summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xsamples/ping-iteration.yaml45
-rwxr-xr-xyardstick/benchmark/runners/iteration.py111
2 files changed, 156 insertions, 0 deletions
diff --git a/samples/ping-iteration.yaml b/samples/ping-iteration.yaml
new file mode 100755
index 000000000..810530c82
--- /dev/null
+++ b/samples/ping-iteration.yaml
@@ -0,0 +1,45 @@
+---
+# Sample benchmark task config file
+# measure network latency using ping
+
+schema: "yardstick:task:0.1"
+
+scenarios:
+-
+ type: Ping
+ options:
+ packetsize: 200
+ host: athena.demo
+ target: ares.demo
+
+ runner:
+ type: Iteration
+ iterations: 60
+ interval: 1
+
+ sla:
+ max_rtt: 10
+ action: monitor
+
+context:
+ name: demo
+ image: cirros-0.3.3
+ flavor: m1.tiny
+ user: cirros
+
+ placement_groups:
+ pgrp1:
+ policy: "availability"
+
+ servers:
+ athena:
+ floating_ip: true
+ placement: "pgrp1"
+ ares:
+ placement: "pgrp1"
+
+ networks:
+ test:
+ cidr: '10.0.1.0/24'
+ external_network: "net04_ext"
+
diff --git a/yardstick/benchmark/runners/iteration.py b/yardstick/benchmark/runners/iteration.py
new file mode 100755
index 000000000..03dcfae03
--- /dev/null
+++ b/yardstick/benchmark/runners/iteration.py
@@ -0,0 +1,111 @@
+##############################################################################
+# Copyright (c) 2015 Huawei Technologies Co.,Ltd and others.
+#
+# All rights reserved. This program and the accompanying materials
+# are made available under the terms of the Apache License, Version 2.0
+# which accompanies this distribution, and is available at
+# http://www.apache.org/licenses/LICENSE-2.0
+##############################################################################
+
+'''A runner that runs a configurable number of times before it returns
+'''
+
+import os
+import multiprocessing
+import logging
+import traceback
+import time
+
+from yardstick.benchmark.runners import base
+
+LOG = logging.getLogger(__name__)
+
+
+def _worker_process(queue, cls, method_name, context, scenario_args):
+
+ sequence = 1
+
+ interval = context.get("interval", 1)
+ iterations = context.get("iterations", 1)
+ LOG.info("worker START, iterations %d times, class %s", iterations, cls)
+
+ context['runner'] = os.getpid()
+
+ benchmark = cls(context)
+ benchmark.setup()
+ method = getattr(benchmark, method_name)
+
+ record_context = {"runner": context["runner"],
+ "host": context["host"]}
+
+ sla_action = None
+ if "sla" in scenario_args:
+ sla_action = scenario_args["sla"].get("action", "assert")
+
+ while True:
+
+ LOG.debug("runner=%(runner)s seq=%(sequence)s START" %
+ {"runner": context["runner"], "sequence": sequence})
+
+ data = {}
+ errors = ""
+
+ try:
+ data = method(scenario_args)
+ except AssertionError as assertion:
+ # SLA validation failed in scenario, determine what to do now
+ if sla_action == "assert":
+ raise
+ elif sla_action == "monitor":
+ LOG.warning("SLA validation failed: %s" % assertion.args)
+ errors = assertion.args
+ except Exception as e:
+ errors = traceback.format_exc()
+ LOG.exception(e)
+
+ time.sleep(interval)
+
+ benchmark_output = {
+ 'timestamp': time.time(),
+ 'sequence': sequence,
+ 'data': data,
+ 'errors': errors
+ }
+
+ queue.put({'context': record_context, 'sargs': scenario_args,
+ 'benchmark': benchmark_output})
+
+ LOG.debug("runner=%(runner)s seq=%(sequence)s END" %
+ {"runner": context["runner"], "sequence": sequence})
+
+ sequence += 1
+
+ if (errors and sla_action is None) or (sequence > iterations):
+ LOG.info("worker END")
+ break
+
+ benchmark.teardown()
+
+
+class IterationRunner(base.Runner):
+ '''Run a scenario for a configurable number of times
+
+If the scenario ends before the time has elapsed, it will be started again.
+
+ Parameters
+ iterations - amount of times the scenario will be run for
+ type: int
+ unit: na
+ default: 1
+ interval - time to wait between each scenario invocation
+ type: int
+ unit: seconds
+ default: 1 sec
+ '''
+ __execution_type__ = 'Iteration'
+
+ def _run_benchmark(self, cls, method, scenario_args):
+ self.process = multiprocessing.Process(
+ target=_worker_process,
+ args=(self.result_queue, cls, method, self.config, scenario_args))
+ self.process.start()