test id is one, it is that only the INT memory write
+bandwidth is tested. On the whole, with the block size becoming larger, the
+memory write bandwidth tends to decrease. SLA sets to be 7 GB/s. The SLA value
+is used as a reference, it has not been defined by OPNFV.
+
+TC070
+-----
+The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs
+on different blades are measured when increasing the amount of UDP flows sent
+between the VMs using pktgen as packet generator tool.
+
+Round trip times and packet throughput between VMs can typically be affected by
+the amount of flows set up and result in higher RTT and less PPS throughput.
+
+The network latency is measured by ping, and the results of the four test runs
+look similar with each other, and within these test runs, the maximum RTT can
+reach 27 ms and the average RTT is usually approx. 12 ms. The network latency
+tested on Sep. 27th has a peak latency of 27 ms. But on the whole, the average
+RTTs of the four runs keep flat.
+
+Memory utilization is measured by free, which can display amount of free and
+used memory in the system. The largest amount of used memory is 269 MiB for the
+four runs. In general, the four test runs have very large memory utilization,
+which can reach 251 MiB on average. On the other hand, for the mean free memory,
+the four test runs have the similar trend with that of the mean used memory.
+In general, the mean free memory change from 231 MiB to 248 MiB.
+
+Packet throughput and packet loss can be measured by pktgen, which is a tool
+in the network for generating traffic loads for network experiments. The mean
+packet throughput of the four test runs seem quite different, ranging from
+371 kpps to 582 kpps. The average number of flows in these tests is
+240000, and each run has a minimum number of flows of 2 and a maximum number
+of flows of 1.001 Mil. At the same time, the corresponding average packet
+throughput is between 319 kpps and 680 kpps. In summary, the PPS results
+seem consistent. Within each test run of the four runs, when number of flows
+becomes larger, the packet throughput seems not larger at the same time.
+
+TC071
+-----
+The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs
+on different blades are measured when increasing the amount of UDP flows sent
+between the VMs using pktgen as packet generator tool.
+
+Round trip times and packet throughput between VMs can typically be affected by
+the amount of flows set up and result in higher RTT and less PPS throughput.
+
+The network latency is measured by ping, and the results of the four test runs
+look similar with each other. Within each test run, the maximum RTT is only 24
+ms and the average RTT is usually approx. 12 ms. On the whole, the average
+RTTs of the four runs keep stable and the network latency is relatively small.
+
+Cache utilization is measured by cachestat, which can display size of cache and
+buffer in the system. Cache utilization statistics are collected during UDP
+flows sent between the VMs using pktgen as packet generator tool. The largest
+cache size is 213 MiB, and the smallest cache size is 99 MiB, which is same for
+the four runs. On the whole, the average cache size of the four runs look the
+same and is between 184 MiB and 205 MiB. Meanwhile, the tread of the buffer
+size keep stable, since they have a minimum value of 7 MiB and a maximum value of
+8 MiB.
+
+Packet throughput can be measured by pktgen, which is a tool in the network for
+generating traffic loads for network experiments. The mean packet throughput of
+the four test runs differ from 371 kpps to 582 kpps. The average number of
+flows in these tests is 240k, and each run has a minimum number of flows of 2
+and a maximum number of flows of 1.001 Mil. At the same time, the corresponding
+packet throughput differ between 319 kpps to 680 kpps. Within each test run
+of the four runs, when number of flows becomes larger, the packet throughput
+seems not larger in the meantime.
+
+TC072
+-----
+The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs
+on different blades are measured when increasing the amount of UDP flows sent
+between the VMs using pktgen as packet generator tool.
+
+Round trip times and packet throughput between VMs can typically be affected by
+the amount of flows set up and result in higher RTT and less PPS throughput.
+
+The RTT results are similar throughout the different test dates and runs
+between 0 ms and 24 ms with an average leatency of less than 13 ms. The PPS
+results are not as consistent as the RTT results, for the mean packet
+throughput of the four runs differ from 370 kpps to 582 kpps.
+
+Network utilization is measured by sar, that is system activity reporter, which
+can display the average statistics for the time since the system was started.
+Network utilization statistics are collected during UDP flows sent between the
+VMs using pktgen as packet generator tool. The largest total number of packets
+transmitted per second look similar for the four test runs, whose values change a
+lot from 10 pps to 697 kpps. However, the total number of packets received per
+second of three runs look similar, which have a large wide range of 2 pps to
+1.497 Mpps, while the results on Sep. 18th and 20th have very small maximum
+number of packets received per second of 817 kpps.
+
+In some test runs when running with less than approx. 251000 flows the PPS
+throughput is normally flatter compared to when running with more flows, after
+which the PPS throughput decreases. For the other test runs there is however no
+significant change to the PPS throughput when the number of flows are
+increased. In some test runs the PPS is also greater with 251000 flows
+compared to other test runs where the PPS result is less with only 2 flows.
+
+There are lost packets reported in most of the test runs. There is no observed
+correlation between the amount of flows and the amount of lost packets.
+The lost amount of packets normally differs a lot per test run.
+
+Detailed test results
+---------------------
+The scenario was run on Ericsson POD2_ and LF POD2_ with:
+Fuel 9.0
+OpenStack Mitaka
+OpenVirtualSwitch 2.5.90
+OpenDayLight Beryllium
+
+Rationale for decisions
+-----------------------
+Pass
+
+Conclusions and recommendations
+-------------------------------
+Tests were successfully executed and metrics collected.
+No SLA was verified. To be decided on in next release of OPNFV.