diff options
author | Kubi <jean.gaoliang@huawei.com> | 2017-03-09 01:28:07 +0000 |
---|---|---|
committer | Gerrit Code Review <gerrit@opnfv.org> | 2017-03-09 01:28:07 +0000 |
commit | 270d6092c809e8de039a08efd8c108f865cf860e (patch) | |
tree | f3ef32dd0639523a002cf32025d40bbabdcecd4c /docs/testing/user/userguide/opnfv_yardstick_tc001.rst | |
parent | 6fd6dd87fe4914b970d13e346194612fbc685e64 (diff) | |
parent | fd54fcc22170aa880fc49730730ad80896e2e608 (diff) |
Merge "Yardstick Preliminary Documentation"
Diffstat (limited to 'docs/testing/user/userguide/opnfv_yardstick_tc001.rst')
-rw-r--r-- | docs/testing/user/userguide/opnfv_yardstick_tc001.rst | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/docs/testing/user/userguide/opnfv_yardstick_tc001.rst b/docs/testing/user/userguide/opnfv_yardstick_tc001.rst new file mode 100644 index 000000000..b53c508a6 --- /dev/null +++ b/docs/testing/user/userguide/opnfv_yardstick_tc001.rst @@ -0,0 +1,133 @@ +s work is licensed under a Creative Commons Attribution 4.0 International +.. License. +.. http://creativecommons.org/licenses/by/4.0 +.. (c) OPNFV, Ericsson AB and others. + +************************************* +Yardstick Test Case Description TC001 +************************************* + +.. _pktgen: https://www.kernel.org/doc/Documentation/networking/pktgen.txt + ++-----------------------------------------------------------------------------+ +|Network Performance | +| | ++--------------+--------------------------------------------------------------+ +|test case id | OPNFV_YARDSTICK_TC001_NETWORK PERFORMANCE | +| | | ++--------------+--------------------------------------------------------------+ +|metric | Number of flows and throughput | +| | | ++--------------+--------------------------------------------------------------+ +|test purpose | The purpose of TC001 is to evaluate the IaaS network | +| | performance with regards to flows and throughput, such as if | +| | and how different amounts of flows matter for the throughput | +| | between hosts on different compute blades. Typically e.g. | +| | the performance of a vSwitch depends on the number of flows | +| | running through it. Also performance of other equipment or | +| | entities can depend on the number of flows or the packet | +| | sizes used. | +| | | +| | The purpose is also to be able to spot the trends. | +| | Test results, graphs and similar shall be stored for | +| | comparison reasons and product evolution understanding | +| | between different OPNFV versions and/or configurations. | +| | | ++--------------+--------------------------------------------------------------+ +|test tool | pktgen | +| | | +| | Linux packet generator is a tool to generate packets at very | +| | high speed in the kernel. pktgen is mainly used to drive and | +| | LAN equipment test network. pktgen supports multi threading. | +| | To generate random MAC address, IP address, port number UDP | +| | packets, pktgen uses multiple CPU processors in the | +| | different PCI bus (PCI, PCIe bus) with Gigabit Ethernet | +| | tested (pktgen performance depends on the CPU processing | +| | speed, memory delay, PCI bus speed hardware parameters), | +| | Transmit data rate can be even larger than 10GBit/s. Visible | +| | can satisfy most card test requirements. | +| | | +| | (Pktgen is not always part of a Linux distribution, hence it | +| | needs to be installed. It is part of the Yardstick Docker | +| | image. | +| | As an example see the /yardstick/tools/ directory for how | +| | to generate a Linux image with pktgen included.) | +| | | ++--------------+--------------------------------------------------------------+ +|test | This test case uses Pktgen to generate packet flow between | +|description | two hosts for simulating network workloads on the SUT. | +| | | ++--------------+--------------------------------------------------------------+ +|traffic | An IP table is setup on server to monitor for received | +|profile | packets. | +| | | ++--------------+--------------------------------------------------------------+ +|configuration | file: opnfv_yardstick_tc001.yaml | +| | | +| | Packet size is set to 60 bytes. | +| | Number of ports: 10, 50, 100, 500 and 1000, where each | +| | runs for 20 seconds. The whole sequence is run twice | +| | The client and server are distributed on different hardware. | +| | | +| | For SLA max_ppm is set to 1000. The amount of configured | +| | ports map to between 110 up to 1001000 flows, respectively. | +| | | ++--------------+--------------------------------------------------------------+ +|applicability | Test can be configured with different: | +| | | +| | * packet sizes; | +| | * amount of flows; | +| | * test duration. | +| | | +| | Default values exist. | +| | | +| | SLA (optional): max_ppm: The number of packets per million | +| | packets sent that are acceptable to loose, not received. | +| | | ++--------------+--------------------------------------------------------------+ +|usability | This test case is used for generating high network | +| | throughput to simulate certain workloads on the SUT. Hence | +| | it should work with other test cases. | +| | | ++--------------+--------------------------------------------------------------+ +|references | pktgen_ | +| | | +| | ETSI-NFV-TST001 | +| | | ++--------------+--------------------------------------------------------------+ +|pre-test | The test case image needs to be installed into Glance | +|conditions | with pktgen included in it. | +| | | +| | No POD specific requirements have been identified. | +| | | ++--------------+--------------------------------------------------------------+ +|test sequence | description and expected result | +| | | ++--------------+--------------------------------------------------------------+ +|step 1 | Two host VMs are booted, as server and client. | +| | | ++--------------+--------------------------------------------------------------+ +|step 2 | Yardstick is connected with the server VM by using ssh. | +| | 'pktgen_benchmark' bash script is copyied from Jump Host to | +| | the server VM via the ssh tunnel. | +| | | ++--------------+--------------------------------------------------------------+ +|step 3 | An IP table is setup on server to monitor for received | +| | packets. | +| | | ++--------------+--------------------------------------------------------------+ +|step 4 | pktgen is invoked to generate packet flow between two server | +| | and client for simulating network workloads on the SUT. | +| | Results are processed and checked against the SLA. Logs are | +| | produced and stored. | +| | | +| | Result: Logs are stored. | +| | | ++--------------+--------------------------------------------------------------+ +|step 5 | Two host VMs are deleted. | +| | | ++--------------+--------------------------------------------------------------+ +|test verdict | Fails only if SLA is not passed, or if there is a test case | +| | execution problem. | +| | | ++--------------+--------------------------------------------------------------+ |