summaryrefslogtreecommitdiffstats
path: root/docs/testing/user/userguide/opnfv_yardstick_tc010.rst
diff options
context:
space:
mode:
authorKubi <jean.gaoliang@huawei.com>2017-03-09 01:28:07 +0000
committerGerrit Code Review <gerrit@opnfv.org>2017-03-09 01:28:07 +0000
commit270d6092c809e8de039a08efd8c108f865cf860e (patch)
treef3ef32dd0639523a002cf32025d40bbabdcecd4c /docs/testing/user/userguide/opnfv_yardstick_tc010.rst
parent6fd6dd87fe4914b970d13e346194612fbc685e64 (diff)
parentfd54fcc22170aa880fc49730730ad80896e2e608 (diff)
Merge "Yardstick Preliminary Documentation"
Diffstat (limited to 'docs/testing/user/userguide/opnfv_yardstick_tc010.rst')
-rw-r--r--docs/testing/user/userguide/opnfv_yardstick_tc010.rst154
1 files changed, 154 insertions, 0 deletions
diff --git a/docs/testing/user/userguide/opnfv_yardstick_tc010.rst b/docs/testing/user/userguide/opnfv_yardstick_tc010.rst
new file mode 100644
index 000000000..202307de6
--- /dev/null
+++ b/docs/testing/user/userguide/opnfv_yardstick_tc010.rst
@@ -0,0 +1,154 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International
+.. License.
+.. http://creativecommons.org/licenses/by/4.0
+.. (c) OPNFV, Ericsson AB and others.
+
+*************************************
+Yardstick Test Case Description TC010
+*************************************
+
+.. _lat_mem_rd: http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html
+
++-----------------------------------------------------------------------------+
+|Memory Latency |
+| |
++--------------+--------------------------------------------------------------+
+|test case id | OPNFV_YARDSTICK_TC010_MEMORY LATENCY |
+| | |
++--------------+--------------------------------------------------------------+
+|metric | Memory read latency (nanoseconds) |
+| | |
++--------------+--------------------------------------------------------------+
+|test purpose | The purpose of TC010 is to evaluate the IaaS compute |
+| | performance with regards to memory read latency. |
+| | It measures the memory read latency for varying memory sizes |
+| | and strides. Whole memory hierarchy is measured. |
+| | |
+| | The purpose is also to be able to spot the trends. |
+| | Test results, graphs and similar shall be stored for |
+| | comparison reasons and product evolution understanding |
+| | between different OPNFV versions and/or configurations. |
+| | |
++--------------+--------------------------------------------------------------+
+|test tool | Lmbench |
+| | |
+| | Lmbench is a suite of operating system microbenchmarks. This |
+| | test uses lat_mem_rd tool from that suite including: |
+| | * Context switching |
+| | * Networking: connection establishment, pipe, TCP, UDP, and |
+| | RPC hot potato |
+| | * File system creates and deletes |
+| | * Process creation |
+| | * Signal handling |
+| | * System call overhead |
+| | * Memory read latency |
+| | |
+| | (LMbench is not always part of a Linux distribution, hence |
+| | it needs to be installed. As an example see the |
+| | /yardstick/tools/ directory for how to generate a Linux |
+| | image with LMbench included.) |
+| | |
++--------------+--------------------------------------------------------------+
+|test | LMbench lat_mem_rd benchmark measures memory read latency |
+|description | for varying memory sizes and strides. |
+| | |
+| | The benchmark runs as two nested loops. The outer loop is |
+| | the stride size. The inner loop is the array size. For each |
+| | array size, the benchmark creates a ring of pointers that |
+| | point backward one stride.Traversing the array is done by: |
+| | |
+| | p = (char **)*p; |
+| | |
+| | in a for loop (the over head of the for loop is not |
+| | significant; the loop is an unrolled loop 100 loads long). |
+| | The size of the array varies from 512 bytes to (typically) |
+| | eight megabytes. For the small sizes, the cache will have an |
+| | effect, and the loads will be much faster. This becomes much |
+| | more apparent when the data is plotted. |
+| | |
+| | Only data accesses are measured; the instruction cache is |
+| | not measured. |
+| | |
+| | The results are reported in nanoseconds per load and have |
+| | been verified accurate to within a few nanoseconds on an SGI |
+| | Indy. |
+| | |
++--------------+--------------------------------------------------------------+
+|configuration | File: opnfv_yardstick_tc010.yaml |
+| | |
+| | * SLA (max_latency): 30 nanoseconds |
+| | * Stride - 128 bytes |
+| | * Stop size - 64 megabytes |
+| | * Iterations: 10 - test is run 10 times iteratively. |
+| | * Interval: 1 - there is 1 second delay between each |
+| | iteration. |
+| | |
+| | SLA is optional. The SLA in this test case serves as an |
+| | example. Considerably lower read latency is expected. |
+| | However, to cover most configurations, both baremetal and |
+| | fully virtualized ones, this value should be possible to |
+| | achieve and acceptable for black box testing. |
+| | Many heavy IO applications start to suffer badly if the |
+| | read latency is higher than this. |
+| | |
++--------------+--------------------------------------------------------------+
+|applicability | Test can be configured with different: |
+| | |
+| | * strides; |
+| | * stop_size; |
+| | * iterations and intervals. |
+| | |
+| | Default values exist. |
+| | |
+| | SLA (optional) : max_latency: The maximum memory latency |
+| | that is accepted. |
+| | |
++--------------+--------------------------------------------------------------+
+|usability | This test case is one of Yardstick's generic test. Thus it |
+| | is runnable on most of the scenarios. |
+| | |
++--------------+--------------------------------------------------------------+
+|references | LMbench lat_mem_rd_ |
+| | |
+| | ETSI-NFV-TST001 |
+| | |
++--------------+--------------------------------------------------------------+
+|pre-test | The test case image needs to be installed into Glance |
+|conditions | with Lmbench included in the image. |
+| | |
+| | No POD specific requirements have been identified. |
+| | |
++--------------+--------------------------------------------------------------+
+|test sequence | description and expected result |
+| | |
++--------------+--------------------------------------------------------------+
+|step 1 | The host is installed as client. LMbench's lat_mem_rd tool |
+| | is invoked and logs are produced and stored. |
+| | |
+| | Result: logs are stored. |
+| | |
++--------------+--------------------------------------------------------------+
+|step 1 | A host VM with LMbench installed is booted. |
+| | |
++--------------+--------------------------------------------------------------+
+|step 2 | Yardstick is connected with the host VM by using ssh. |
+| | 'lmbench_latency_benchmark' bash script is copyied from Jump |
+| | Host to the host VM via the ssh tunnel. |
+| | |
++--------------+--------------------------------------------------------------+
+|step 3 | 'lmbench_latency_benchmark' script is invoked. LMbench's |
+| | lat_mem_rd benchmark starts to measures memory read latency |
+| | for varying memory sizes and strides. Memory read latency |
+| | are recorded and checked against the SLA. Logs are produced |
+| | and stored. |
+| | |
+| | Result: Logs are stored. |
+| | |
++--------------+--------------------------------------------------------------+
+|step 4 | The host VM is deleted. |
+| | |
++--------------+--------------------------------------------------------------+
+|test verdict | Test fails if the measured memory latency is above the SLA |
+| | value or if there is a test case execution problem. |
+| | |
++--------------+--------------------------------------------------------------+