diff options
author | Kubi <jean.gaoliang@huawei.com> | 2017-03-09 01:28:07 +0000 |
---|---|---|
committer | Gerrit Code Review <gerrit@opnfv.org> | 2017-03-09 01:28:07 +0000 |
commit | 270d6092c809e8de039a08efd8c108f865cf860e (patch) | |
tree | f3ef32dd0639523a002cf32025d40bbabdcecd4c /docs/testing/user/userguide/opnfv_yardstick_tc051.rst | |
parent | 6fd6dd87fe4914b970d13e346194612fbc685e64 (diff) | |
parent | fd54fcc22170aa880fc49730730ad80896e2e608 (diff) |
Merge "Yardstick Preliminary Documentation"
Diffstat (limited to 'docs/testing/user/userguide/opnfv_yardstick_tc051.rst')
-rw-r--r-- | docs/testing/user/userguide/opnfv_yardstick_tc051.rst | 117 |
1 files changed, 117 insertions, 0 deletions
diff --git a/docs/testing/user/userguide/opnfv_yardstick_tc051.rst b/docs/testing/user/userguide/opnfv_yardstick_tc051.rst new file mode 100644 index 000000000..3402ccd92 --- /dev/null +++ b/docs/testing/user/userguide/opnfv_yardstick_tc051.rst @@ -0,0 +1,117 @@ +.. This work is licensed under a Creative Commons Attribution 4.0 International +.. License. +.. http://creativecommons.org/licenses/by/4.0 +.. (c) OPNFV, Yin Kanglin and others. +.. 14_ykl@tongji.edu.cn + +************************************* +Yardstick Test Case Description TC051 +************************************* + ++-----------------------------------------------------------------------------+ +|OpenStack Controller Node CPU Overload High Availability | +| | ++--------------+--------------------------------------------------------------+ +|test case id | OPNFV_YARDSTICK_TC051: OpenStack Controller Node CPU | +| | Overload High Availability | ++--------------+--------------------------------------------------------------+ +|test purpose | This test case will verify the high availability of control | +| | node. When the CPU usage of a specified controller node is | +| | stressed to 100%, which breaks down the Openstack services | +| | on this node. These Openstack service should able to be | +| | accessed by other controller nodes, and the services on | +| | failed controller node should be isolated. | ++--------------+--------------------------------------------------------------+ +|test method | This test case stresses the CPU uasge of a specified control | +| | node to 100%, then checks whether all services provided by | +| | the environment are OK with some monitor tools. | ++--------------+--------------------------------------------------------------+ +|attackers | In this test case, an attacker called "stress-cpu" is | +| | needed. This attacker includes two parameters: | +| | 1) fault_type: which is used for finding the attacker's | +| | scripts. It should be always set to "stress-cpu" in | +| | this test case. | +| | 2) host: which is the name of a control node being attacked. | +| | e.g. | +| | -fault_type: "stress-cpu" | +| | -host: node1 | ++--------------+--------------------------------------------------------------+ +|monitors | In this test case, the monitor named "openstack-cmd" is | +| | needed. The monitor needs needs two parameters: | +| | 1) monitor_type: which is used for finding the monitor class | +| | and related scritps. It should be always set to | +| | "openstack-cmd" for this monitor. | +| | 2) command_name: which is the command name used for request | +| | | +| | There are four instance of the "openstack-cmd" monitor: | +| | monitor1: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "nova image-list" | +| | monitor2: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "neutron router-list" | +| | monitor3: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "heat stack-list" | +| | monitor4: | +| | -monitor_type: "openstack-cmd" | +| | -command_name: "cinder list" | ++--------------+--------------------------------------------------------------+ +|metrics | In this test case, there is one metric: | +| | 1)service_outage_time: which indicates the maximum outage | +| | time (seconds) of the specified Openstack command request. | ++--------------+--------------------------------------------------------------+ +|test tool | Developed by the project. Please see folder: | +| | "yardstick/benchmark/scenarios/availability/ha_tools" | +| | | ++--------------+--------------------------------------------------------------+ +|references | ETSI NFV REL001 | +| | | ++--------------+--------------------------------------------------------------+ +|configuration | This test case needs two configuration files: | +| | 1) test case file: opnfv_yardstick_tc051.yaml | +| | -Attackers: see above "attackers" discription | +| | -waiting_time: which is the time (seconds) from the process | +| | being killed to stoping monitors the monitors | +| | -Monitors: see above "monitors" discription | +| | -SLA: see above "metrics" discription | +| | | +| | 2)POD file: pod.yaml | +| | The POD configuration should record on pod.yaml first. | +| | the "host" item in this test case will use the node name in | +| | the pod.yaml. | +| | | ++--------------+--------------------------------------------------------------+ +|test sequence | description and expected result | +| | | ++--------------+--------------------------------------------------------------+ +|step 1 | start monitors: | +| | each monitor will run with independently process | +| | | +| | Result: The monitor info will be collected. | +| | | ++--------------+--------------------------------------------------------------+ +|step 2 | do attacker: connect the host through SSH, and then execute | +| | the stress cpu script on the host. | +| | | +| | Result: The CPU usage of the host will be stressed to 100%. | +| | | ++--------------+--------------------------------------------------------------+ +|step 3 | stop monitors after a period of time specified by | +| | "waiting_time" | +| | | +| | Result: The monitor info will be aggregated. | +| | | ++--------------+--------------------------------------------------------------+ +|step 4 | verify the SLA | +| | | +| | Result: The test case is passed or not. | +| | | ++--------------+--------------------------------------------------------------+ +|post-action | It is the action when the test cases exist. It kills the | +| | process that stresses the CPU usage. | ++--------------+--------------------------------------------------------------+ +|test verdict | Fails only if SLA is not passed, or if there is a test case | +| | execution problem. | +| | | ++--------------+--------------------------------------------------------------+ |