aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xyardstick/benchmark/runners/dynamictp.py169
1 files changed, 169 insertions, 0 deletions
diff --git a/yardstick/benchmark/runners/dynamictp.py b/yardstick/benchmark/runners/dynamictp.py
new file mode 100755
index 000000000..106595dbd
--- /dev/null
+++ b/yardstick/benchmark/runners/dynamictp.py
@@ -0,0 +1,169 @@
+# Copyright 2016: Nokia
+# All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License"); you may
+# not use this file except in compliance with the License. You may obtain
+# a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+# License for the specific language governing permissions and limitations
+# under the License.
+
+# yardstick comment: this is a modified copy of
+# rally/rally/benchmark/runners/constant.py
+
+"""A runner that searches for the max throughput with binary search
+"""
+
+import os
+import multiprocessing
+import logging
+import traceback
+import time
+
+from yardstick.benchmark.runners import base
+
+LOG = logging.getLogger(__name__)
+
+
+def _worker_process(queue, cls, method_name, scenario_cfg,
+ context_cfg, aborted): # pragma: no cover
+
+ runner_cfg = scenario_cfg['runner']
+ iterations = runner_cfg.get("iterations", 1)
+ interval = runner_cfg.get("interval", 1)
+ run_step = runner_cfg.get("run_step", "setup,run,teardown")
+ delta = runner_cfg.get("delta", 1000)
+ options_cfg = scenario_cfg['options']
+ initial_rate = options_cfg.get("pps", 1000000)
+ LOG.info("worker START, class %s", cls)
+
+ runner_cfg['runner_id'] = os.getpid()
+
+ benchmark = cls(scenario_cfg, context_cfg)
+ if "setup" in run_step:
+ benchmark.setup()
+
+ method = getattr(benchmark, method_name)
+
+ queue.put({'runner_id': runner_cfg['runner_id'],
+ 'scenario_cfg': scenario_cfg,
+ 'context_cfg': context_cfg})
+
+ if "run" in run_step:
+ iterator = 0
+ search_max = initial_rate
+ search_min = 0
+ while iterator < iterations:
+ search_min = int(search_min / 2)
+ scenario_cfg['options']['pps'] = search_max
+ search_max_found = False
+ max_throuput_found = False
+ sequence = 0
+
+ last_min_data = {}
+ last_min_data['packets_per_second'] = 0
+
+ while True:
+ sequence += 1
+
+ data = {}
+ errors = ""
+ too_high = False
+
+ LOG.debug("sequence: %s search_min: %s search_max: %s",
+ sequence, search_min, search_max)
+
+ try:
+ method(data)
+ except AssertionError as assertion:
+ LOG.warning("SLA validation failed: %s" % assertion.args)
+ too_high = True
+ except Exception as e:
+ errors = traceback.format_exc()
+ LOG.exception(e)
+
+ actual_pps = data['packets_per_second']
+
+ if too_high:
+ search_max = actual_pps
+
+ if not search_max_found:
+ search_max_found = True
+ else:
+ last_min_data = data
+ search_min = actual_pps
+
+ # Check if the actual rate is well below the asked rate
+ if scenario_cfg['options']['pps'] > actual_pps * 1.5:
+ search_max = actual_pps
+ LOG.debug("Sender reached max tput: %s", search_max)
+ elif not search_max_found:
+ search_max = int(actual_pps * 1.5)
+
+ if ((search_max - search_min) < delta) or \
+ (search_max <= search_min) or (10 <= sequence):
+ if last_min_data['packets_per_second'] > 0:
+ data = last_min_data
+
+ benchmark_output = {
+ 'timestamp': time.time(),
+ 'sequence': sequence,
+ 'data': data,
+ 'errors': errors
+ }
+
+ record = {
+ 'runner_id': runner_cfg['runner_id'],
+ 'benchmark': benchmark_output
+ }
+
+ queue.put(record)
+ max_throuput_found = True
+
+ if (errors) or aborted.is_set() or max_throuput_found:
+ LOG.info("worker END")
+ break
+
+ if not search_max_found:
+ scenario_cfg['options']['pps'] = search_max
+ else:
+ scenario_cfg['options']['pps'] = \
+ (search_max - search_min) / 2 + search_min
+
+ time.sleep(interval)
+
+ iterator += 1
+ LOG.debug("iterator: %s iterations: %s", iterator, iterations)
+
+ if "teardown" in run_step:
+ benchmark.teardown()
+
+
+class IterationRunner(base.Runner):
+ '''Run a scenario to find the max throughput
+
+If the scenario ends before the time has elapsed, it will be started again.
+
+ Parameters
+ interval - time to wait between each scenario invocation
+ type: int
+ unit: seconds
+ default: 1 sec
+ delta - stop condition for the search.
+ type: int
+ unit: pps
+ default: 1000 pps
+ '''
+ __execution_type__ = 'Dynamictp'
+
+ def _run_benchmark(self, cls, method, scenario_cfg, context_cfg):
+ self.process = multiprocessing.Process(
+ target=_worker_process,
+ args=(self.result_queue, cls, method, scenario_cfg,
+ context_cfg, self.aborted))
+ self.process.start()